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Abstract—Graph computations often have to be conducted in parallel on partitioned graphs. The choice of graph partitioning
strategies, however, has strong impact on the design of graph computation algorithms. A graph algorithm developed under edge-cut
partitions may not work correctly under vertex-cut, and vice versa. We often have to rewrite our algorithms when we switch from, e.g.,
edge-cut to vertex-cut. To cope with this, we propose a notion of partition transparency, such that graph algorithms are able to work
correctly under different partitions without changes and moreover, benefit from recent hybrid partitions to speed up computations.
Furthermore, we identify conditions under which graph algorithms are guaranteed to be partition-transparent, in graph-centric and
vertex-centric models. We show that a variety of graph algorithms can be made partition-transparent. Using real-life and synthetic
graphs, we experimentally verify that partition-transparent algorithms compute correct answers under different partitions; better still,
under hybrid partitions these algorithms perform better than algorithms tailored for edge-cut and vertex-cut partitions in efficiency.

Index Terms—graph partition, partition transparency, graph-centric algorithms, vertex-centric algorithms

1 INTRODUCTION

To handle large-scale real-life graphs, it is often necessary to
conduct parallel computations on partitioned graphs. The
idea is to cut a large graph G into smaller fragments and
distribute the fragments to a cluster of processors (a.k.a.
workers), such that computations on G can be conducted in
parallel by the processors on their local fragments, subject
to message passing among different processors.

A variety of graph partitioning algorithms (a.k.a. parti-
tioners) have been developed. These partitioners are often
either edge-cut [8], [30], which evenly partitions vertices
and cuts edges, or vertex-cut [11], [25], [31], which evenly
partitions edges by replicating vertices. There have also been
recent work on hybrid partitioners, which cut both edges and
vertices [20], [14], [17], [52], [33], [9], [50], [43], to overcome
the limitations of edge-cut and vertex-cut partitions. It has
been shown that the hybrid partitioners often make graph
computations faster than edge-cut and vertex-cut.

The choice of a partitioning strategy has strong impact
on the performance of graph algorithms. Neither vertex-cut
nor edge-cut consistently outperforms the other for different
algorithms. Worse still, an algorithm developed under edge-
cut may not work correctly under vertex-cut, and vice versa.
Hence, when developing a parallel algorithm for a graph
computation problem, one has to decide in advance which
partitioning strategy to use. If the strategy picked does not
work well, we may want to switch to the other method,
but then we may have to rewrite our algorithms. Moreover,
algorithms developed for edge-cut and vertex-cut often
do not work correctly under hybrid partitions, and hence
cannot benefit from the state-of-the-art hybrid partitioners.
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Fig. 1: Graph partitions

Example 1: Consider the common neighbor problem (CN),
which computes the number of common neighbors for each
pair of vertices in a graph. It is widely used in link pre-
diction, product recommendation and fraud detection [35],
[16]. For a directed graph G = (V,E), where V is the
set of vertices and F is the set of edges, denote by I't (v)
(resp. I'~ (v)) the set of outgoing (resp. incoming) neighbors
of vertex v in V. To simplify the discussion, here we consider
common outgoing neighbors, i.e., given G, CN is to compute
CN(u,v) = [T (u) NTF(v)] for all pairs (u,v) € V x V.

Consider graph G shown in Figure 1 and its partitions
(Ff,Fy) and (FY,F3) under edge-cut (Figure 1(a)) and
vertex-cut (Figure 1(b)), respectively. Observe the follow-
ing. (1) Edge-cut partitioning cuts edges to generate vertex
disjoint fragments, e.g., {v1,v2,v5} and {vs,v4}. A vertex
is assigned to only one fragment [8], [30] (colored in gray
in Figure 1), referred to as a master vertex; the others are
mirrors, e.g., v3 in Fy is a master vertex and v3 in FY is a
mirror. Each master and all of its incident edges reside in the
same fragment. (2) In contrast, vertex-cut partitioning cuts
vertices to produce edge disjoint partitions. Thus all edges
incident to a master vertex may not be necessarily assigned
to the same fragment, e.g., v2 is a master vertex in F} and
its edge set at F}’ does not include the edge (vs, v2), which
resides in fragment Fy (see Figure 1(b)).

Algorithms developed for edge-cut partitions may not
work under vertex-cut partitions, and vice versa. To see
these, let us consider the following algorithms.

(1) Edge-cut. Under edge-cut, an algorithm A, for CN works
as follows. (a) For each master vertex v in a fragment F,
it increases the local count CNg(v;,v;) for each incoming



neighbor pair (v;,v;) of v. (b) After this, A, collects the
local CN counts from all fragments, and computes their sum
for all vertex pairs (v;,v;). It returns the aggregate values
as the final result. One can verify that 4. correctly returns
count CN(vy,v3) = 2 in the partition of Figure 1(a). Indeed,
CN(v1,v3) is set to be 1 after step (a) in each fragment, and
is then increased to 2 after the aggregation in step (b).

However, A, erroneously returns CN(vy,v3)=1 when it
runs on the vertex-cut partition of Figure 1(b). That is the
count in fragment F3 due to the common neighbor vy4. It
misses the common neighbor v, for v; and v3 since the edge
(v3,v2) is missing for master vertex vy in fragment Fy.

(2) Vertex-cut. Under vertex-cut, an algorithm A, works in
three steps. (a) It first computes the local count CN for each
master vertex v. (b) It then collects all incoming edges of
v from other fragments, and increases the CN counts using
these received edges. Denote by I' (v) the set of incoming
neighbors of v adjacent to received edges. Then A, increases
CN(v;,v;) for each v; € T'"(v) and v; € I'j(v), where
v; is a vertex on a received edge. Note that A, has all
incoming edges I'~ (v) of v after collecting edges from other
fragments. (c) Finally, it collects and aggregates local CN
counts from all fragments. One can verify that A, correctly
computes CN given the vertex-cut partition in Figure 1(b).
For instance, A, first increases the CN(v1,v3) in fragment
FY to 1, and then increases it to 2 after receiving (v, v2).

In contrast, algorithm A, does not work correctly when
given the edge-cut partition of Figure 1(a). To see this,
observe that A, would return CN(vy,v3) = 4, which is
wrong. This is because there exist duplicated edges in the
edge-cut partition (e.g., (v1,v4) and (vs,vz) are in both Ff
and Fy); after collecting such edges from other fragments,
A, counts CN(vy,v3) twice for each duplicated edge.

The problem with algorithm A, is that it assumes a
master vertex to have all its edges in its local fragment,
which is not true under vertex-cut. Algorithm A, gets
wrong answers on edge-cut partitions due to the duplicated
edges, which do not exist under vertex-cut partitions.

(3) Hybrid partition. For the same reason, neither algorithm
A nor A, works under the hybrid partition (FJ*, F}') of
Figure 1(c). More specifically, master vertex v4 in fragment
F}' does not have all of its incident edges in FJ', and edge
(v3,ve) replicates in FJ' and FJ. As a result, A, finds
CN(vy1,v3)=1, and A, gets CN(v1, v3)=3. None is correct. O

This example gives rise to several questions. Is it possible
to make an algorithm A transparent to different partitions
of a graph G, i.e., it works correctly no matter how G is
partitioned? If so, we do not have to rewrite our algorithms
when, e.g., switching from edge-cut partitions to vertex-
cut; and better still, we can capitalize on the state-of-the-art
hybrid partitions to speed up graph computations. Another
question concerns under what conditions algorithms are
transparent to different partitions? Moreover, is it within the
reach in practice to develop transparent algorithms?

Contributions & organization. This paper aims to answer
the questions above, all in the affirmative. We consider
parallel graph-centric [23], [7] and vertex-centric [25], [36]
algorithms, which will be reviewed in Section 2.

(1) Partition transparency (Section 3). We introduce a notion
of partition transparency for parallel graph algorithms. A
partition-transparent algorithm A works correctly under both
edge-cut and vertex-cut without requiring any change to A.
Better yet, they work correctly under hybrid partitions, and
hence are able to reduce the cost of graph computations by
leveraging, e.g., application-driven partitions [20].

(2) Transparency conditions (Section 4). We identify conditions
for algorithm A to be guaranteed partition-transparent, i.e., A
works correctly under edge-cut, vertex-cut and hybrid par-
titions without requiring any change to .4. We provide such
conditions for both graph-centric programs of GRAPE [23]
and vertex-centric GAS programs of PowerGraph [25].

(3) Transparent algorithms (Section 5). We show that partition-
transparent algorithms are within the reach of a variety of
problems, including common neighbor (CN), single source
shortest path (SSSP), weakly connected component (WCC),
PageRank (PR), strongly connected components (SCC), and
maximum cliques (MaxClique). We show that these algo-
rithms work correctly no matter what partitions are given.

(4) Experimental study (Section 6). Using real-life and syn-
thetic graphs, we verify the effectiveness and efficiency of
partition-transparent algorithms. We find the following. (a)
Transparent algorithms work correctly regardless of what
partitions are adopted, without changes, in both graph-
centric PIE mode and vertex-centric GAS model. (b) Trans-
parent algorithms 4 under hybrid partitions of [20] are
on average 2.3 times faster than non-transparent B under
vertex-cut or edge-cut, while B may not work correctly
under hybrid partitions. (c) Even when all algorithms run
under vertex-cut and edge-cut, transparent A performs
comparably to B developed for vertex-cut and edge-cut.
The performance gap is less than 5.8%. (d) Under hybrid
partitions, transparent algorithms scale well with both the
size of graphs and the number of processors used, e.g.,
transparent WCC and PR take on average 66.5s on graphs
of 500 million nodes and 6 billion edges with 90 processors.

Related work. This paper extends its conference version [20]
as follows. (1) While [20] targets hybrid partitioners, this
paper focuses on partition-transparent algorithms. We have
substantially reorganized and rewritten a large part of the
paper, from motivation and examples to technical discus-
sions (Sections 1-7). (2) We have provided a detailed anal-
ysis of partition transparency conditions for graph-centric
algorithms, from examples to proofs; we have also devel-
oped new transparency conditions for vertex-centric GAS
programs (Section 4). (3) We have developed new partition-
transparent algorithms as proof of concept (Section 5: SSSP,
WCC, SCC and MaxClique). (4) The experimental study
is almost entirely new, and evaluates partition-transparent
algorithms with more cases and datasets (Section 6).

We discuss the other related work as follows.

A host of graph partitioners have been developed for
edge-cut and vertex-cut (see [13], [10] for surveys). Edge-cut
(resp. vertex-cut) aims to (a) partition vertices (resp. edges)
into disjoint subsets of even sizes for load balancing, and
(b) reduce replicated edges (resp. vertices). Popular edge-
cut partitioners include exact algorithms [8], [32] such as
METIS [28], [29] and its parallel version ParMETIS [27], as



well as parallel heuristics XtraPuLP [44] and stream parti-
tioner FENNEL [46]. Vertex-cut partitioners include spectral
algorithm of [41] and heuristics Grid [26], SHEEP [38], NE
[49] and HDREF [40], just to name a few.

Edge-cut promotes locality: for each vertex v in graph G,
it keeps all edges emanating from v in the same fragment;
however, it often leads to imbalanced workload, especially
when G is skewed. In contrast, vertex-cut makes it easier
to balance partitions, but may have a lower level of locality
and increase communication cost for high-degree vertices.

To rectify these limitations, hybrid partitioners have been
studied, which are neither pure edge-cut nor pure vertex-
cut. PowerLyra [14] and IOGP [17] combine edge-cut and
vertex-cut by cutting only high-degree vertices, controlled
by a user-defined threshold. TopoX [33] not only splits high-
degree vertices, but also merges neighboring low-degree
vertices into super nodes to prevent splitting such vertices.
Gemini [52] and MDBGP [9] balance hybrid workload by
combining vertex and edge loads based on a balancing met-
ric. Gluon [18] implements four hybrid partitioning strate-
gies by restricting the outgoing and incoming edges of mas-
ter and mirrors. CUBE [50], [34] first partitions properties
of vertices, and generates duplicated graphs with different
sets of properties; then it partitions each duplicated graph
with vertex-cut. GraBi [43] combines partitioning strategies
such as Hybrid-cut [14], Bi-cut [15], and 3D-partitioner [50],
to improve the performance on bipartite graphs.

In particular, an application-driven partitioning strategy
was proposed in [20]. Given an algorithm A, it learns a cost
model of A beyond balance and replication; it generates a
hybrid partition guided by the cost model, and speeds up
parallel execution of .4 and reduces the cost of the execution.

As opposed to the previous work, this work studies
partition-transparent algorithms, i.e., the behaviors of graph
algorithms under various partitions, rather than to develop
yet another partitioner. We are not aware of any prior work
that has considered partition-transparent algorithms.

(1) It is the first study of partition-transparent algorithms.
While some systems (e.g., PowerLyra) support hybrid parti-
tions, algorithms on these systems are essentially vertex-cut
or edge-cut, and the underlying systems take charge of com-
munication to ensure the correctness of these algorithms;
e.g., the PR algorithm on PowerLyra is the same as the one
in PowerGraph (a vertex-cut system), and PowerLyra has to
differentiate the processing of high-degree vertices and low-
degree vertices to ensure the correctness. In contrast, par-
tition transparency allows us to develop graph algorithms
without worrying about what partitioning strategy to use.

(2) We provide the first conditions under which algorithms
are transparent to underlying partitions, for both graph-
centric and vertex-centric parallel models. The conditions
help us determine what algorithms are transparent and also
guide us to develop transparent algorithms.

(3) Moreover, we show that transparent algorithms are
able to capitalize on the state-of-the-art application-driven
partitioners and speed up graph computations. In contrast,
algorithms tailored for edge-cut and vertex-cut partitions
may not even work correctly under hybrid partitions.

Symbols Notations
G, V,E graph, vertex set and edge set of G
F;.0, F.O border nodes of fragment F; and graph G
Q,Q, Q(G) query class, a query, and query result
HP(n) a n-way hybrid partition

R partial results in round r at worker P;
A(Q,HP(n)) query result by algorithm .A over HP(n)
<

= partial order on query results
A/ Ay /AL, Ap | transparent alg. A under e-cut/v-cut/hybrid par.

TABLE 1: Notations

2 PARALLEL GRAPH PROGRAMMING

We will study partition transparency for graph-centric al-
gorithms and vertex-centric algorithms. Hence in this sec-
tion we start with a review of these two graph program-
ming models. We first consider the graph-centric model of
GRAPE (Section 2.1), an open-source parallel system [23],
[7]. We then review the vertex-centric GAS model of Pow-
erGraph [25] (Section 2.2). Transparent graph algorithms in
other parallel graph programming models can also be devel-
oped. The notations of the paper are summarized in Table 1.

We consider graphs G = (V, E), where V is a finite set
of vertices, and ' C V' x V is its set of edges.

2.1 Graph-Centric Programming

Consider a class Q of queries, ie., a graph computation
problem. Given a query ) € Q and a graph G, we want
to compute the set Q(G) of answers to @ in G.

PIE algorithms [23]. To develop a parallel algorithm for Q
under GRAPE, one only needs to specify three functions.

(1) PEval: A sequential algorithm that given a query @ € Q
and a graph G, computes the answer Q(G) to @ in G.

(2) IncEval: A sequential incremental algorithm that given @,
G, Q(G) and updates AG to G, computes updates AO
to the old output Q(G) such that Q(GH AG) = Q(G) &
AO, where G @& AG denotes G updated by AG [42].

(8) Assemble: A function that collects partial answers com-
puted locally at each worker by PEval and IncEval,
and assembles the partial results into complete answer
Q(G). This function is typically straightforward.

The three functions are referred to as a PIE program for
Q (PEval, IncEval and Assemble). PEval and IncEval can be
any existing sequential (incremental) algorithms for Q.

The only additions are the following declarations in
function PEval, which are shared by IncEval.

(a) Update parameters. PEval declares (a) a set C; of vertices
in fragment F; as the update region of F; (see Example 5);
and (b) status variables T for C;. We denote by C;.Z the set
of update parameters of F}, i.e., the status variables associated
with the vertices in ;. As will be seen shortly, C;.Z marks
candidates to be updated by incremental steps of IncEval.

(b) Aggregate functions. PEval also specifies an aggregate
function faggr, €.g., min and max, for conflict resolution, i.e.,
to resolve conflicts when multiple workers attempt to assign
different values to the same update parameter.

We defer examples of PIE programs to Sections 3 and 4,
where we can specify update parameters w.r.t. partitions.

Parallel computation. GRAPE executes a PIE program via
data-partitioned parallelism. It works with n share-nothing



workers Pi,..., P, and a master Fy. It partitions graph
G into n fragments (F1,...,F,) by adopting an existing
partitioner, and distributes the fragments to workers such
that fragment F; resides in worker P; for i € [1, n].

Upon receiving a query @ € Q at master Fy, GRAPE
posts @ to all workers and computes Q(G) as follows.
To simplify the discussion, we present the parallel com-
putation under the Bulk Synchronous Parallel (BSP) model
[47], which separates the computation into supersteps, and
terminates when no more change can be made. Note that
GRAPE also works under asynchronous models [22].

(1) Partial evaluation (PEval). In the first superstep, GRAPE
computes partial results R) = PEval(Q, F;) in fragment F;
at each worker P; by invoking function PEval, in parallel
(@ € [1,n]). Here R} denotes partial results in superstep r at
worker P;. At the end of the superstep, worker P; sends the
set C;.7 of update parameters to master P, as a message.

For each status variable x € C;.z, master P, collects
a multi-set S, of values from messages of all workers.
It computes Taggr = fager(Sz) by applying the aggregate
function f,gg declared in PEval, to resolve conflicts. It gen-
erates message M; to worker P;, which includes only those
fager(Sz)’s such that fage(Sz) # x, ie., only the changed
values of the update parameters of fragment F;.

(2) Incremental computation (IncEval). In superstep r + 1,
upon receiving message M; from master Fy, each worker P;
invokes function IncEval to incrementally compute R} ™' =
IncEval(Q, R}, F;, M;) by treating message M; as updates, in
parallel for ¢ € [1,n]. It refines its partial results R} based
on the information of M; from other workers. At the end
of the superstep, P; sends a message to Py that consists of
updated values of C;.Z, if any. After receiving messages from
all workers, master Py deduces a message M; just like in
PEval. It sends M; to worker P; in the next superstep.

(3) Termination (Assemble). The computation terminates
when it reaches a fixpoint, ie., RjT'=R! for all i€[1,n].
At this point, GRAPE invokes Assemble at P, which pulls
partial results from all workers, takes a union and then ag-
gregates them to the final result at Py, denoted by A(Q, G).

As shown in [23], under a generic contracting condition,
the execution of a PIE program guarantees to terminate and
return correct query answer Q(G) to query @ in graph G.

2.2 Vertex-Centric Programming

Unlike graph-centric programming that conducts computa-
tions directly on (sub)graphs (i.e., fragments), vertex-centric
programming requires users to think like a vertex [39] and
write vertex programs. A vertex program is “pivoted” at a
vertex; it may only directly access information on the current
vertex, adjacent vertices and adjacent edges [37], [25].
Several vertex-centric programming models are in place,
notably the Pregel model [37] and the GAS model of Pow-
erGraph [25]. Below we present the GAS model; the results
of the paper can be adapted to other vertex-centric models.

GAS model. The GAS programming model introduces a
three-phases abstraction, namely, Gather, Apply and Scatter.
Given a graph G, a GAS algorithm B iteratively executes the
three phases at each vertex, in parallel at all vertices, until no

gather(D,, D, D(u,,u))
return D, .rank/dé (u);

sum(z, y)
return x 4 y;

apply(Dy, ay)
rank_new = d - a, + (1 —d);
D, .5 = rank_new — D, .rank;
D, .rank = rank_new;

scatter(Dy, Doy, Dy u))
if |D,.6| > e then activate(v)
return D,,.6;

Fig. 2: PageRank algorithm in GAS model [25]

more changes can be made [25]. More specifically, B updates
the status D,, of vertex v in each iteration as follows.

(1) Gather phase. In this phase, each vertex first gathers the
status of its adjacent vertices and edges by function gather,
and then “sums up” the status via function sum. Let D,
(resp. D(,,,)) be the status of a vertex v (resp. an edge (v, u)).
The functions gather and sum are defined as follows.

a, = gather(Dm Dy, D(u,u))a

v
a, = sum(ay,a,).
In the GAS model, the sum function is required to be
associative and commutative [25]. It loops over all incident
edges of a vertex v to aggregate the gathered values. This

phase generates a summarized value a, for each vertex v.

(2) Apply phase. This phase updates each vertex status D, of
v to D", using the summarized values a, generated in the
gather phase. The apply function is defined as follows.

Dy = apply(Dy, ay).
(3) Scatter phase. With the new status D}, each vertex

updates the status Df¥, for each adjacent edge (v,u) of

v via function scatter, which can be defined as follows.

D?ﬁ"";) = scatter(Dy™, Dy, Dy )

The new edge status Df7, is then processed in the
gather phase of subsequent iterations. The entire process
terminates when no more changes can be made, and it
returns the collection of all vertices’ status as the final result.

The GAS model adopts vertex-cut [25]. When a vertex v
is cut, multiple copies of v may reside in multiple fragments.
In an iteration, each copy of v first gathers locally and
sends its update to the master copy of v for aggregation via
function sum; then the master copy of v runs apply function
and sends updates back to all its mirrors; finally, function
scatter is executed in parallel on all copies of v.

Similar to algorithms for CN in Example 1, vertex-centric
algorithms are not necessarily partition-transparent.

Example 2: Consider PageRank for ranking Web pages.

Given a directed graph G = (V, E), PageRank iteratively

updates a score rank(v) = d* Y. rank(u)/d5(u)+(1—d)
(u,v)EG

for each v € G, where d is a damping factor in the range of

[0,1], and d{,(u) is the out-degree of v in G.

A PageRank algorithm in the GAS model is shown in
Figure 2. In each iteration, each vertex v first aggregates
the ranking scores of its neighbors along its incoming edges
in the gather phase; it then applies the aggregated result to



update its own ranking score D,,.rank; it also computes score
changes D,,.6 for termination decision, which is scattered in
the scatter phase. The process terminates when the changes
generated from all edges are blow a pre-defined threshold e.

The algorithm correctly computes PageRank scores un-
der vertex-cut. However, it does not work under edge-
cut. Indeed, observe that in the gather phase, each vertex
accumulates changes from its incoming edges (see the def-
inition of sum). Since there are edge replications in edge-
cut partitions, e.g., (v2,v3) resides in both FY and F¥ of
the edge-cut partition shown in Figure 1(a), the changes
of such replicated edges would be added multiple times,
which yields incorrect scores. This does not happen under
vertex-cut since there is no edge replication there. Hence this
PageRank algorithm is not “transparent” to partitions. O

3 PARTITION TRANSPARENCY

In this section, we first formulate hybrid partitions, which
subsume edge-cut and vertex-cut partitions as special cases.
We then introduce the notion of partition transparency.

Hybrid partition. Given a natural number n, a n-way hybrid
partition HP(n) = (F1, ..., F,) of a graph G divides G into
n small fragments Fy, ..., F, such that (a) F; = (V;, E;),
b))V =U!", Vi and (c) E = U}, E;. We refer to HP(n) as
a hybrid partition of G when n is clear in the context.

Our familiar edge-cut partitions [8], [30] and vertex-cut
partitions [25], [31] are special cases of hybrid partitions. To
see this, we use the following notations. Denote by E (resp.
E?) the set of edges incident to vertex v in G (resp. F}).

(1) A vertex v is v-cut in HP(n) if the set of edges incident
to v is not “complete” at any F;, ie., EV # E? (Vi € [1,n]).

(2) A vertex v is e-cut if there exists a fragment F; such that
all edges incident to v are included in Fj, ie.,, EY = EV. If
there are multiple copies of v in HP(n), we refer to its copy
in F; as an e-cut node and the others as its mirrors.

(3) Denote by F;.O = {v e V; | 3j(v € V; Ai # j)} the set
of border nodes of F;. Intuitively, a border node is replicated
among fragments. We denote 7.0 = |J;'_, F;.O. For each
vertex v € F.0, we designate one copy of v as its master.

Example 3: Consider graph G in Figure 1 and its hybrid
partition (FJ*, F}') in Figure 1(c). Observe the following.

(1) Vertex vy is v-cut since edge (vs,v4) is missing from
fragment FJ*, and (v4, v2) is missing from F.

(2) Vertex vs is e-cut since its all incident edges reside in
F} together with vy; vertex vy in fragment F} is the master
while the copy of vy in FJ is a mirror node. Similarly v3

is e-cut. Vertices v1 and vs are also e-cut since they are not
replicated and their incident edges are all kept locally.

(3) F['.O=F}.O={vq,v3,v4}; thus F*.O={vq,v3,v4}. O

One can easily verify the following.

(1) Partition HP(n) is edge-cut if (a) all vertices are e-cut; and
(b) the e-cut node sets of the fragments are pairwise disjoint.

(2) Partition HP(n) is vertex-cut if the edge sets are disjoint,
ie, E; N Ej = for i # j, while v-cut nodes are replicated.

Example 4: Consider the partitions depicted in Figure 1.

(1) The partition (Ff,Fs) of Figure 1(a) is an edge-cut
partition of graph G given in Figure 1, since (a) all vertices
of G are e-cut; and (b) the e-cut node sets of F and Fy are
disjoint, i.e., {v1, v2,v5} N{vs,v4} = 0. Here the e-cut nodes
are colored in gray, and the other vertices are mirrors.

(2) Partition (FY, Fy) of Figure 1(b) is a vertex-cut partition
of G, since the edge sets of F}’ and Fj are disjoint.

(3) In contrast, partition (F', F}) of Figure 1(c) is a hybrid
partition, and it is neither edge-cut (since vertex vy is v-cut),
nor vertex-cut (since edge (vs, v2) is replicated). O

Partition Transparency. PIE programs have been developed
for both edge-cut [23] and vertex-cut partitions [21]. Under
different partitions, these programs differ in their update pa-
rameters and hence aggregate functions. More specifically,

o under vertex-cut, update region C; (i € [1,n]) is typi-
cally the set of v-cut nodes of fragment Fj;.

o In contrast, under edge-cut, C; is the set of vertices that
are incident to cut edges of F;.

In light of the difference, a PIE program developed for edge-
cut may not work under vertex-cut, and vice versa (Exam-
ple 1); similarly for vertex-centric algorithms (Example 2).
Such algorithms may not work under hybrid partitions.

Partition transparency. Consider algorithm A for a class Q of
queries, either a PIE program or a vertex-centric algorithm.
Denote by A(Q, HP(n)) the result of running algorithm A
on a hybrid partition HP(n) of a graph G.

We say that A is partition-transparent if given any query
@ € Q and any hybrid partition HP(n) of a graph G,
A(Q,HP(n)) = Q(G), i.e., A correctly computes the answer
Q(G) to query Q given the partition HP(n) of G.

Intuitively, a transparent algorithm .4 works correctly
under edge-cut and vertex-cut partitions without requiring
any change to A. Hence we can uniformly use the same
algorithm without worrying about the choice of graph parti-
tioning strategies. Better still, we can run .4 under partitions
of the state-of-the-art hybrid strategies that improve edge-
cut and vertex-cut, and speed up query answering of Q.

Example 5: Recall CN stated in Example 1. We present a
partition-transparent PIE program for CN.

As shown in Example 1, the difficulty for a partition-
transparent algorithm concerns how to compute CN(u,v)
when not all incoming edges of u or v are in the same frag-
ment, and when edges are replicated in multiple fragments.

To cope with these, we adopt the following strategies.
(1) For each border node v, PEval gathers all its incoming
edges in its local fragment, and synchronizes copies of v
among all fragments. After this, v has all its incoming edges
in the same fragment. (2) To avoid repeatedly increasing
CN(, ) for the same common neighbor on replicated edges,
IncEval only increases CN(:,-) for the “new edges” from
other fragments, i.e., IncEval incrementally updates CN(-, -).

PIE algorithm. We present the PEval algorithm and IncEval
algorithm for CN in Figures 3 and 4, respectively.

(1) PEval. Consider an arbitrary hybrid partition HP(n) =



Input: A fragment F;(V;, E;).
Output: A set Q(F;) consisting of CN(w, v) for u,v € V;.
for each uq,u2 € V and uy # us do
CN(u1,u2) :=0;
for each vertex v € V; do
for each u1,uz € I'” (v) and u1 # u2 do
CN(u1,u2) := CN(u1,u2) + 1;
if v € F;.0 then
I~ (v) = {u | (u,0) € B} T* (v) = {u | (v,u) € Ei};
Q(F;) := {CN(uy1,u2) | ur,u2 € Vi };
Message segment: My = {(U,F;(u),l‘j(v)) |v € F;.0};
fogr(4) i= (v, U T (0), UT] (0);

PN DT DN

Input: A fragment F;(V;, E;), partial result Q(F;), and message M;.
Output: New output Q(F; & M;).

1. A:=0;

2. foreach (v, AT} (v), AF;’(U)) € M; do

3 AT™ (v) := AI'™ (v) U AT (v);

4 for each u € AF;T(U) do

5 AT ™ (u):=AT" (u) U {v};

6. A:=AU{v} UAT; (v) UATT (v);

7. for each vertex v € A do

8 foreach uy € AT~ (v)\I'" (v) and uz € I'" (v) U AT~ (v) do
9. if uy # uo then CN(uq,uz) := CN(u1, u2) + 1;

10. Q(F;) := {CN(u1,u2) | ui,u2 € V; UA};

Fig. 3: PEval for CN

(F1,...,F,) of graph G. At each fragment F;, PEval first
defines the updated region C; as the set of the border
nodes, i.e., the nodes that are replicated among fragments;
and for each vertex v, PEval declares a status variable
v = (v, (v), I (v)) to maintain both incoming neigh-
bors ' (v) and outgoing neighbors I'* (v). Intuitively, we
use v.z to collect all neighbors of v from other fragments,
and synchronize this information among all copies of v.

In the first superstep, PEval computes CN(:,-) using
vertices in F;, and collects neighbors of border nodes. More
specifically, it does the following (see Figure 3): (a) for
each vertex v, it first increases CN(uq,u2) for its incoming
neighbors u; and up in F; (lines 4-5); then (b) for each
vertex v in F;.0, v.x collects its local incoming and outgoing
neighbors (lines 6-7). It collects CN(-, -) for all vertices in F;
(line 8). After that it sends the status variable v.x of each
border node v in F; to master P for aggregating the counts
of common neighbors across different fragments.

When PEval terminates, the master Py collects remote
changes to the neighbor sets of each border node u of F;, and
disseminates them as messages (recall Section 2). To resolve
conflicts, the aggregate function f,g, takes the union of u.x
for border nodes across different fragments.

(2) IncEval. Upon receiving message M; from master Fp,
IncEval incrementally updates the partial result Q(F;) at
each fragment F; (see Figure 4). It consists of two stages.

(a) Preprocessing. IncEval first complements the incom-
ing neighbors of each vertex using the received message
M;. More specifically, (i) for each (v, AT} (v),AI‘j(v)) €
M;, IncEval extends the accumulated incoming neighbors
AT~ (v) of v (line 3). (ii) For each outgoing neighbor v of v in
AI‘J-+ (v), IncEval extends the incoming neighbors AI'~ (u) of
u with v (lines 4-5). Note that for any pair (u1, u2) of vertices
in Fj, IncEval has all outgoing edges of u; and us after the
preprocessing, and thus can correctly update CN(uy, usg).

(b) Updates. Then for each received vertex v, IncEval in-
crementally updates CN(-,-) using “new” incoming neigh-
bors u; of v (lines 7-9). More specifically, for each vertex
up € AT'"(v) \ I'"(v), ie, when uy is not in the local
fragment F; but has an edge to v in other fragments, IncEval
increases CN(uy, u2) for all incoming neighbors ug of v.

(3) Assemble. At the end of the process of IncEval, no
message is sent and the computation terminates. That
is, IncEval is executed only once for CN. At this point,
Assemble simply takes a union of partial result Q(F;) in
each fragment F;, which is the final result Q(G).

One can verify that the PIE program is partition-
transparent. Indeed, PEval collects all incoming and out-

Fig. 4: IncEval for CN

going edges of each border node (lines 6-8 of PEval), and
IncEval only updates CN(-, -) with new incoming neighbors
(lines 8-9 of IncEval). Thus duplicated edges from multiple
fragments do not lead to repeated CN counts, and all incom-
ing edges of each vertex are taken into account. O

This example raises a natural question. Do there exist
generic conditions under which an algorithm is guaranteed
partition-transparent? Such conditions could guide us to
systematically develop partition-transparent algorithms.

4 CONDITIONS FOR PARTITION TRANSPARENCY

In this section, we provide sufficient conditions under which
graph algorithms are guaranteed partition-transparent. We
first give the conditions for graph-centric PIE programs, and
then revise the conditions for vertex-centric GAS algorithms.

4.1 Conditions for Graph-Centric Algorithms

Consider a PIE program A = (PEval, IncEval, Assemble) for
a class Q of queries. To specify the conditions we use the
following notations. (a) Partial results R! consist of a set
of status variables (see Section 2.1 for R!). We assume the
existence of a partial order < on R.: for each status variable
y in fragment Fj, let <, be a partial order on the domain of
y; then we say that R, < R? if y.val' <, y.val for each status
variable y in fragment F;, where y.vall and y.val/ denote the
values of y in partial results R! and R/ in F;, respectively.
(b) Denote by G'1 T Gy if graph G is a subgraph of G».

We say that an algorithm A is monotonic if for all queries
Q@ € Q and graphs G; and G, if G1CGs then A(Q, G1) =<
A(Q, G2) by the partial order on query results.

In the graph-centric PIE model, to ensure the monotonic-
ity of a PIE program A, we require both PEval and IncEval
to be monotonic [22]. The function PEval (resp. IncEval) is
monotonic if for all queries @) € Q and graphs G and GY, if
G1EGs (resp. Ri=R!) then PEval(Q,G) =< PEval(Q, G2)
(resp. RiTt < RI™1). Here R$ and R! denote partial results
in (possibly different) runs of the PIE program A.

We say that an algorithm A is correct under vertex-cut
if for all queries @ € Q, all graphs G and any vertex-cut
partition HP(n) of graph G, A(Q,HP(n)) = Q(G).

Example 6: We show that the PIE algorithm A for CN given
in Section 3 is monotonic and is correct under vertex-cut.

(1) To see that algorithm A is monotonic, we define partial
order < as follows. Denote by R; (resp. R;) the common
neighbor counts for all vertex pairs of G' computed in
fragment F; (resp. F}). We say that R; < R} if CN;(u,v) <
CN(u,v) for each pair (u,v) in G. Here CN;(u,v) and



CN’(u,v) are the CN counts in F; and F, respectively. When
F; C F], ie, F; is a subgraph of F/, then CN;(u,v) <
CN;(u,v). Indeed, there are more edges in F than Fj; thus
the same vertex w may contribute more to CN(-, -) than to
CN, (-, -) in the processes of PEval and IncEval.

(2) The PIE algorithm A works correctly under vertex-cut
because given any vertex-cut partition HP(n), each vertex
v contributes exactly 1 to the count CN(u,w), where u and
w are incoming neighbors of v in graph G. Note that no
edge is duplicated in a vertex-cut partition, and no duplicate
is counted by A since v increases CN(u,w) at most once.
Moreover, no count is missed by .A. To see this, suppose
that two incoming edges (u,v) and (w,v) of v reside in
different fragments. Then both edges will be shipped to the
fragment where the master copy of v resides. After that,
IncEval increases CN(u, w) by 1 (see lines 7-9 of Figure 4). O

Transparency condition. We now present two sufficient condi-
tions for a PIE program A to be partition-transparent.

P1. Algorithm A is monotonic.
P2. Algorithm A is correct under vertex cut.

The theorem below shows that these two conditions suf-
fice to guarantee the partition transparency of PIE programs.

Theorem 1: A PIE algorithm A is partition-transparent if A
satisfies conditions P1 and P2. O

Proof: We prove that if A satisfies both P1 and P2, then
for any graph G, any query () € Q and any hybrid partition
HP(n) of G, we have that A(Q, HP(n))=Q(G). To do so, we
construct two partitions HP*(n) and HP'(n) of G such that
(a) A correctly computes Q(G) on both partitions HP"(n)
and HP'(n), ie., A(Q,HP'(n)) = A(Q,HP"(n)) = Q(Q);
and (b) A(Q,HP(n)) is lower bounded by A(Q,HP'(n))
and upper bounded by A(Q, HP*(n)), i.e., A(Q, HP'(n)) <
A(Q,HP(n)) < A(Q,HP*(n)). Thus A(Q, HP(n)) = Q(G).

Let HP(n) = (Fi,..., F),). We next construct partitions
HP“(n) and HP!(n) and verify their properties one by one.

(1) We start with the construction of HP'(n) and show that
Q(G) = A(Q,HP'(n)) = A(Q,HP(n)). Note that in the
hybrid partition HP(n) there may exist duplicated edges
among fragments. Let HP'(n) = (FY,..., F!) be a vertex-
cut partition of GG obtained by removing these duplicated
edges from HP(n). Since A is correct under vertex-cut
(condition P2), we have that Q(G) = A(Q, HP'(n)).

It remains to show that A(Q, HP'(n)) =< A(Q,HP(n)).
Observe that by the construction, we have that F} C F; for
i € [1,n], since we only remove edges from HP(n), where F
is the fragment in HP'(n) that corresponds to fragment F;
in HP(n). By the monotonicity of A (condition P1), we have
the following: (a) R?/ = PEval(Q, F}) < PEval(Q, F};) = RY,
and (b) REH/ =< R** fori € [1,n] and ¢ > 0. From these it
follows that Q(G) = A(Q, HP'(n)) < A(Q,HP(n)).

(2) We continue with the construction of HP*(n), and verify
that A(Q,HP(n)) < A(Q,HP“(n)) and A(Q,HP“(n)) =
Q(G). Since both PEval and IncEval of A are monotonic (P1),
to upper bound A(Q, HP(n)), we can replicate vertices and
edges to add to each fragment of HP(n), and meanwhile
ensure that A(Q,HP*(n))=Q(G). In particular, we define

HP“(n) = (G, ..., G), which duplicates G for n times.

It remains to show that A(Q,HP(n)) < A(Q,HP*(n)) =
Q(G). Note that Fi, ..., F, are subgraphs of G, i.e., F; C G
for i € [1, n]. By condition P1 and an argument similar to (1)
above one can show that A(Q,HP(n)) < A(Q,HP*(n)). We
next show that A(Q,HP"(n)) = Q(G) under the GRAPE
model (Section 2.1). Observe the following: (a) since each
fragment contains the entire graph G, after PEval terminates
the partial result at each fragment F; is Q(G); (b) IncEval is
not invoked since all fragments yield the same partial result;
and (c) Assemble simply takes a union of the partial results
and aggregates these results, which returns Q(G) by the
semantics of Assemble. Therefore, A(Q, HP"(n)) = Q(G).0

Example 7: As shown in Example 6, the PIE algorithm for
CN (Section 3) satisfies conditions P1 and P2. Hence it is
partition-transparent by Theorem 1, and correctly computes
CN under edge-cut, vertex-cut and hybrid partitions. O

4.2 Conditions for Vertex-Centric Algorithms

We next consider conditions that make GAS algorithms
partition-transparent. Conditions P1 and P2 do not suffice
to ensure the partition transparency for GAS. Consider
the GAS algorithm for PR shown in Section 2.2. It is not
partition-transparent, but it is both (1) monotonic when the
initial values are 0 [51], and (2) correct under vertex-cut [25].
A closer look at the proof of Theorem 1 reveals that
the proof relies on a property of graph-centric PEval, i.e.,
it is able to compute Q(G) directly in a given graph G.
This is an inherent property of PIE computation model.
GAS algorithms do not necessarily have this property (see
Section 2.2), since they only gather information of neighbors
of vertices in the gather phase. To ensure the partition
transparency, we need one more condition as follows.

P3. Algorithm A is correct when graphs are replicated.

Here algorithm A is correct when graphs are replicated if for
all queries Q € Q and all graphs G, A(Q, HP%(n)) = Q(@),
where HP?(n) = (G, ..., G) that duplicates G.

Corollary 2: A vertex-centric algorithm B of the GAS model is
partition-transparent if B satisfies conditions P1, P2 and P3. O

Proof: Similar to the proof of Theorem 1, we build partitions
HP!(n) and HP*(n) to bound B(Q, HP(n)).

(1) HPY (n)=(F}, ..., F!) is a vertex-cut by removing dupli-
cated edges from HP(n). It follows from conditions P1 and

P2 that Q(G) = B(Q,HP'(n)) < B(Q,HP(n)).

(2) HP“(n)=HP%(n). By P3, B(Q,HP"(n))=Q(G). Using
condition P1, we have that B(Q, HP(n))=<B(Q,HP“(n)). O

Example 8: One can verify that the vertex-centric algorithm
for PR in Section 2.2 does not satisfy condition P3, since in
the gather phase, it directly adds received values from other
fragments to the sum a,, which is incorrect when there exist
duplicated edges. We will provide a partition-transparent
PIE algorithm for PR (Section 5.3), which employs a global
replication count to handle such duplicates. O

Remarks. We remark following about conditions P1-P3.

(1) Conditions P1-P3 specify properties of parallel graph
computations under different partitioning strategies: P1 re-



quires the computation to be monotonic, while P2 and P3
ask for the correctness under vertex-cut and a special hy-
brid partition (i.e., when graphs are replicated), respectively.
They impose no constraint on the computation model itself.

(2) Conditions P1-P3 can be extended to ensure the partition
transparency of other parallel graph computation models
beyond PIE and GAS. For example, (a) Giraph++ [45] is a
graph-centric model, which can run sequential algorithms in
the first superstep, and then vertex-centric algorithms in the
following steps. If an algorithm B in Giraph++ satisfies P1-
P3, one can prove its partition transparency along the same
lines as Theorem 1 and Corollary 2. (b) Blogel [48] is block-
centric, which adopts edge-cut to form blocks, e.g., it groups
URL links of the same host as a block in a Web graph. One
can make Blogel to work with vertex-cut and hybrid, and
use conditions P1-P3 to ensure its partition transparency.

(8) Condition P3 is an inherent property of the PIE model.
In [20], we modeled a vertex-centric algorithm 5 as a special
PIE program when each fragment consists of a single vertex.
That is, B essentially runs under the PIE model and is
assured to satisfy condition P3. Instead, we adopt the GAS
mode of [36] for vertex-centric algorithms here and hence
need P3 as an additional condition to ensure the correctness.

5 PARTITION-TRANSPARENT ALGORITHMS

As proof of concept, in this section we provide PIE al-
gorithms for SSSP, WCC and PR. We show that these
programs are partition-transparent, i.e., the same algorithms
work correctly no matter what partitions are given. We also
outline transparent algorithms for SCC and MaxClique.

5.1 Single Source Shortest Path

We start with the single source shortest path problem (SSSP).
Consider a directed weighted graph G = (V, E, W),
where each edge e € E carries a positive weight W (e).
The length of a path P = (v, v1,...,v%) in G is defined as
W(P) = ¥ie1,,yW (vi—1,v;). Denote by dist(u, v) the length
of the shortest path from u to v in G.
The single source shortest path problem is as follows.

o Input: A graph G = (V, E, W), and a vertex v, € V.
o Output: Distance dist(vs,v) for allv € V.

(1) Algorithm. A PIE program for SSSP is outlined as fol-
lows. For each vertex v in fragment F;, PEval declares a sta-
tus variable v.z = dist(vg, v), i.e., its distance from source vs,
initialized as 0 if vs = v and +o00 otherwise. The update re-
gion Cj is F;.0. Messages are aggregated using min as faggr.

PEval is simply algorithm Dijkstra [19]. At the end of
PEval, figer takes the minimum dist(vs,u) for each border
node u of F;, to reconcile dist(vs, u)’s from different frag-
ments. IncEval is simply the incremental algorithm of [42].
It incrementally updates dist(-) starting from border nodes.

The computation terminates when no more status vari-
ables can be updated. Now Assemble takes the union of
status variable v.x for each v in V' as the final result.

(2) Transparency. For the partition transparency, PEval and
IncEval are monotonic, since adding edges may only reduce
shortest distances, not to make them longer. One can verify
that the PIE program satisfies condition P2 since it is essen-
tially the same algorithm developed in [21] for vertex-cut.

5.2 Weakly Connected Component

We now study weakly connected component (WCC).

Consider an undirected graph G = (V, E)), where each
vertex v € V carries a unique vertex id, denoted by wv.id.
We say that two vertices u and v are in the same connected
component (WCC) if there exists a path between u and v.
We define the id of a WCC to be minimum vertex id in it,
and denote by cid(v) the id of the WCC in which v is. Then
WCC is as follows.

o Input: An undirected graph G = (V, E).
o Output: The cid(v) for each vertex v € V.

(1) Algorithm. Our PIE program for WCC declares a status
variable cid(v) for each vertex v, denoted by v.z = cid(v)
and initialized as v.id. For each fragment F}, its update re-
gion is F;.0. The aggregate function f,g, is defined as min.

PEval identifies local WCCs via DFS (depth-first search).
It finds the “root” v. for each WCC such that v..id is the
minimum within the WCC, and links v,. to all other vertices
in the same WCC. At the end of PEval, f,g takes the
minimum cid(u) of each border node u among all fragments.

Given the new cid(u) of a border node u, IncEval incre-
mentally updates the local WCC that contains u, by updat-
ing cid(v) for all vertices v in the WCC and by using the links
of the old root. The process proceeds until no cid(-) changes.
Assemble is then triggered to return cid(v) for all vertices v.

(2) Transparency. It is easy to verify that the program satisfies
condition P2. Moreover, PEval and IncEval are monotonic
since for each vertex v in G4, if G; T G5 then the WCC
containing v in G; has no more vertices than the WCC ('
that contains v in G9; as a consequence, the id of C is no
smaller than the id of C5. Thus the program also satisfies
condition P1, and it is partition-transparent by Theorem 1.

5.3 PageRank
Next we consider PageRank (PR) for ranking Web pages
and links (see Section 2 for details). PR is defined as follow.

o Input: A directed graph G = (V, E).
o Output: Ranking score rank(v) for each vertex v € V.

(1) Algorithm. For each fragment Fj, the PIE program A
declares its update region C; as F;.O; and for each vertex v,
the status variable v.x is its PR score rank(v), initialized as
0. The aggregate function f,ger is defined as sum. To handle
hybrid-cut partitions, for each edge e associated with border
nodes, we maintain its global replication count, denoted as
||e||, which is the total number of copies of e in all fragments.

At fragment F;, PEval computes PR scores as follows: (a)
For each master vertex v that has gathered all its incoming
edges, it updates rank(v) using update function, and (b) for
other vertices u, it computes partial ranking score:

rank(u) B
=4 X e YO

(u,v)EE;

rank(v

To reduce the communication cost, if not all incoming edges
of a vertex v are in place, we compute the partial ranking
scores of v before sending messages. At the end of PEval,
fager aggregates partial scores of each border node with sum.

Upon receiving messages, IncEval first updates the score
rank(u) of each border node w. It then iteratively updates



ranking scores starting from border nodes, and propagates
the updates through outgoing edges using update function.

The process proceeds until the sum of changes to scores
rank(-) is below a user-defined threshold e. At this moment
Assemble simply returns rank(v) for all vertices v.

(2) Transparency. We cannot apply P1-P3 to verify the parti-
tion transparency of algorithm A4, since A terminates when
the change of the aggregate score is below a threshold,
rather than when reaching a fix-point as other algorithms.
Instead, we can verify the partition transparency of the
program as follows. Given any hybrid partition HP(G), we
construct an edge-cut partition HP'(G) by letting all masters
carry all their adjacent edges locally, and removing vertices
and edges not linked to any master vertices. One can verify
that (a) A(Q, HP(G))=A(Q,HP'(G)) and (b) A(Q, HP'(G))
correctly computes PR scores [51]. Hence the program cor-
rectly computes PR scores under hybrid partition HP(G).

Remarks. One can also develop other partition-transparent
algorithms along the same lines as above.

SCC. Given a directed graph G, the strongly connected com-
ponents problem, denoted by SCC, is to identify maximal
subgraphs of G in which there exists a path between any
pair of vertices. A PIE algorithm A can be extended from
the graph-centric parallel algorithm in [24], and is shown to
be partition-transparent using conditions P1-P2. Given G,
the algorithm first picks a pivot v, and computes two sets
prec(v) and post(v) consisting of vertices that have paths
to and from v, respectively; it computes prec(v) N post(v) to
find an SCC. It iteratively conducts these steps until all SCCs
are identified. A is correct under vertex-cut, i.e., P2 holds,
since prec(v) and post(v) can be correctly computed under
vertex-cut partitions. Condition P1 can also be verified.

MaxClique. Given an undirected graph G, the maximum
clique problem, denoted by MaxClique, is to find all max-
imum cliques in G. We adapt the vertex-centric algorithm
in [12] for MaxClique, which identifies the maximum cliques
by iteratively computing the intersection of neighbors of
adjacent vertices. To make it partition-transparent, we add
extra supersteps to synchronize both neighborhood infor-
mation and messages among different copies of the same
vertex just like the algorithm for CN in Example 5. In
this way, the algorithm can correctly identify neighbors
and compute intersections under vertex-cut, i.e., it satisfies
condition P2. One can verify that it also satisfies P1 and P3.

6 EXPERIMENTAL STUDY

Using real-life and synthetic graphs, we conducted three
sets of experiments to evaluate partition-transparent algo-
rithms for (1) effectiveness, (2) efficiency and (3) scalability.

Experimental setting. We start with the setting.

Datasets. We used six real-life graphs: (a) liveJournal [2], a so-
cial network with 4.8 million entities and 68 million relation-
ships; (b) Twitter [5], a social network with 42 million users
and 1.5 billion links; (c) UKWeb [6], a large Web graph with
106 million vertices and 3.7 billion edges; (d) DBpedia [1], a
knowledge graph with 2.8 million entities and 33.4 million
edges; (e) movielens [3], a dense recommendation network
with 25 million movie ratings between 162,000 users and

62,000 movies; and (f) traffic [4], a US road network with 23
million vertices and 58 million edges.

We also generated synthetic graphs with size up to 500
million vertices and 6 billion edges, to test scalability.

Partitions. To get a fair comparison when evaluating the
effectiveness and efficiency of transparent graph algorithms,
we partitioned the datasets with four different partitioners:
(1) xtraPuLP [44], a state-of-the-art edge-cut partitioner;
(2) NE [49], a state-of-the-art vertex-cut heuristic; and (3)
ParE2H and ParV2H [20], two application-driven hybrid
partitioners that refine edge-cut and vertex-cut to hybrid,
respectively. For a fair comparison, in our experiments,
ParE2H (resp. ParV2H) revises edge-cut (resp. vertex-cut)
generated by xtraPuLP (resp. NE) w.r.t. the characteristics
of the underlying applications (see more in [20]). We picked
ParE2H (resp. ParV2H) since it revises conventional edge-cut
(resp. vertex-cut) and hence demonstrates the improvement
of graph computations under hybrid partitions.

Algorithms. We implemented a transparent version A for CN,
PR, WCC, SSSP and TC (i.e., triangle counting; see [20]) in
the PIE model (see Section 5), and two other tailored ver-
sions, denoted as B, and B,, where algorithm B, (resp. B,)
is designated for edge-cut (resp. vertex-cut). We also imple-
ment a transparent version .A and two tailored versions, B,
and B,, for PR, WCC and SSSP in GAS. All algorithms are
implemented on GRAPE [23], [7]. While GRAPE was devel-
oped for the PIE model, its open source version [7] supports
GAS model. Note that since A is partition-transparent, it
also works under both edge-cut and vertex-cut.

We will use the notations (i) A, and A, to denote that A
runs on edge-cut and vertex-cut partitions, respectively; and
(ii) Aj and Aj to denote that A runs on hybrid partitions
generated by partitioners ParE2H and ParV2H, respectively.

The experiments were conducted on open-source system
GRAPE [23], [7] (see Section 2.1) deployed on 32 machines
in an HPC cluster, each with 12 cores powered by Xeon
2.2GHz, 128GB RAM, and 10Gbps NIC. All experiments
were repeated 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Effectiveness. We first tested the effectiveness of
the partition-transparent algorithms. Varying the partition
number n from 32 to 160, we tested transparent algorithms
of CN, TC, PR, WCC, SSSP (section 5) and conventional
algorithms for these problems tailored for edge-cut and
vertex-cut partitions generated by xtraPuLP and NE.

(1) Under edge-cut, vertex-cut and hybrid partitions, trans-
parent algorithms A return the same results as their coun-
terparts B in both PIE model and GAS model. These verify
the correctness of the transparent algorithms, i.e., partition-
transparent algorithms, either graph-centric or vertex-
centric, work correctly no matter what partitions are given.

(2) Under hybrid partitions, transparent algorithms A (i.e.,
Af and A]) of these problems substantially outperform
their counterparts B, under edge-cut and B, under vertex-
cut (see detailed analysis in Exp-2), while B, and B, may
not work correctly under hybrid partition. These justify the
need for studying partition-transparent algorithms in order
to benefit from the state-of-the-art graph partitioners.
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Fig. 5: Efficiency Evaluation

(3) When all algorithms run under edge-cut, the perfor-
mance gap between transparent algorithms A, and its tai-
lored versions B, is below 5.4% and 5.8% in PIE model
and GAS model, respectively. This is because the transpar-
ent algorithms incur additional communication overhead
to aggregate results during synchronization. The results
over vertex-cut partitions are similar. The performance gap
between transparent algorithms .4, and tailored versions B,
is smaller than 5.5% and 5.3% in PIE and GAS, respectively.

Exp-2: Efficiency. Varying n from 32 to 160, we evaluated
the time taken by CN, TC, WCC, PR and SSSP under edge-
cut, vertex-cut and their hybrid refinements, which are gen-
erated by xtraPuLP, NE, ParE2H and ParV2H, respectively.
The results on PIE model and GAS model are shown in
Figures 5(a)-5(m) and Figures 5(n)-5(p), respectively.

(1) CN in PIE model. Figures 5(a) to 5(d) report the per-
formance of transparent Aj,. A} under hybrid partitions,
transparent A., A, and their counterparts B, and B, under
edge-cut and vertex-cut of UKWeb, Twitter, liveJournal and
movielens, respectively. We find the following.

(a) The transparent algorithm AS, (resp. A}) under hybrid
partitions beats its tailored counterparts B. and B, under
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edge-cut and vertex-cut by 3.2 and 2.6 (resp. 3.4 and 2.9)
times on average, up to 5.4 and 6.3 (resp. 6.2 and 7.2) times,
respectively. This is because the workload of B, (resp. B,)
for CN under edge-cut (resp. vertex-cut) is imbalanced,
while the hybrid partitions balance workload for CN. Ob-
serve that B, and B, for CN cannot benefit from hybrid
partitions since they do not work correctly under such par-
titions. These verify the benefit of transparent algorithms.

(b) The transparent algorithm (Ajf, and A7) under hybrid
partitions also works better than under edge-cut and vertex-
cut (A, and A,), by 3.3 times and 2.9 times, respectively.

(2) TC in PIE model. As shown in Figures 5(e) to 5(g), on
Twitter, liveJournal and UKWeb, the transparent algorithm
A§ (resp. A}) for TC outperforms its tailored versions B,
and B, by 6.0 and 1.8 (resp. 8.3 and 2.1) times on average,
up to 29.7 times, respectively. This is because the hybrid
partitions improve workload balance of TC as in the CN
case. Note that the performance gap between transparent
A, A, and their tailored counterparts B, and B, is quite
small under edge-cut and vertex-cut partitions (see Exp-1).
That is, transparent TC algorithm (Aj, and .A} ) under hybrid
partitions also converges in much less time than under edge-
cut and vertex-cut partitions (A, and A,).
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(3) PR in PIE model. Figures 5(h) and 5(i) report the per-
formance of PR on UKWeb and DBpedia, respectively. As
shown there, the transparent algorithm for PR performs the
best under the hybrid partitions. With n=160, the transpar-
ent PR takes only 4.3s and 4.6s under hybrid partitions of
UKWeb generated by ParE2H and ParV2H, respectively. On
average, A" under hybrid partition outperforms baselines
A, and B, under edge-cut by 1.6 and 1.5 times, respectively.
In contrast, A" performs comparably to A, and B, since the
vertex-cut of NE has very good edge balance.

(4) WCC in PIE model. Figures 5(j) and 5(k) report the per-
formance of WCC over Twitter and liveJournal, respectively.
Like PR, the transparent WCC under hybrid partitions per-
forms the best. It outperforms the baselines by 1.7 times on
average, up to 4.1 times. Unlike PR, the tailored algorithms
B. and B, for WCC can work correctly under edge-cut,
vertex-cut and even hybrid partitions, since they also
satisfy the conditions P1 and P2 of partition transparency
(Section 4). As a result, B, and B, perform as well as the
transparent algorithm for WCC under the same partitions.

(5) SSSP in PIE model. Figures 5(1) and 5(m) show the per-
formance of SSSP over dataset traffic and Twitter, respec-
tively. As reported there, the transparent SSSP algorithm
works the best under hybrid partitions among all the vari-
ants. However, the performance gap is smaller compared to
the previous cases. On average, transparent SSSP under hy-
brid partitions outperforms the other variants by 17%. This
is because (i) the workload of SSSP under vertex-cut by
NE is already balanced, and not much can be improved via
hybrid partitions; and (ii) like WCC, the tailored algorithms
B, and B, are also already partition-transparent.

(6) PR, WCC and SSSP in GAS model. Figures 5(n) to 5(p)
report the performance of PR, WCC and SSSP over Twitter
in the GAS model. Similar to the PIE case, transparent GAS
algorithms for the three are on average 2.0, 1.9 and 1.3 times
faster than their counterparts, respectively. These verify that
transparent algorithms work well not only in the graph-
centric PIE model, but also in the vertex-centric GAS model.

The results are consistent on other datasets (not shown).

Exp-3: Scalability. Fixing n = 96, we varied the size of
synthetic graphs |G| = (|V|[,|E|) from (100M,1.2B) to
(500M,6B) to test the scalability of the transparent algo-
rithms. The results for WCC and PR in the PIE model are
reported in Figures 6(a) and 6(b), respectively.

(a) Transparent algorithms scale well. Transparent PR and
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WCC perform the best under hybrid partitions; they are on
average 1.4 and 1.7 times faster than the others, respectively.

(b) Under edge-cut and vertex-cut partitions, transparent PR
and WCC perform comparably to B. and B,,, respectively.

(c) Transparent algorithms work well on large graphs. On
average transparent WCC and PR take 29.7s and 103.2s on
G of 500 million nodes and 6 billion edges, respectively.

The results of the other transparent algorithms and their
performance on other graphs are consistent (not shown).

Summary. We find the following. (1) The transparent al-
gorithms in both graph-centric and vertex-centric models
work correctly under edge-cut, vertex-cut and hybrid parti-
tions, without the need for any changes. (2) Under hybrid
partitions, the transparent algorithms A are on average 2.3
times faster than A, and A, under edge-cut or vertex-cut,
up to 21.2 times, respectively. They are also 2.8 and 1.6 times
faster than tailored algorithms B, and B,, under edge-cut or
vertex-cut, respectively. (3) Even when all algorithms run
under vertex-cut or edge-cut, the performance gap between
transparent algorithms and those tailored for individual
partitions is small, i.e., no more than 5.8%. (4) Under hybrid-
partitions, transparent algorithms scale well. They are on
average 2.5 times faster when the number n of processors
varies from 32 to 160. They work well on large graphs, e.g.,
transparent WCC and PR take on average 66.5s on graphs
with 500M vertices and 68 edges using 90 processors.

7 CONCLUSION

We have proposed a notion of partition transparency, for
graph algorithms to work correctly regardless of what par-
titions are given. We have identified conditions under which
graph algorithms are guaranteed to be partition-transparent,
under graph-centric and vertex-centric programming mod-
els. We have shown that partition-transparent algorithms
are within the reach of a variety of graph computation prob-
lems. We have also experimentally verified that transparent
algorithms are able to leverage application-driven hybrid
partitions and speed up graph computations.

One topic for future work is to study systematic methods
for developing partition-transparent algorithms. Another
topic is to experiment transparent algorithms with the state-
of-the-art hybrid partitioners upon their availability.
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