Review

June 2, 2023

P Relational model

e A database is a collection of relations and each
relation is an unordered set of tuples (or rows).

e Each relation has a set of attributes (or columns).

e Each attribute has a name and a domain and each

tuple has a value for each attribute of the relation.
Figure: Edgar Frank Codd

Keys: superkey, candidate key, primary key, foreign key

https://en.wikipedia.org/wiki/Edgar _F. Codd

P Relational algebra

e Selection o (R)
e Projection TTx,
e Product R x S
e Union RUS

e Difference R—S

e Renaming ps(a,,. A,

e JoinRixig S, Rxt S

P SQL

e SQL DDL

e SFW statement

e Set operations of SQL

e Aggregation and grouping
e Three-valued logic of SQL
e Various joins

e Nested Subqueries

e Integrity constraints

e Update with SQL

P Database design theory

Functional dependency

e FD’s are unique-value constraints.

e A FD X — Y requires the attributes of X functionally determining the attributes Y.
e X is a candidate key of Rif (i) X — R, and (i) Y /X for all proper subset Y of X.
e The attribute closure X{ is the set of attributes determined by X under F.

Normal forms and decomposition algorithms

e Insertion, deletion, update anomalies

e Decomposition criteria: lossless join, dependencies preserving, anomalies avoidance
e BCNF & BCNF decomposition algorithm

e 3NF & 3NF synthesis algorithm

D Database internals

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

Concurrency control

Recovery

P Storage structure

Table Tuple
D Name | Dept_name | Salary ‘ 22202 ‘ Einstein | Physics ‘ 95000 ‘
22222 | Einstein | Physics | 95000 It Varchar g Varchar Float
10101 | Srinivasan cs 65000 ‘
33456 | Gold Physics | 87000
45565 | Katz cs 75000 — 4 12 20 27

!

Database File

e Tables are stored as database files.

‘20‘27‘ 22222 ‘ 95000 ‘ Einstein ‘ Physics ‘
T

| easer Lelololel J 1]

Tuple #4 Tuple #3

Slotted database page

e Each database file consists of a collection of pages.

e Each page is a block of fixed-size that contains a collection of tuples.

Buffer pool manager

->

Write page Read page

Buffer pool

Load Page 2 to Buffer pool
4 ‘ Frame s
1

Database file

Page 5

Page 6

Figure: Buffer pool

Design goal: provide the illusion of operation in memory.

A buffer pool is a memory region organized as an array of frames.

When DBMS request a page, an exact copy is placed into one of these frames.
Buffer pool page replacement policy: LRU & CLOCK.

The access patterns have big impact on 1/O cost.

D Index

e Search key: an attribute or a set of attributes used to look up records in a file.

e An index file consists of records (called index entries) of the form

| search key | pointer |

e An index files is usually much smaller than the original file.

e Ordered index vs. hash index.
e Dense index vs. spare index.
e Clustering index vs. non-clustering index.

e Primary index vs. secondary index.

P Br-tree

Non-leaf

Leaf

{20]24] }+{36][39] J+{43][54][e6} > 78[82] }-+[04]08] |
vy v IR)

Figure: A sample B*-tree with max_ fanout= 4

A BT-tree in a self-balancing search tree with following properties.
e Balance invariant: all leaves are at the same level.
e Occupancy invariant: all nodes (except root) are at least half-full.
e Search, insertions, and deletions in logarithmic time.

e Optimized for disk-based DBMS: one node per block; large fan-out.

10

D Query with BT-tree index

Point query:
SELECT * FROM R WHERE K=54;

Range query:
SELECT * FROM R
WHERE k >= 37 AND K <= 90;

Look up 54

[1820[24}>{36[30| |>{43[54]66]> 78[82| |+ 04]08]

1. Look up 37 first

(s |

|18]20|24}+{36][30] |» 435466} ~{78][82] |+ 04]o8]

11

D Bf-tree insertion & deletion

78
Insert 73 el 1]
[oa]]
,,

[20[24] }+{36[39] |-»{43][54]66}+78]82] |+{94]08] |

[l]
Al 1] @117 Y]

13[18 [20[24] }+[6[s0] |}+[43]s4] J+[es]ra] |+{78]s2] |—+[oa]es] |

Delete 20

[13]18] |———{24[36 39} ———a3[54] [>e6[73] |

12

P Query processing & optimization

(sort to remove duplicates)

Hname, title T e, ite
‘ [X] (merge join)
SELECT name, title \
FROM instructor natural join teaches sort,,
natural join course ‘
WHERE dept_name ='Music'; Odept_name = Music sort IX] (hash join)
\ ‘ 3
instructor teaches M eourse.ia e et name - Music epurse ia, e
‘ o (use index 1)
course instructor teaches course

sQLQuery | = [Logical Plan) [Physicalplan |

e Each node of a logical plan is a relational operator.
e Each node of a physical plan represents an operator algorithm.

e Data flows from the leaves of the physical plan tree up towards the root.

13

External merge sort

A divide-and-conquer approach to sort a large relation that cannot fit in memory.

|
Input R ‘33|36|13I15|24|04I20|23|28I35|07|49‘
|

Level-0 run

Level-1 run

Pass 2 ‘04|07|13‘15|20|23‘24|28|33‘35|36‘49‘

e Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

e Pass i: merge (B — 1) level-(i — 1) runs each time, and write out a level-i run.

Each pass read the entire relation and write it once.

Total cost: 2P(R)*log g_1[P(R)/B] + P(R)

14

P Join algorithms

Tables: R, S

Algorithms | 1/O costs
Naive Nested Loop Join | P(R) + [R|* P(S)
Block Nested Loop Join | P(R) + P(R) % P(S)
Indexed Nested Loop Join | P(R) +|R|* C
Merge Join P(R) + P(S)
In-memory Hash Join P(R) + P(S)
Hash Join 3% (P(R) 4+ P(S))

Table: Algorithms for R S

Number of tuples: [R|, |S|
Number of pages: P(R), P(S)

Cost metric: number of 1/O’s

15

Query processing model

A DBMS's processing model defines how the system executes a physical query plan.

Hnamc

I

1 (HashJoin)
| S

Tbilding="Waston® (Filter) Instructor(SeqScan)

Department(SeqScan)

Materialization model

e Evaluate the physical query plan tree bottom-up.
e Children write intermediate results to temporary files.

e Parents read temporary files.

e Good for OLTP queries, not good for OLAP queries with large intermediate results.

16

Query processing model

A DBMS's processing model defines how the system executes a physical query plan.

Control Flow == Thame

Data Flow ——
>1 (HashJoin)

uilding="Waston” (Filter
Tbuilding=" Waston (Filter) Instructor(SeqScan)

6
Department(SeqScan)
Iterator Model (a.k.a. volcano model)

e Do not materialize intermediate results; children pipeline their results to parents.

e Every operator maintains its own execution state and implements a next tuple method.

e Pull-based execution: (i) Call next tuple() repeatedly on the root; (ii) Iterators
recursively call next tuple() on the inputs.

16

P Rule-based query optimization

Rewrite query via RA equivalence rules.

e ()RxS=Sx>=R. (i) (RxtS)<xxT=Rx (SxT).
e 0g9(R xS) =R S. This rule converts a cross product to a theta join.
o TTy, (TT,(R)) =TI, (R), where L; C L,.
® 09,(00,(R)) = 09,10,(R).
e Push down selection: og, ap,(R g S) = 0g,(R) g 0p,(S).
Here 01 (resp. 0,) involves only attributes of R (resp. S).

e Push down projection
1. Te(oe(R)) =M (oe(Mrurr(R)))
— L’ is the set of attributes that referenced by © and not in L.
2. ”L(R g S) = HL(”L/(R) g S)
— L’ consists of the set of attributes from R that either in L or referenced by 0.
3. A symmetric version of (2).

17

Rule-based query optimization

Rewrite query via RA equivalence rules.

Ila,p HT,D
UA/<9 >
I — U,\(Z/
/ 8 {
[N
|><]\ T(C, D) oA </9\ T(C, D)
R(AB) S(B,C) R(AB) S(B,0)

e Push down selection: og,ne,(R g S) = 09, (R) g 0p,(S).
Here 01 (resp. 0,) involves only attributes of R (resp. S).

e Push down projection
1. My (oe(R)) =T (oe (ML (R)))
— L’ is the set of attributes that referenced by © and not in L.
2. ”[_(R Dg S) = HL(”L/(R) Dg S)
— L’ consists of the set of attributes from R that either in L or referenced by 0.
3. A symmetric version of (2).

17

P Cost-based query optimization

e Enumerate “all” possible physical plans and pick the one with
“lowest” cost.

e In practice, the goal is often not getting the optimal one,
but instead avoiding really bad one.

e We have discussed the first cost-based query optimizer.
o Use Selinger statistics for cost estimation.

o Consider left-deep joins only for plan enumeration.

o Generate optimal plans in a bottom-up fashion. Figure: Patricia Selinger

P. Selinger et al. (1979). Access Path Selection in a Relational Database Management System.

18

P Transaction processing

A transaction (“TXN") is a collection of database operations that servers as a single,
indivisible logical unit of work.

e Atomicity: Each TXN is all-or-nothing, i.e., no partial TXN is allowed.

e Consistency: Each TXN should leave the database in a consistent state.

Isolation: Each TXN is executed as if it were executed in isolation.

Durability: Effects of a committed TXN are resilient against failures.

19

P Transaction processing

A transaction (“TXN") is a collection of database operations that servers as a single,
indivisible logical unit of work.

Query parsing & optimization

Operator execution

Access method

Concurrency control
Recovery

Disk manager

‘ Buffer pool manager ‘

e Concurrency control: ensure isolation in concurrent database access.

e Recovery: ensure atomicity and durability via logging.

19

P Concurrency control

Goal: to ensure isolation of transactions.

Serializability: a desired property ensuring isolation.

Two-Phase Locking (2PL) Timestamp Ordering (T/O)
e A pessimistic approach: need to acquire e An optimistic approach: () no locking,
a lock before every shared data access. (i) each TXN is assigned a unique

timestamp before execution.
e The serializability order of conflicting
operations is determined at runtime e Use the timestamps to determine the
(according to the lock point). serializability order of TXNs.

20

P Recovery

Goal: to ensure atomicity and durability via logging.

Write-ahead logging Recovery: REDO + UNDO
e Enable “No-Force + Steal” buffer pool e REDO: repeat history for durability.
policy for performance.)
e UNDO: cancel incomplete TXNs for
e Require both REDO and UNDO logging. atomicity.
e Reduce recovery cost by checkpointing. e Write compensation log during UNDO.

21

Thanks & Good Luck!

22

