Crash Recovery

May 26, 2023

P Announcement

e Closed book final exam: June 6.

e You may bring a cheat sheet of A4 size.

D Overview

Query parsing & optimization

Operator execution

Buffer pool manager

Concurrency control
Recovery

Disk manager

‘ Access method ‘

e Concurrency control: ensure isolation in concurrent database access.

e Recovery: ensure atomicity and durability via logging (this lecture).

P Crash recovery

e Atomicity: TXNs may abort/rollback.
e Durability: What if DBMS stops running?

Crash!
1

T, ————— coMMIT
T, Abort
T, —— commIT

Desired state after system restarts:

e T; and T3 should be durable.
e T,, T4 and Ts should be aborted (effects not seen).

P Failure classification

(C1) Transaction failure
o Logical errors : TXNs cannot complete due to some internal condition.
o System errors : DBMS terminates an active TX due to an error condition (e.g., deadlock).

(C2) System crash: a power failure or other hardware or software failures cause DBMS crash.

(C3) Disk failure: a head crash or similar disk failure destroys all or part of disk storage.

A recovery algorithm aims to handle (C1) and (C2) but not (C3).

P Log-based crash recovery

e [ogging: actions taken during normal transaction processing to ensure enough
information exists to recover from failures.

e Recovery: actions taken after a failure to recover the database contents to a state that
ensures atomicity, consistency and durability.

P Logging

P Log-based recovery

A log is a sequence of records that keep information about update activities on the DB.

Basic idea: Write what a TXN T plan to do in the log and leave enough information in
the log so that we can figure out whether T has did it or not.

Question #1: What information is written in the log?

Question #2: When to write to the log?

P Log records

(Ti start): T; has started.

(T, X, Void, Vaew): Ti executes W(X) to
update its values from Vg4 t0 View.

(Ti commit): T; has committed.

(Ti abort): Ty has aborted.

T T2
R(A)
A=A-5
W(A)
B:= 100
W(B)
COMMIT
COMMIT

Transactions

<T, start>

<T,, A, 100, 95>
<T, start>
<T,,B, 80, 100>
<T, commit>

<T, commit>

Log

P Buffer pool polices

Readf ‘ Write
Buffer pool T, T,
A=100 Frame 2
B=80 P, R(A)
| Frame 3 | | Frame 4 | A=AS

1 Input(P,)

Database file ¢

Transactions

P Buffer pool polices
Readg § write
Buffer pool
| Szgg Pol | Frame 2 |
| Frame 3 | | Frame 4 |

T T,
R(A)
A=A-5
W(A)
Transactions

10

P Buffer pool polices

Readf ‘ Write
Buffer pool T, T,
| A=95 J | Frame 2 |
oooo B=100 P, R(A)
| Frame 3 | | Frame 4 | A=AS
W(A)

B:=100
Database file ¥ W)

8
B=80 P, P P,

Input(P,)

‘ P3 ‘ PA ‘ P5

Transactions

e No-Force: A TXN can commit even if its updates have not been flushed to disk.

P Buffer pool polices

Readf ‘ Write
Buffer pool
A=95 T bk
| o J | Frame 2 | RA
=100 P,
oooo B=100 P, (A)
e A—A-
Frame 3 Frame 4 5
—_— WA
| A=95 | .
Input(P,) *OUtPUt(PJJ B=100 | B:=100
Database file ¢ W(B)
R i B=80 P, Py P, COMMIT

Py

Transactions

e No-Force: A TXN can commit even if its updates have not been flushed to disk.

e Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

P Buffer pool polices

Readg § write
Buffer pool T T
| A=95 | | Frame 2 | . 2
oooo B=100 P, R(A)
.......... A=A5
Frame 3 | | Frame 4 |
—_— WA
| A=95 | -
1Input(PD) ‘Output(&) e | B:=100
Databasefle ¢ ¥ | W)
Pzl B-80P, Py COMMIT

‘ P3

Transactions

e No-Force: A TXN can commit even if its updates have not been flushed to disk.

e Steal: A buffer pool page with uncommitted updates can be flushed to disk anytime.

Question: What would happen if the DBMS crashes while outputing Pg?

D Force vs. No-Force

Whether require a TXN to flush all its updates to disk before it is allowed to commit?

Force: Yes.

e Provides durability without REDO logging.

e Poor performance: many random writes at commit time.

No-Force: No.

e Complicates durability: what happens if DBMS crashes before the updates of a TXN are
flushed to disk?

e Need to REDO updates by committed TXNs to ensure durability.

e Good performance: reduce random writes at commit time.

11

P Steal vs. No-Steal

Whether allow buffer-pool pages with uncommitted data to overwrite committed data on disk?

No-Steal: No

e Useful for ensuring atomicity without UNDO logging.

e Poor runtime performance: consider a TXN that update all records in a table.

Steal: Yes

e Complicates atomicity: (i) what if a TXN that flushed updates to disk aborts? (ii) what
if system crashes before a TXN is finished?

e Need to UNDO uncommitted TXNs to ensure atomicity.

e Good runtime performance.

12

P Buffer pool polices (recap)

No-Steal Steal No-Steal Steal
- - UNDO
No-Force Fastest No-Force io5
Slowest NO UNDO
Force Force NO REDO
Performance implications Logging/recovery implications

Preferred buffer pool policy: NO-Force + Steal.

Question. How to ensure correctness?

P Write-Ahead Logging (WAL)

Buffer pool policy: No-force + Steal.

WAL rule: Log records that correspond to the changes made to a DB object must have been
written to disk before the DB object is allowed to be flushed to disk.

1. Log records are output to disk in the order in which they are created.

2. A TXN T; enters the commit state only after the log record (T; commit) has been
output to disk.

3. Before a buffer pool page is output to disk, all log records pertaining to the data in page
must have been output to disk.

14

P Example of WAL

Read f ‘ Write
<T, start> T T2 Buffer pool
-
<T,, A, 100, 95> ~AS .' B=100P,
<T, start> W(A) Frame 4
2 —
B:= 100 [
<T,,B, 80, 100> we) Input(P) Output(P) |
Database file
<T, commit> COMMIT § / NN e
COMMIT N Ead B-80 P, P, P,
; ‘ P, P P,
Log Transactions : E >

1. When is T> considered committed?
— After the log record (T, commit) has been flushed to disk.
2. What appends if buffer pool page in Frame 1 is flushed to disk?
— The log records up to (T», B, 80, 100) has been flushed to disk.
3. Assuming T, has committed, what if the DBMS crashes while flushing Frame 1 to disk?

— Need to UNDO T; and REDO T>.

15

P UNDO for atomicity

UNDO(T): restore values of all data items updated by T to their old values.

<T, start>

<T,, A, 100, 95>
<T, start>
<T,,B, 80, 100>
<T, commit>

<T,,A, 100> <«—1— Compensation log

<T, abort>

Undo T,

Read 4

‘ Write

Buffer pool

Input(P,)

Output(P,)

T, T,
R(A)
A=A-5
W(A)
B:= 100
W)
COMMIT\/
COMMIT N

Transactions

Process the log backwards. Why?

Database file v

\

A=100
B=80 P,

o

1

.

o

| -

Write a compensation log record to the log whenever an old values is resorted.

After UNDO(T) is done, write a record (T abort) to the log.

UNDO helps to deliver atomicity.

16

P REDO for durability

REDO(T): set the values of all data items updated by T to the new values.

<T, start> T T,
R(A)
<T,, A, 100, 95> e
<T, start> WA
B:= 100
<T,,B, 80, 100> wE)
<T, commit> COMMIT \
COMMIT N
Redo T, Transactions

e Process forward from the first log record of T.

e No logging is done in this case.

e Helps to provides durability.

Read 4

‘ Write

Buffer pool

[a[s]s]x]

Frame 2

Frame 4

f Input(P)

Database file ¥
I A=100
B=80 P,

.

17

P WAL Recap

e WAL rule: Log records that correspond to the changes made to a DB object must be
written to disk before the DB object is allowed to be flushed to disk.

e Performance: Enable “Steal + No-Force” buffer pool policy.
o Steal: dirt pages can be flushed to disk anytime.

o No-Force: can commit even if its modifications have not been flushed to disk.

e Correctness: Require UNDO & REDO logging
o Undo incomplete TXNs to ensure atomicity

o Redo committed ones to guarantee durability.

18

P Checkpointing

To UNDO/REDO all TXNs recorded in the log can be expensive.

DBMS periodically takes a checkpoint where it flush all buffers to disk.

Stop accepting new TXNs.

Flush all log records currently residing the memory.
Flush all dirt pages to disk.

Write a log record (checkpoint L) to disk.

L is a list of TXN still active at the time of checkpoint.

ok w N

Recovery starts from the last checkpoint.

19

P Checkpoint example

Checkpoint System crash!
! !
| |
T, [[
1 1
'—_l_' 1 1
1 1
— 1 T,)

L 1 1]
1 1
| ILI T,

[S E—

e T; can be ignored since update already flushed to disk due to checkpoint.
e Need to redo T and Ty.

e Need to undo T3 and Ts.

20

P Recovery Algorithm

P Recovery algorithm

e A recovery algorithm takes care of both normal rollback and recovery from system crash.

Logging during normal operation

o Write (T;, sart) record when TXN T; starts
o Write (Ti, X, Void, View) record for each update
o Write (T;, commit) when TXN T; ends

The logging process follows the WAL protocol.

Conduct checkpointing periodically to reduce recovery costs.

22

P Transaction rollback

e Let T be the TXN to be rolled back.

e Scan the log backwards from the end, and for each
log record of the form (T, X, Vq, V2)

o Update X with the old value V; (UNDO).
o Write a compensation log record < T, X, V; >.

e Once the record (T, start) found, stop the scan and
append a log record (T, abort).

<T, start>

<T,, B, 20, 25>
<T, start>
<T,,C, 70, 60>
<T, commit>
<T, start>

<T,, A, 500,600>
<—— Rollback T,

23

P Transaction rollback

e Let T be the TXN to be rolled back.

e Scan the log backwards from the end, and for each
log record of the form (T, X, Vq, V2)

o Update X with the old value V; (UNDO).
o Write a compensation log record < T, X, V; >.

e Once the record (T, start) found, stop the scan and
append a log record (T, abort).

<T, start>

<T,, B, 20, 25>

<T, start>

<T,,C, 70, 60>

<T, commit>

<T, start>

<T,, A, 500,600>

"""""""" <=3=—— Rollback T,
<T,, B, 20>

<T, abort>

23

P Recovery from a system crash

Analysis & redo phase:

e Analyze and identify which TXNs committed since checkpoint and which failed.

e Replay all actions of all TXNs. This is also known as repeating history.
e This phase makes sure committed TXNs are durable.

Undo phase:

e Undo all incomplete TXNs to ensure atomicity.
e Write compensation logs during the undo phase.

24

P Analysis & redo phase

1. Find the last (Checkpoint L) record and set the undo-list to L.
2. Scan forward from the log (Checkpoint, L) record and repeat history as follows.

o Whenever a record (Ti, Xj, Vi, Va) or (T, Xj, Va) is found,
redo it by writing V> to X;j (repeat history).
o Whenever a (T; start) record is found, add T; to the undo-list.

o Whenever a (T; commit) or (T; abort) record is found, remove T; the undo-list.

e The undo-list tracks incomplete TXNs and will be handled by the undo phase.
e Compensation log are also replayed. This simplifies the recovery logic.

25

P Undo phase

Scan log backwards from the end to undo incomplete TXNs.

1. Whenever a record (Ti, Xj, V1, V) is found, where Tj is in the undo-list,
o write V; to Xj (undo) and write a compensation log (T;, Xj, V1).

2. Whenever a log record (T; start) is found, where T; is in the undo-list,
o write a log record (T; abort) and remove T; from the undo-list.

3. The undo phase stops when the undo-list becomes empty.

26

P A recovery example

Beginning of log Start log records
older <T start> found f_or al!
transactions in
<Ty, B, 2000, 2050>

undo list

<T,start> T, rollback
<checkpoint {Ty, T7}> (during normal
operation)

<T,, C, 700, 600>
<T; commit>
<T, start>

End of lo| To rollback
at cr:-)sh!g <72, A, 500, 400> complete
<T,, B, 2000>
[S~<T, abort> - T, is incomplete
Log records at crash Undo list: T, Undo Pass

added during <T, A, 500>
recovery <T, abort>

begins

T, rolled back
in undo pass

newer

P The ARIES algorithm

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking

. . and Partial Rollbacks Usin
e Algorithm for Recovery and Isolation Write-Ahead Logging 9

Exploiting Semantics . MOHAN

IBM Almaden Research Center
and

e Developed at IBM Research in the early OON HADERLE

IBM Santa Teresa Laboratory

1 9 905 fOI’ D BQ . ::ucs LINDSAY, HAMID PIRAHESH and PETER SCHWARZ

IBM Almaden Research Center

In this paper we present a and efficient method, cailed ARIES (Algorithm for Rec

o which supporte ptial Tollbacks of traneactons, fine.

e The gold standard for recovery
Write-ahead logging i o Ty o e i s ey g e b of

Repeating history during Redo \.,,dmom,mmm.f.gm_,m.udmmmmm\sm:mﬂnbm 5y o
Logging changes during Undo bt st f s e Sorins s

in biding and operaing om i st strength trassaction procesin < stom ARIES supports

o O O O

any well-tuned optimizations. e B) T S e e
varying length efficiently. By enabling parallelism durin

al ando, it enhances éancarroney and porormance.
paradigms for logging and recovery, B
changed in the context of WAL. % 05 1o the od recovery methods of

C. Mohan et al. ARIES: a transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. TODS 1992.

https://dl.acm.org/dpi/10.1145/128765.128770
https://dl.acm.org/dpi/10.1145/128765.128770

	Logging
	Recovery Algorithm

