
Crash Recovery
May 26, 2023

Announcement

• Closed book final exam: June 6.

• You may bring a cheat sheet of A4 size.

2

Overview

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y

co
nt

ro
l

Re
co

ve
ry

• Concurrency control: ensure isolation in concurrent database access.

• Recovery: ensure atomicity and durability via logging (this lecture).

3

Crash recovery

• Atomicity: TXNs may abort/rollback.
• Durability: What if DBMS stops running?

T1

T2

T3

T4

T5

COMMIT

Abort

COMMIT

Crash!

Desired state after system restarts:

• T1 and T3 should be durable.
• T2, T4 and T5 should be aborted (effects not seen).

4

Failure classification

(C1) Transaction failure
◦ Logical errors : TXNs cannot complete due to some internal condition.
◦ System errors : DBMS terminates an active TX due to an error condition (e.g., deadlock).

(C2) System crash: a power failure or other hardware or software failures cause DBMS crash.

(C3) Disk failure: a head crash or similar disk failure destroys all or part of disk storage.

A recovery algorithm aims to handle (C1) and (C2) but not (C3).

5

Log-based crash recovery

• Logging: actions taken during normal transaction processing to ensure enough
information exists to recover from failures.

• Recovery: actions taken after a failure to recover the database contents to a state that
ensures atomicity, consistency and durability.

6

Logging

Log-based recovery

• A log is a sequence of records that keep information about update activities on the DB.

• Basic idea: Write what a TXN T plan to do in the log and leave enough information in
the log so that we can figure out whether T has did it or not.

• Question #1: What information is written in the log?

• Question #2: When to write to the log?

8

Log records

• ⟨Ti start⟩: Ti has started.

• ⟨Ti,X,Vold,Vnew⟩: Ti executes W(X) to
update its values from Vold to Vnew.

• ⟨Ti commit⟩: Ti has committed.

• ⟨Ti abort⟩: Ti has aborted.

<T1 start>

<T1, A, 100, 95>

<T2 start>

<T2,B, 80, 100>

<T2 commit>

<T1 commit>

COMMIT
COMMIT

W(B)
 B:= 100

W(A)
A: = A -5

R(A)

T2T1

Transactions

Log

9

Buffer pool polices

Page 1

A=100
B=80 Frame 2

Frame 3 Frame 4

Database file

Buffer pool
WriteRead

A=100
B=80 P0

P1 P2

P3 P4 P5

P0

Input(P0)

A: = A -5
R(A)

T2T1

Transactions

• No-Force: A TXN can commit even if its updates have not been flushed to disk.
• Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

10

Buffer pool polices

Page 1

A=95
B=80 Frame 2

Frame 3 Frame 4

Database file

Buffer pool
WriteRead

A=100
B=80 P0

P1 P2

P3 P4 P5

P0

Input(P0)

W(A)
A: = A -5

R(A)

T2T1

Transactions

• No-Force: A TXN can commit even if its updates have not been flushed to disk.
• Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

10

Buffer pool polices

Page 1

A=95
 B=100 Frame 2

Frame 3 Frame 4

Database file

Buffer pool
WriteRead

A=100
B=80 P0

P1 P2

P3 P4 P5

P0

Input(P0)

COMMIT
W(B)

 B:= 100
W(A)

A: = A -5
R(A)

T2T1

Transactions

• No-Force: A TXN can commit even if its updates have not been flushed to disk.

• Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

10

Buffer pool polices

Page 1

A=95
 B=100 Frame 2

Frame 3 Frame 4

Database file

Buffer pool
WriteRead

A=100
B=80 P0

P1 P2

P3 P4 P5

P0

Input(P0)

COMMIT
COMMIT

W(B)
 B:= 100

W(A)
A: = A -5

R(A)

T2T1

Transactions

Output(P0)
A=95

B=100

• No-Force: A TXN can commit even if its updates have not been flushed to disk.
• Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

10

Buffer pool polices

Page 1

A=95
 B=100 Frame 2

Frame 3 Frame 4

Database file

Buffer pool
WriteRead

A=100
B=80 P0

P1 P2

P3 P4 P5

P0

Input(P0) Output(P0)
A=95

B=100

COMMIT
COMMIT

W(B)
 B:= 100

W(A)
A: = A -5

R(A)

T2T1

Transactions

• No-Force: A TXN can commit even if its updates have not been flushed to disk.
• Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

Question: What would happen if the DBMS crashes while outputing P0?

10

Force vs. No-Force

Whether require a TXN to flush all its updates to disk before it is allowed to commit?

Force: Yes.

• Provides durability without REDO logging.
• Poor performance: many random writes at commit time.

No-Force: No.

• Complicates durability: what happens if DBMS crashes before the updates of a TXN are
flushed to disk?

• Need to REDO updates by committed TXNs to ensure durability.
• Good performance: reduce random writes at commit time.

11

Steal vs. No-Steal

Whether allow buffer-pool pages with uncommitted data to overwrite committed data on disk?

No-Steal: No

• Useful for ensuring atomicity without UNDO logging.
• Poor runtime performance: consider a TXN that update all records in a table.

Steal: Yes

• Complicates atomicity: (i) what if a TXN that flushed updates to disk aborts? (ii) what
if system crashes before a TXN is finished?

• Need to UNDO uncommitted TXNs to ensure atomicity.
• Good runtime performance.

12

Buffer pool polices (recap)

Slowest

Fastest

No-Steal Steal

Force

No-Force

NO UNDO
NO REDO

UNDO
REDO

No-Steal Steal

Force

No-Force

Performance implications Logging/recovery implications

Preferred buffer pool policy: NO-Force + Steal.

Question. How to ensure correctness?

13

Write-Ahead Logging (WAL)

Buffer pool policy: No-force + Steal.

WAL rule: Log records that correspond to the changes made to a DB object must have been
written to disk before the DB object is allowed to be flushed to disk.

1. Log records are output to disk in the order in which they are created.
2. A TXN Ti enters the commit state only after the log record ⟨Ti commit⟩ has been

output to disk.
3. Before a buffer pool page is output to disk, all log records pertaining to the data in page

must have been output to disk.

14

Example of WAL

COMMIT
COMMIT

W(B)
 B:= 100

W(A)
A: = A -5

R(A)

T2T1

Page 1

A=95
 B=100 Frame 2

Frame 3 Frame 4

Database file

Buffer pool

WriteRead

A=100
B=80 P0 P1 P2

P3 P4 P5

P0

Input(P0) Output(P0)

<T1 start>

<T1, A, 100, 95>

<T2 start>

<T2,B, 80, 100>

<T2 commit>

Log Transactions

A=95
B=100

1. When is T2 considered committed?
– After the log record ⟨T2 commit⟩ has been flushed to disk.

2. What appends if buffer pool page in Frame 1 is flushed to disk?
– The log records up to ⟨T2,B, 80, 100⟩ has been flushed to disk.

3. Assuming T2 has committed, what if the DBMS crashes while flushing Frame 1 to disk?
– Need to UNDO T1 and REDO T2.

15

UNDO for atomicity

UNDO(T): restore values of all data items updated by T to their old values.

COMMIT
COMMIT

W(B)
 B:= 100

W(A)
A: = A -5

R(A)

T2T1

Page 1

A=95
 B=100 Frame 2

Frame 3 Frame 4

Database file

Buffer pool

WriteRead

A=100
B=80 P0 P1 P2

P3 P4 P5

P0

Input(P0) Output(P0)
A=95

B=100

<T1 start>

<T1, A, 100, 95>

<T2 start>

<T2,B, 80, 100>

<T2 commit>

<T1, A, 100>

<T1 abort>

Compensation log

Undo T1 Transactions

• Process the log backwards. Why?
• Write a compensation log record to the log whenever an old values is resorted.
• After UNDO(T) is done, write a record ⟨T abort⟩ to the log.
• UNDO helps to deliver atomicity.

16

REDO for durability

REDO(T): set the values of all data items updated by T to the new values.

COMMIT
COMMIT

W(B)
 B:= 100

W(A)
A: = A -5

R(A)

T2T1

Page 1

A=95
 B=100 Frame 2

Frame 3 Frame 4

Database file

Buffer pool

WriteRead

A=100
B=80 P0 P1 P2

P3 P4 P5

P0

Input(P0) Output(P0)

<T1 start>

<T1, A, 100, 95>

<T2 start>

<T2,B, 80, 100>

<T2 commit>

Redo T2 Transactions

A=95
B=100

• Process forward from the first log record of T .
• No logging is done in this case.
• Helps to provides durability.

17

WAL Recap

• WAL rule: Log records that correspond to the changes made to a DB object must be
written to disk before the DB object is allowed to be flushed to disk.

• Performance: Enable “Steal + No-Force” buffer pool policy.
◦ Steal: dirt pages can be flushed to disk anytime.
◦ No-Force: can commit even if its modifications have not been flushed to disk.

• Correctness: Require UNDO & REDO logging
◦ Undo incomplete TXNs to ensure atomicity
◦ Redo committed ones to guarantee durability.

18

Checkpointing

To UNDO/REDO all TXNs recorded in the log can be expensive.
DBMS periodically takes a checkpoint where it flush all buffers to disk.

1. Stop accepting new TXNs.
2. Flush all log records currently residing the memory.
3. Flush all dirt pages to disk.
4. Write a log record ⟨checkpoint L⟩ to disk.
5. L is a list of TXN still active at the time of checkpoint.

Recovery starts from the last checkpoint.

19

Checkpoint example

System crash!Checkpoint

T1

T2 T3

T4 T5

• T1 can be ignored since update already flushed to disk due to checkpoint.
• Need to redo T2 and T4.
• Need to undo T3 and T5.

20

Recovery Algorithm

Recovery algorithm

• A recovery algorithm takes care of both normal rollback and recovery from system crash.

• Logging during normal operation
◦ Write ⟨Ti, sart⟩ record when TXN Ti starts
◦ Write ⟨Ti,X,Vold,Vnew⟩ record for each update
◦ Write ⟨Ti, commit⟩ when TXN Ti ends

The logging process follows the WAL protocol.

• Conduct checkpointing periodically to reduce recovery costs.

22

Transaction rollback

• Let T be the TXN to be rolled back.

• Scan the log backwards from the end, and for each
log record of the form ⟨T ,X,V1,V2⟩

◦ Update X with the old value V1 (UNDO).
◦ Write a compensation log record < T ,X,V1 >.

• Once the record ⟨T , start⟩ found, stop the scan and
append a log record ⟨T , abort⟩.

<T0 start>

<T0, B, 20, 25>

<T1 start>

<T1,C, 70, 60>

<T1 commit>

<T2 start>

<T2, A, 500,600>

<T0, B, 20>

<T0 abort>

Rollback T0

23

Transaction rollback

• Let T be the TXN to be rolled back.

• Scan the log backwards from the end, and for each
log record of the form ⟨T ,X,V1,V2⟩

◦ Update X with the old value V1 (UNDO).
◦ Write a compensation log record < T ,X,V1 >.

• Once the record ⟨T , start⟩ found, stop the scan and
append a log record ⟨T , abort⟩.

<T0 start>

<T0, B, 20, 25>

<T1 start>

<T1,C, 70, 60>

<T1 commit>

<T2 start>

<T2, A, 500,600>

<T0, B, 20>

<T0 abort>

Rollback T0

23

Recovery from a system crash

Analysis & redo phase:

• Analyze and identify which TXNs committed since checkpoint and which failed.
• Replay all actions of all TXNs. This is also known as repeating history.
• This phase makes sure committed TXNs are durable.

Undo phase:

• Undo all incomplete TXNs to ensure atomicity.
• Write compensation logs during the undo phase.

24

Analysis & redo phase

1. Find the last ⟨CheckpointL⟩ record and set the undo-list to L.
2. Scan forward from the log ⟨Checkpoint,L⟩ record and repeat history as follows.

◦ Whenever a record ⟨Ti,Xj,V1,V2⟩ or ⟨Ti,Xj,V2⟩ is found,
redo it by writing V2 to Xj (repeat history).

◦ Whenever a ⟨Ti start⟩ record is found, add Ti to the undo-list.
◦ Whenever a ⟨Ti commit⟩ or ⟨Ti abort⟩ record is found, remove Ti the undo-list.

• The undo-list tracks incomplete TXNs and will be handled by the undo phase.
• Compensation log are also replayed. This simplifies the recovery logic.

25

Undo phase

Scan log backwards from the end to undo incomplete TXNs.

1. Whenever a record ⟨Ti,Xj,V1,V2⟩ is found, where Ti is in the undo-list,
◦ write V1 to Xj (undo) and write a compensation log ⟨Ti,Xj,V1⟩.

2. Whenever a log record ⟨Ti start⟩ is found, where Ti is in the undo-list,
◦ write a log record ⟨Ti abort⟩ and remove Ti from the undo-list.

3. The undo phase stops when the undo-list becomes empty.

26

A recovery example

924 Chapter 19 Recovery System

After the undo phase of recovery terminates, normal transaction processing can
resume.

Observe that the redo phase replays every log record since the most recent check-
point record. In other words, this phase of restart recovery repeats all the update actions
that were executed after the checkpoint, and whose log records reached the stable log.
The actions include actions of incomplete transactions and the actions carried out to
roll back failed transactions. The actions are repeated in the same order in which they
were originally carried out; hence, this process is called repeating history. Although it
may appear wasteful, repeating history even for failed transactions simplifies recovery
schemes.

Figure 19.5 shows an example of actions logged during normal operation and ac-
tions performed during failure recovery. In the log shown in the figure, transaction T1
had committed, and transaction T0 had been completely rolled back, before the system
crashed. Observe how the value of data item B is restored during the rollback of T0.
Observe also the checkpoint record, with the list of active transactions containing T0
and T1.

When recovering from a crash, in the redo phase, the system performs a redo of
all operations after the last checkpoint record. In this phase, the list undo-list initially
contains T0 and T1; T1 is removed first when its commit log record is found, while T2
is added when its start log record is found. Transaction T0 is removed from undo-list
when its abort log record is found, leaving only T2 in undo-list. The undo phase scans
the log backwards from the end, and when it finds a log record of T2 updating A, the
old value of A is restored, and a redo-only log record is written to the log. When the

older

Log records
added during

recovery

newer

<T0 start>

T0 rollback
(during normal

operation)
begins

Start log records
found for all

transactions in
undo list

T2 is incomplete
at crash

T2 rolled back
in undo pass

Undo list: T2

T0 rollback
complete

<T1 start>

<T2 start>

<T0 abort>

<T2 abort>

<T1 commit>

<checkpoint {T0, T1}>

<T0, B, 2000, 2050>

<T1, C, 700, 600>

<T2, A, 500, 400>

<T2, A, 500>

<T0, B, 2000>

Beginning of log

Redo Pass

Undo Pass

End of log

at crash!

Figure 19.5 Example of logged actions and actions during recovery.

27

The ARIES algorithm

• Algorithm for Recovery and Isolation
Exploiting Semantics

• Developed at IBM Research in the early
1990s for DB2.

• The gold standard for recovery
◦ Write-ahead logging
◦ Repeating history during Redo
◦ Logging changes during Undo
◦ Many well-tuned optimizations.

C. Mohan et al. ARIES: a transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. TODS 1992.

28

https://dl.acm.org/dpi/10.1145/128765.128770
https://dl.acm.org/dpi/10.1145/128765.128770

	Logging
	Recovery Algorithm

