Relational Database Design Theory (II)

March 31, 2023

Announcements

- Assignment (II) due: April 2, 2023
- The first quiz: April 7, 2023.
- Assignment (III) has been released on canvas.

Anomalies in a bad design

sid	cid	cname	room	grade
123	Al-3613	Database	1-108	A+
223	AI-3613	Database	1-108	B+
123	CS-101	CS Intro.	3-325	Α
334	CS-101	CS Intro.	3-325	Α-
345	ICE-1404P	Database	2-203	Α

Table: R(sid, cid, cname, room, grade)

- Insertion anomaly: Cannot add data to db due to the absence of other data.
 - What happens if we want to add a new course CS2950?
- Deletion anomaly: Lose unintended information as a side effect when deleting tuples.
 - What happens if the student with sid 345 quit the course ICE-1404?
- Update anomaly: To update info of one tuple, we may have to update others as well.
 - What happens if the room of Al-3613 is changed?

Normalization theory

- Decide whether a particular relation schema R is in "good" from.
- In the case that R is not in "good" form, decompose R into a set of relation schemas $\{R_1, R_2, ..., R_n\}$ such that each R_i is in good form (normal form).
- The resulting decomposition should avoid anomalies.

A better design

Goal: Decompose R into R_1 and R_2 s.t.

$$R=R_1\bowtie R_2\,$$

sid	cid	cname	room	grade
123	Al-3613	Database	1-108	A+
223	Al-3613	Database	1-108	B+
123	CS-101	CS Intro.	3-325	Α
334	CS-101	CS Intro.	3-325	Α-
345	ICE-1404P	Database	2-203	Α

Table: R(sid, cid, cname, room, grade)

s_id	c_id	grade
123	Al-3613	A+
223	Al-3613	B+
123	CS-101	Α
334	CS-101	A-
345	ICE-1404P	Α

Table: R_1 (sid, cid, grade)

c_id	cname	room
Al-3613	Database	1-108
CS-101	CS Intro.	3-325
ICE-1404P	Database	2-203

Table: R_2 (cid, cname, room)

- $\bullet \ \ F = \{ \mathsf{cid} \to \{\mathsf{cname}, \mathsf{room}\}, \quad \{\mathsf{sid}, \mathsf{cid}\} \to \mathsf{grade} \}.$
- cid is a superkey of R_2 , i.e., cid \rightarrow {cid, cname, room}.

Decomposition criteria

Lossless join

Be able to reconstruct the original relation by joining smaller ones.

• Dependency preservation

Minimize the cost to check the integrity constraints defined in terms of FD's.

Anomalies avoidance

Avoid unnecessary anomalies.

Boyce-Codd Normal Form

Definition

[Boyce-Codd Normal Form]

A relation schema R is in Boyce-Codd Normal Form (BCNF) w.r.t. a set F of FD's if for every FD $X \to Y$ in the closure F^+ with $X \subseteq R$ and $Y \subseteq R$, one of the following holds:

- $X \rightarrow Y$ is trivial.
- X is a superkey of R, i.e., $X \to R$ is in F^+ .

A database scheme is in BCNF if every relation scheme in it is in BCNF.

Example

- R=(A,B,C), $F=\{A\to B,B\to C\}$. Then R is not in BCNF. $R_1=(A,B)$, $R_2=(B,C)$, $F=\{A\to B,B\to C\}$. Then both R_1 and R_2 are in BCNF.

BCNF decomposition algorithm

```
Input: A schema R and a set F of FD's
Output: A BCNF decomposition \{R_1, \ldots, R_n\} of R
1. \mathcal{D} \leftarrow \{R\};
2. while ex. some R' \in \mathcal{D} that is not in BCNF do
3. choose a non-trivial X \to Y in F^+ with XY \subset R' and X \not\to R';
4. R_1 \leftarrow XY; R_2 \leftarrow X \cup (R' \setminus XY);
5. \mathcal{D} \leftarrow (\mathcal{D} \setminus \{R'\}) \cup \{R_1, R_2\}; // decompose R' to R<sub>1</sub> and R<sub>2</sub>;
6. return \mathfrak{D};
```

Figure: BCNF decomposition algorithm

Example

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

•
$$\mathfrak{D}_2 = \{(A, B), (A, C, D), (A, C, E)\}$$
 // using $AC \to D$

BCNF decomposition correctness

Claim. Every decomposition step is lossless.

Let I be a relational instance of schema $R(A_1,\ldots,A_n)$ that satisfies $X\to Y.$ Then $I=\Pi_{XY}(I)\bowtie \Pi_{XZ}(I),$ where $Z=\{A_1,\ldots,A_n\}\setminus (X\cup Y).$

Proof. $I \subseteq \Pi_{XY}(I) \bowtie \Pi_{XZ}(I)$ holds for all instances. We next prove $\Pi_{XY}(I) \bowtie \Pi_{XZ}(I) \subseteq I$.

Let t be a tuple in $\Pi_{XY}(I) \bowtie \Pi_{XZ}(I)$. Then there are tuples $t_1, t_2 \in I$ such that

$$\Pi_{XY}(t_1) = \Pi_{XY}(t)$$
 and $\Pi_{XZ}(t_2) = \Pi_{XZ}(t)$.

Since $\Pi_X(t_1) = \Pi_X(t_2)$ and I satisfies $X \to Y$, we have $\Pi_Y(t_2) = \Pi_Y(t)$.

It follows that $t_2 = t$, so t is also in I.

BCNF and dependency preserving

Remark. BCNF decomposition does not warrant dependency preservation.

Example

Let R = (A,B,C) and $F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

- A BCNF decomposition of R is $\{R_1 = (A, B), R_2 = (B, C)\}.$
- Another BCNF decomposition of R is $\{R'_1 = (A, C), R'_2 = (A, B)\}.$
- The decomposition $\{R'_1, R'_2\}$ is not dependency preserving.
 - Checking $B \to C$ requires joining R_1' and R_2' .

Dependency preserving decomposition

Definition

Let F be a set of FD's on a schema R, and let R_1, \ldots, R_n be a decomposition of R. The restriction of F to R_i is the set F_i of all FD's in F^+ that include only attributes of R_i .

Definition

Let F be a set of FD's on a schema R. A decomposition R_1,\ldots,R_n of R is dependency preserving w.r.t. F if

$$F^+ = (\bigcup_{i=1}^n F_i)^+,$$

where $F_{\mathfrak{i}}$ is the restriction of F to $R_{\mathfrak{i}}.$

A decomposition preserves dependencies if its original FD's do not span multiple tables.

Third Normal Form (3NF)

Definition [Third Normal Form]

A relation schema R is in Third Normal Form (3NF) w.r.t. a set F of FD's if for every FD $X \to Y$ in F^+ at least one of the following holds:

- $X \rightarrow Y$ is trivial
- X is a superkey
- Every attribute in $Y \setminus X$ is contained in a candidate key of R.

Similarly, a database schema is in 3NF if every relation schema in it is in 3NF.

Remark. If R is in BCNF, then R is in 3NF.

3NF example

student_id	advisor_id	dept
125	15733	CS
125	14698	EE
224	14698	EE
246	15733	CS

Table: R(student_id, advisor_id, dept)

Two FD's defined over R

- $\bullet \ \, \mathsf{student_id}, \, \mathsf{dept} \to \mathsf{advisor_id} \\$
- advisor_id → dept
- 1. R has two candidate keys
 - o {student_id, dept}
 - o {student_id, advisor_id}
- 2. R is not in BCNF but in 3NF.
- 3. Redundancy and update anomaly in 3NF.

Remark. We can show that R has no dependency preserving BCNF decompositions.

3NF synthesis algorithm

```
Input: A schema R and a set F of FD's Output: A 3NF decomposition \{R_1,\ldots,R_n\} of R 1. computes F_c; \mathcal{D} \leftarrow \{\}; 2. for each X \to Y \in F_c do 3. \mathcal{D} \leftarrow \mathcal{D} \cup \{R_i(X,Y)\}; 4. if no relation schema in \mathcal{D} contains a candidate key of R then 5. let Z be a candidate key of R; 6. \mathcal{D} \leftarrow \mathcal{D} \cup \{R'(Z)\}; 7. remove redundant relations; // optional 8. return \mathcal{D};
```

Figure: 3NF synthesis algorithm

3NF synthesis algorithm example

$$R = (A, B, C, D, E), F = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}.$$

R has two candidate keys: ABE, ACE.

- 1. F is already a canonical cover.
- **2**. Add $R_1(A, B, C)$, $R_2(B, C)$ and $R_3(A, D)$ to \mathfrak{D} .
- 3. Add $R_4(A, B, E)$ or $R_4(A, C, E)$ to \mathcal{D} .
- **4**. Remove $R_2(B, C)$ from \mathcal{D} since it is part of $R_1(A, B, C)$.

Correctness

- Dependency preservation follows from $F_c^+ = F^+$ directly.
- Lossless join since at least one schema in \mathcal{D} contains a candidate key of R.
- 3NF. Every R_i in \mathcal{D} is in 3NF.

Claim. Let R_i be a schema generated from a FD $X \to Y$ in F_c and $X' \to A$ be an arbitrary non-trivial FD in F_c^+ with $A \in Y$ and $X' \subseteq XY$. Then X' is a superkey of R_i .

Proof. We show that if X' is not a superkey of R_i , then A is extraneous in $X \to Y$.

By assumption, there exists an attribute $B \in X$ s.t. $B \notin (X')^+$. Otherwise, X' is a superkey.

It follows that $F_c \setminus \{X \to Y\}$ implies $X' \to A$. Then $(F_c \setminus \{X \to Y\}) \cup \{X \to Y \setminus \{A\}\}$ implies $X \to Y$. As a consequence, $A \in Y$ is extraneous for $X \to Y$ in F_c . Contradiction.

More normal forms

- 1st Normal Form (1NF)
- 2^{ed} Normal Form (2NF)
- 3rd Normal Form (3NF)
- Boyce-Codd Normal Form
- 4th & 5th Normal Forms

Figure: Normal Forms

Recap

- Anomalies
- Lossless join decomposition
- Dependency preserving decomposition
- BCNF and BCNF decomposition algorithm
- 3NF and 3NF synthesis algorithm