Query Processing (I)

Spring, 2024

Execute a dataflow by operation on tuples and files.

Figure: DBMS architecture

Query processing overview

- Each node of a logical plan is a relational operator.
- Each node of a physical plan represents an operator algorithm.
- Data flows from the leaves of the physical plan tree up towards the root.

- Tables: R, S
- Tuples: t_r , t_s
- Number of tuples: |R|, |S|
- Number of pages: P(R), P(S)
- Number of available buffer pool pages: B
- Cost metric: number of I/O's

- $\bullet\,$ Scan table R sequentially and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O cost: P(R)
- Not counting the cost of writing the result out
 - Maybe not needed results may be pipelined into another operator
 - Same for the algorithms discussed later

- Tuples in a table have no specific order.
- Query may require output be sorted.
 - E.g., SELECT * from student ORDER BY credit DESC;
- Several relational operators can be implemented efficiently with sorting.
 - E.g., duplication elimination, aggregation, merge join, set operations.
- External sorting is required when data cannot fit in memory.

A divide-and-conquer approach to sort a large relation R that cannot fit in memory.

Recall that we have \mathbf{B} pages available in the buffer pool.

- Pass 0: read B pages of R each time, sort them, and write out a level-0 run.
- Pass 1: merge B 1 level-0 runs each time, and write out a level-1 run.
- Pass 2: merge B 1 level-1 runs each time, and write out a level-2 run.

• • • •

• Final pass produces one sorted run.

External merge example

- B = 3, i.e., 3 pages available in buffer pool.
- Each page hols only one tuple.
- In pass 0, all 3 pages are used for sorting.
- In pass i, where $i \ge 1$, B-1=2 pages are used for input, and 1 page for output.

#(Passes) #(Read Pages) #(Write Pages)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Total cost	$2P(R)*\log_{B-1}[P(R)/B] + P(R)$

- Pass 0: read B pages of R each time, sort them, and write out a level-0 run.
- Pass i: merge (B-1) level-(i-1) runs each time, and write out a level-i run.
- Each pass read the entire relation and write it once.
- We do not include the output cost of the final pass as we have discussed.

Sort-based duplication elimination

- 1. Perform external merge sort.
- 2. Eliminate duplicates during sort and merge.
- 3. Cost: same cost as sorting.

		1			<u> </u>						
Input R	13 36	13	15	24	04	20	23	04	28	15	28
	\int	I	,	Γ	I		\int	l		\int	
Pass 0	<mark>13</mark> 33		04	15	24	04	20	23	1	5 2	28
		Y1	<u>/]</u>			_		5	y r	<u> </u>	
Pass 1	04	13 1	15 2	24 3	36	0	4 1	5 2	0 2	3 2	28
					Z	Ø				_	
Pass 2		04	13	15	20	23	24	28	36		

Sort-based set operations

- $R \cup S$, $R \cap S$, R S requires duplication elimination by default.
- Sort R and S in the same order.
- Scan the sorted R and S to produce the desired results and eliminate duplicates.
- Both R and S require only one pass of scan.
- Cost: sorting + P(R) + P(S)

Sort-based aggregation

- Sort the tuples on the GROUP BY attributes
- Perform a sequential scan over the sorted data to compute the aggregation.
 - This can be fused into the final pass of sorting.
- Apply partial aggregation on the fly.
- The output will be sorted on the attributes.
- Cost: same cost as sorting.

SELECT dept_name, AVG(salary) FROM instructor GROUP BY dept_name

Agg	Running value
MIN	min
MAX	max
COUNT	count
SUM	sum
AVG	(count, sum)

Naive nested loop join

Figure: Algorithm for $R \bowtie_{\theta} S$

- The most basic join algorithm to compute join $R\bowtie_\theta S.$
- R: the outer table, S: the inner table.
- Require no indices and can be used with any kind of join conditions.

Cost analysis

- Cost: P(R) + |R| * P(S)
- Buffer pool requirement: B = 3
 - Two buffer pool pages for input, and one for output.

Example

А	В		
10	а		
20	b		
20	с		
40	d		
R			

А	В	С
20	b	f
20	b	g
20	с	f
20	с	g
40	d	i

 $\mathsf{R} \bowtie \mathsf{S}$

- $|\mathbf{R}| = 4$, $|\mathbf{S}| = 6$, $P(\mathbf{R}) = 2$, $P(\mathbf{S}) = 3$.
- If R is the outer table, then the cost is 14.
- If S is the outer table, then the cost is 15.

Blocked nested loop join

- Naive nested loop join is costly since for every tuple in the outer table R, we must do a sequentially scan of the inner table S.
- To maximize the utilization of buffer pool, we can process tables on a per-page basis, rather than on a per-tuple basis.

1.	for each page P_r in R do
2.	for each page P_s in S do
3.	for each tuple t_r in P_r do
4.	for each tuple t_s in P_s do
5.	if $\theta(t_r, t_s)$ then
6.	add $t_r \bowtie t_s$ to the result

Figure: Improved algorithm for $R \bowtie_{\theta} S$

Example

А	В	С
20	b	f
20	b	g
20	с	f
20	с	g
40	d	i

 $\mathsf{R}\bowtie\mathsf{S}$

- $|\mathbf{R}| = 4$, $|\mathbf{S}| = 6$
- P(R) = 2, P(S) = 3.
- If R is the outer table, then the cost is 8.
- If S is the outer table, then the cost is 9.

- Cost: P(R) + P(R) * P(S)
- Buffer pool requirement: B = 3

Optimization: If B pages are available in the buffer pool for the join operation, then

- $\bullet~B-2$ pages for scanning the outer table R
- One page for inner table scan
- The rest page for buffering the output
- Total cost: $P(R) + \lceil P(R)/(B-2) \rceil * P(S)$

- Require equality predicate, e.g., equi-joins or natural joins.
- If R or S is not sorted by the join attributes, then sort it first.
- All tuples with the same value on the joined attributes are in consecutive order.
- Merge scan the sorted tables and emit tuples that match.

1. /* ps/pr points to the first tuple of R/S */2. while pr! = EOF & ps! = EOF do3. while $t_{pr}[A] < t_{ps}[A]$ do ++pr; while $t_{pr}[A] > t_{ps}[A]$ do ++ps; 4. 5. while $t_{pr}[A] = t_{ps}[A]$ do 6. pss := ps; /* set pss to the first match */7. while $t_{pr}[A] = t_{pss}[A]$ do 8. add $t_{pr} \bowtie t_{pss}$ to result; 9. ++pss;10. ++pr: ps:=pss; /* all matches processed, advance ps */ 11.

 $\mathsf{R} \bowtie \mathsf{S}$

- Most cases: Sorting + P(R) + P(S).
- Assumption: Every set of match candidates in S can fit in buffer pool.

- Worst case: Sorting + P(R) + P(R) * P(S)
- Assumption: Everything joins and B = 3.

- Applicable for equi-joins and natural joins, e.g., $R \bowtie_{R.A=S.B} S$.
- If $t_1 \in R$ and $t_2 \in S$ can join, then they have the same value on the join attributes.
- Use a hash function **h** to partition both relations.
- Compute the join results on each partition.

Basic in-memory hash join

- Build phase: scan the outer table R and construct a hash table using a hash function h on the join attributes.
- Probe phase: scan the inner table S and use h on each tuple $t \in S$ to jump to the location in the hash table and find a matching tuple.
- Cost: P(R) + P(S).
- Buffer pool requirement: $B \ge P(R) + 2$ or roughly the outer table R can fit in memory.

Hash join: partition phase

Figure: Partition R with h (need to do the same for S)

- Partition both R into B 1 partitions, using a hash function h on the join attributes.
- A buffer block/page is reserved as the output buffer for each partition.
- Partition table S in the same way.

Hash join: build & probe phase

- Read each partition R_i of R and build a hash table using another hash function g.
 The hash functions g and h must be different. Why?
- Read the corresponding partition S_i of S in a per-page basis; then probe and join.
- R is the build relation and S is the probe relation.

Assumption

- Partition phase divides table R into (B-1) partitions evenly. That is, each partition of R has $\lceil P(R)/B 1 \rceil$ pages.
- Build & probe requires $[P(R)/B 1] \leq B 2$, i.e., every partition of R fits into memory.
- $P(R) \leq (B-1)(B-2) \approx B^2$. Thus roughly $B \ge \sqrt{P(R)}$.
- We have no size requirement for the probe relation S.
 Use the smaller input as the build relation R.

Cost: 3(P(R) + P(S))

Question. What if a partition is too large for memory?

Hash-based algorithms

- Union, intersection, difference.
 - More or less like hash join.
- Duplicate elimination.
 - Eliminate duplicates within each partition.
- Group by aggregation.
 - $-\left(i\right)$ Apply the hash functions to the group-by columns.
 - (ii) Tuples in the same group will end up in the same partition.

Indexed nested loop join

1. for each tuple t_r in R do 2. for each tuple t_s in Index $(t_r.A)$ do 3. add $t_r \bowtie t_s$ to the result

Figure: Algorithm for $R \bowtie_{R.A=S.B} S$, using an index of S on attribute B

- Cost analysis: P(R) + |R| * C.
- C is the I/O cost of an index lookup, which is $2 \sim 4$ I/O's typically.
- If both R and S support index lookup, better pick the smaller one as the outer relation.

Join algorithms (recap)

Algorithms	I/O costs
Naive Nested Loop Join	P(R) + R * P(S)
Block Nested Loop Join	P(R) + P(R) * P(S)
Indexed Nested Loop Join	P(R) + R * C
Merge Join	P(R) + P(S)
In-memory Hash Join	P(R) + P(S)
Hash Join	3 * (P(R) + P(S))

Table: Algorithms for $R \bowtie S$