
Query Processing (I)
April 28, 2023

DBMS: Operator execution

Purpose:
Execute a dataflow by operation on tuples and files. Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Figure: DBMS architecture

2

Query processing overview

SQL Query Logical Plan Physical plan

• Each node of a logical plan is a relational operator.

• Each node of a physical plan represents an operator algorithm.

• Data flows from the leaves of the physical plan tree up towards the root.

3

Notations

• Tables: R, S
• Tuples: tr, ts
• Number of tuples: |R|, |S|
• Number of pages: P(R), P(S)
• Number of available buffer pool pages: B
• Cost metric: number of I/O’s

4

Sequential scan

• Scan table R sequentially and process the query
◦ Selection over R
◦ Projection of R without duplicate elimination

• I/O cost: P(R)
• Not counting the cost of writing the result out.

◦ Maybe not needed – results may be pipelined into another operator.
◦ Same for any algorithm discussed later.

5

Sorting

Why sorting

• Tuples in a table have no specific order.
• Query may require output be sorted.
– E.g., SELECT * from student ORDER BY credit DESC;

• Several relational operators can be implemented efficiently with sorting.
– E.g., duplication elimination, aggregation, merge join, set operations.

• External sorting is required when data cannot fit in memory.

7

External merge sorting

A divide-and-conquer approach to sort a large relation R that cannot fit in memory.

Recall that we have B pages available in the buffer pool.

• Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

• Pass 1: merge B− 1 level-0 runs each time, and write out a level-1 run.

• Pass 2: merge B− 1 level-1 runs each time, and write out a level-2 run.

• · · ·

• Final pass produces one sorted run.

8

External merge example

• B = 3, i.e., 3 pages available in buffer pool.
• Each page hols only one tuple.
• In pass 0, all 3 pages are used for sorting.
• In pass i, where i ⩾ 1, 2 pages are used for input, and 1 page for output.

490735282320042415133633

363313 241504 282320 493507

151304 363324 232007 493528

130704 232015 332824 493635

Pass 0

Pass 1

Pass 2

Input R

Level-0 run

Level-1 run

9

Cost analysis

#(Passes) log B−1⌈P(R)/B⌉+ 1
#(Read Pages) P(R) ∗ (log B−1⌈P(R)/B⌉+ 1)
#(Write Pages) P(R) ∗ log B−1⌈P(R)/B⌉
Total cost 2P(R)∗log B−1⌈P(R)/B⌉+ P(R)

• Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

• Pass i: merge (B− 1) level-(i− 1) runs each time, and write out a level-i run.

• Each pass read the entire relation and write it once.

• We do not include the output cost of the final pass as we have discussed.

10

Sort-based duplication elimination

1. Perform external merge sort.
2. Eliminate duplicates during sort and merge.
3. Cost: same cost as sorting.

281528042320042415133613

3313 241504 232004 2815

151304 3624 201504 2823

1304 232015 2824 36

Pass 0

Pass 1

Pass 2

Input R

11

Sort-based aggregation

• Sort the tuples on the GROUP BY attributes

• Perform a sequential scan over the sorted data to
compute the aggregation.
– This can be fused into the final pass of sorting.

• Apply partial aggregation on the fly.

• The output will be sorted on the attributes.

• Cost: same cost as sorting.

SELECT dept_name, AVG(salary)
FROM instructor
GROUP BY dept_name

Agg Running value
MIN min
MAX max
COUNT count
SUM sum
AVG (count, sum)

12

Join

Naive nested loop join

1. for each tuple tr in R do
2. for each tuple ts in S do
3. if θ(tr, ts) then
4. add tr ▷◁ ts to the result

Figure: Algorithm for R ▷◁θ S

• The most basic join algorithm to compute join R ▷◁θ S.
• R: the outer table, S: the inner table.
• Require no indices and can be used with any kind of join conditions.

Cost analysis
• P(R) + P(S): the buffer pool can hold both tables as input.
• P(R) + |R| ∗ P(S): B = 3. Use two buffer pool pages for input, and one page for output.

14

Example

40

20

d

c

A

10

B

20

a

b

j50

i40

30

20

h

g

A

50

C

20

e

f

i40 d

g

g

f

C

f

20

20

c

c

A

20

B

20

b

b

R
S R ⨝ S

• |R| = 4, |S| = 6, P(R) = 2, P(S) = 3.
• If B = 3 and R is the outer table, then #(I/O) = 14.
• If B = 3 and S is the outer table, then #(I/O) = 15.

15

Blocked nested loop join

1. for each page Pr in R do
2. for each page Ps in S do
3. for each tuple tr in Pr do
4. for each tuple ts in Ps do
5. if θ(tr, ts) then
6. add tr ▷◁ ts to the result
Figure: Improved algorithm for R ▷◁θ S

• Naive nested loop join is costly since for every tuple in the outer table R, we must do a
sequentially scan of the inner table S.

• To maximize the utilization of buffer pool, process tables on a per-page basis, rather
than on a per-tuple basis.

16

Example

40

20

d

c

A

10

B

20

a

b

j50

i40

30

20

h

g

A

50

C

20

e

f

i40 d

g

g

f

C

f

20

20

c

c

A

20

B

20

b

b

R
S R ⨝ S

• |R| = 4, |S| = 6
• P(R) = 2, P(S) = 3.
• If B = 3 and R is the outer table, then #(I/O) = 8.
• If B = 3 and S is the outer table, then #(I/O) = 9.

17

Cost analysis

• P(R) + P(R) ∗ P(S):use two buffer pool pages for input and another page for output.

In general, if B pages are available in the buffer pool for the join operation, then

• Use B− 2 pages to scan the outer table R
• Use one page for inner table scan
• The rest page for buffering the output
• Total cost: P(R) + ⌈P(R)/(B− 2)⌉ ∗ P(S)

18

Merge join

• Require equality predicate, e.g., equi-joins or natural joins.

• If R or S is not sorted by the join attributes, then sort it first.

• All tuples with the same value on the joined attributes are in consecutive order.

• Merge scan the sorted tables and emit tuples that match.

19

Merge join

1. /* ps/pr points to the first tuple of R/S */
2. while pr! = EOF & ps! = EOF do
3. while tpr[A] < tps[A] do ++pr;
4. while tpr[A] > tps[A] do ++ps;
5. while tpr[A] = tps[A] do
6. pss := ps; /* set pss to the first match */
7. while tpr[A] = tpss[A] do
8. add tpr ▷◁ tpss to result;
9. ++pss;
10. ++pr;
11. ps := pss; /* all matches processed, advance ps */

40

20

d

c

A

10

B

20

a

b

j50

i40

30

20

h

g

A

5

C

20

e

f

i40 d

g

g

f

C

f

20

20

c

c

A

20

B

20

b

b

pr
ps pss

R
S

R ⨝ S

20

Cost analysis

• Most cases: Sorting + P(R) + P(S).

• Assumption: Every set of match
candidates in S can fit in buffer pool.

• Worst case: Sorting + P(R) + P(R) ∗ P(S)

• Assumption: Everything joins and B = 3.

21

Sort-based set operations

• R ∪ S, R ∩ S, R− S requires duplication elimination by default.

• Sort R and S in the same order.

• Scan the sorted R and S to produce the desired results in a
similar way as in merge join.

• Both R and S require only one pass of scan.

• Cost: sorting + P(R) + P(S)

151304 3624 201504 2823

1304 232015 2824 36

R S

R U S

22

	Sorting
	Join

