Query Processing (1)

April 28, 2023



P DBMS: Operator execution

Purpose:
Execute a dataflow by operation on tuples and files.

Query parsing & optimization

(sort to remove duplicates)

I ame, sitte ‘ Operator execution ‘
P (merge join) ‘ Access method ‘
SOIT,D
Buffer pool manager
sort,, PX| (hash join) ‘
\ Disk manager ‘

II

o‘dept,name = Music course_id, title

(use index 1)

Figure: DBMS architecture

instructor teaches course



P Query processing overview

(sort to remove duplicates)

Hname, title T e, ite
‘ [X] (merge join)
SELECT name, title \
FROM instructor natural join teaches sort,,
natural join course ‘
WHERE dept_name ='Music'; Odept_name = Music sort IX] (hash join)
\ ‘ 3
instructor teaches M eourse.ia e et name - Music epurse ia, e
‘ o (use index 1)
course instructor teaches course

sQLQuery | = [ Logical Plan ) [ Physicalplan |

e Each node of a logical plan is a relational operator.
e Each node of a physical plan represents an operator algorithm.

e Data flows from the leaves of the physical plan tree up towards the root.



P Notations

Tables: R, S

Tuples: t,, tg

Number of tuples: [R], |S|

Number of pages: P(R), P(S)

e Number of available buffer pool pages: B

Cost metric: number of 1/O’s



P Sequential scan

e Scan table R sequentially and process the query

o Selection over R
o Projection of R without duplicate elimination

e |/O cost: P(R)

e Not counting the cost of writing the result out.

o Maybe not needed — results may be pipelined into another operator.
o Same for any algorithm discussed later.



P Sorting



P Why sorting

Tuples in a table have no specific order.

Query may require output be sorted.
— E.g., SELECT * from student ORDER BY credit DESC;

Several relational operators can be implemented efficiently with sorting.
— E.g., duplication elimination, aggregation, merge join, set operations.

External sorting is required when data cannot fit in memory.



P External merge sorting

A divide-and-conquer approach to sort a large relation R that cannot fit in memory.

Recall that we have B pages available in the buffer pool.

Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

Pass 1: merge B — 1 level-0 runs each time, and write out a level-1 run.

Pass 2: merge B — 1 level-1 runs each time, and write out a level-2 run.

Final pass produces one sorted run.



External merge example

e B =3, i.e., 3 pages available in buffer pool.

Each page hols only one tuple.

In pass 0, all 3 pages are used for sorting.

e In pass i, where i > 1, 2 pages are used for input, and 1 page for output.

|
Input R ‘33’36’13115’24’04120’23’28135’07’49‘
R A A |
Pass 0 ‘13’33’36”04’15‘24”20’23’28”07’35‘49‘% Level-0 run
Pass 1 ‘ 04 ’ 13 ’ 15 ‘ 24 ’ 33 ’ 36 ‘ ‘07’20’23 ‘ 28’35‘49‘ Level-1 run

Pass 2 ‘04’07’13‘15’20’23‘24’28’33‘35’36‘49‘




P Cost analysis

#(Passes) 1[P(R)/B] +1

log
#(Read Pages) P(R])3 |og B— 1( R)/B] +1)
#(Write Pages) | P(R) xlog g—1[P(R)/B]
Total cost | 2P(R)xlog 5_1[P(R)/B] + P(R)

e Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

e Pass i: merge (B — 1) level-(1 — 1) runs each time, and write out a level-i run.

Each pass read the entire relation and write it once.

e We do not include the output cost of the final pass as we have discussed.

10



P Sort-based duplication elimination

1. Perform external merge sort.
2. Eliminate duplicates during sort and merge.
3. Cost: same cost as sorting.

’13‘36'13i15‘24‘04i20‘23‘04i28‘15|28‘

Pass 0 ’13‘33‘ ’04‘15‘24”04‘20‘23”15'28‘
Pass 1 ’04‘13'15|24‘36‘ ’04'15‘20‘23‘28‘
Pass 2 ’04[13‘15‘20‘23‘24‘28‘36‘

11



P Sort-based aggregation

Sort the tuples on the GROUP BY attributes

Perform a sequential scan over the sorted data to

compute the aggregation.
— This can be fused into the final pass of sorting.

Apply partial aggregation on the fly.
The output will be sorted on the attributes.

Cost: same cost as sorting.

SELECT dept_name, AVG(salary)
FROM instructor
GROUP BY dept_name

Agg Running value
MIN min

MAX max

COUNT | count

SUM sum

AVG (count, sum)

12



P Join



P Naive nested loop join

1. for each tuple t, in R do

2 for each tuple ts in S do

3. if O(ty, ts) then

4 add t, xx tg to the result

Figure: Algorithm for R g S

e The most basic join algorithm to compute join Rixg S.
e R: the outer table, S: the inner table.

e Require no indices and can be used with any kind of join conditions.

Cost analysis

e P(R) + P(S): the buffer pool can hold both tables as input.
e P(R) +[R| % P(S): B =3. Use two buffer pool pages for input, and one page for output.

14



P Example

20

20

40

A C A B ©
50| e 20 b f
P20 |t 20 | b g
p20 ] 9"-5 20 c f
80 | h 20 c g
pa0 T ' 40 d i
I I .

S RXS

e [R| =4, 1IS|=6, P(R)=2, P(S) =3.
e If B =3 and R is the outer table, then #(1/0) = 14.
e If B =3 and S is the outer table, then #(I/O) = 15.

15



P Blocked nested loop join

1. for each page P, in R do

2 for each page Pg in S do

3 for each tuple t, in P, do
4. for each tuple ts in Pg do
5
6

if 0(t,, tg) then
add t, > tg to the result

Figure: Improved algorithm for R >xg S

e Naive nested loop join is costly since for every tuple in the outer table R, we must do a
sequentially scan of the inner table S.

e To maximize the utilization of buffer pool, process tables on a per-page basis, rather
than on a per-tuple basis.

16



P Example

A G
A | B S R
pio [ a oo |t
120 | b a0 T g
120 e a0 | n
a0 e | Wl

50 j
R .............

s

RI=4,1|S|=6

P(R) =2, P(S) = 3.
If B=3 and R is the outer table,
If B=3 and S is the outer table,

then #(1/0) = 8.
then #(1/0) = 9.

A B

20 b

20 b

20 c

20 c

40 d
RXS

17



P Cost analysis

e P(R) + P(R) x P(S):use two buffer pool pages for input and another page for output.

In general, if B pages are available in the buffer pool for the join operation, then

e Use B — 2 pages to scan the outer table R
e Use one page for inner table scan

e The rest page for buffering the output

e Total cost: P(R)+ [P(R)/(B —2)] = P(S)

18



P Merge join

Require equality predicate, e.g., equi-joins or natural joins.

If R or S is not sorted by the join attributes, then sort it first.

All tuples with the same value on the joined attributes are in consecutive order.

e Merge scan the sorted tables and emit tuples that match.

19



P Merge join

. /* ps/pr points to the first tuple of R/S */
while prl = EOF & ps! = EOF do
while tp [A] < tps[A] do ++pr;
while tp [A] > tps[A] do ++4ps;
] = tps[A] do
pss:=ps; /* set pss to the first match */
while ty[A] = tss[A] do
add tpr >4 tpes to result;
++pss;
10. +-+pr;
11.  ps:=pss; /* all matches processed, advance ps */

A
while ty[A

© 0N ook WD

alo|o|e |m

—|-|slae|+|o|o0

alo|o|o|lo|®
—la|l=-|laea|~|0o




P Cost analysis

e Most cases: Sorting + P(R) + P(S).

e Assumption: Every set of match
candidates in S can fit in buffer pool.

e Worst case: Sorting + P(R) + P(R) = P(S)

e Assumption: Everything joins and B = 3.

21



P Sort-based set operations

RUS, RNS, R— S requires duplication elimination by default.

Sort R and S in the same order.

e Scan the sorted R and S to produce the desired results in a
similar way as in merge join.

Both R and S require only one pass of scan.

e Cost: sorting + P(R) + P(S)

R ’04'13|15|24‘36‘ ’04'15'20|23|28‘

RUS ’04'13|15|20|23|24|28|36‘

S

22



	Sorting
	Join

