
Query Processing (I)
Spring, 2024

DBMS: Operator execution

Execute a dataflow by operation on tuples and files.
Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

2

Query processing overview

SQL Query Logical Plan Physical plan

• Each node of a logical plan is a relational operator.

• Each node of a physical plan represents an operator algorithm.

• Data flows from the leaves of the physical plan tree up towards the root.

3

Notations

• Tables: R, S
• Tuples: tr, ts
• Number of tuples: |R|, |S|
• Number of pages: P(R), P(S)
• Number of available buffer pool pages: B
• Cost metric: number of I/O’s

4

Sequential scan

• Scan table R sequentially and process the query
◦ Selection over R
◦ Projection of R without duplicate elimination

• I/O cost: P(R)
• Not counting the cost of writing the result out

◦ Maybe not needed – results may be pipelined into another operator
◦ Same for the algorithms discussed later

5

Sorting

Why sorting

• Tuples in a table have no specific order.
• Query may require output be sorted.

– E.g., SELECT * from student ORDER BY credit DESC;

• Several relational operators can be implemented efficiently with sorting.
– E.g., duplication elimination, aggregation, merge join, set operations.

• External sorting is required when data cannot fit in memory.

7

External merge sorting

A divide-and-conquer approach to sort a large relation R that cannot fit in memory.

Recall that we have B pages available in the buffer pool.

• Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

• Pass 1: merge B− 1 level-0 runs each time, and write out a level-1 run.

• Pass 2: merge B− 1 level-1 runs each time, and write out a level-2 run.

• · · ·

• Final pass produces one sorted run.

8

External merge example

• B = 3, i.e., 3 pages available in buffer pool.
• Each page hols only one tuple.
• In pass 0, all 3 pages are used for sorting.
• In pass i, where i ⩾ 1, B−1=2 pages are used for input, and 1 page for output.

490735282320042415133633

363313 241504 282320 493507

151304 363324 232007 493528

130704 232015 332824 493635

Pass 0

Pass 1

Pass 2

Input R

Level-0 run

Level-1 run

9

Cost analysis

#(Passes) log B−1⌈P(R)/B⌉+ 1
#(Read Pages) P(R) ∗ (log B−1⌈P(R)/B⌉+ 1)
#(Write Pages) P(R) ∗ log B−1⌈P(R)/B⌉
Total cost 2P(R)∗log B−1⌈P(R)/B⌉+ P(R)

• Pass 0: read B pages of R each time, sort them, and write out a level-0 run.

• Pass i: merge (B− 1) level-(i− 1) runs each time, and write out a level-i run.

• Each pass read the entire relation and write it once.

• We do not include the output cost of the final pass as we have discussed.

10

Sort-based duplication elimination

1. Perform external merge sort.
2. Eliminate duplicates during sort and merge.
3. Cost: same cost as sorting.

281528042320042415133613

3313 241504 232004 2815

151304 3624 201504 2823

1304 232015 2824 36

Pass 0

Pass 1

Pass 2

Input R

11

Sort-based set operations

• R ∪ S, R ∩ S, R− S requires duplication elimination by default.

• Sort R and S in the same order.

• Scan the sorted R and S to produce the desired results and eliminate duplicates.

• Both R and S require only one pass of scan.

• Cost: sorting + P(R) + P(S)

151304 3624 201504 2823

1304 232015 2824 36

R S

R U S

12

Sort-based aggregation

• Sort the tuples on the GROUP BY attributes

• Perform a sequential scan over the sorted data to
compute the aggregation.
– This can be fused into the final pass of sorting.

• Apply partial aggregation on the fly.

• The output will be sorted on the attributes.

• Cost: same cost as sorting.

SELECT dept_name, AVG(salary)
FROM instructor
GROUP BY dept_name

Agg Running value
MIN min
MAX max
COUNT count
SUM sum
AVG (count, sum)

13

Join

Naive nested loop join

1. for each tuple tr in R do
2. for each tuple ts in S do
3. if θ(tr, ts) then
4. add tr ▷◁ ts to the result

Figure: Algorithm for R ▷◁θ S

• The most basic join algorithm to compute join R ▷◁θ S.
• R: the outer table, S: the inner table.
• Require no indices and can be used with any kind of join conditions.

Cost analysis
• Cost: P(R) + |R| ∗ P(S)
• Buffer pool requirement: B = 3

– Two buffer pool pages for input, and one for output.
15

Example

40

20

d

c

A

10

B

20

a

b

j50

i40

30

20

h

g

A

50

C

20

e

f

i40 d

g

g

f

C

f

20

20

c

c

A

20

B

20

b

b

R
S R ⨝ S

• |R| = 4, |S| = 6, P(R) = 2, P(S) = 3.
• If R is the outer table, then the cost is 14.
• If S is the outer table, then the cost is 15.

16

Blocked nested loop join

• Naive nested loop join is costly since for every tuple in the outer table R, we must do a
sequentially scan of the inner table S.

• To maximize the utilization of buffer pool, we can process tables on a per-page basis,
rather than on a per-tuple basis.

1. for each page Pr in R do
2. for each page Ps in S do
3. for each tuple tr in Pr do
4. for each tuple ts in Ps do
5. if θ(tr, ts) then
6. add tr ▷◁ ts to the result
Figure: Improved algorithm for R ▷◁θ S

17

Example

40

20

d

c

A

10

B

20

a

b

j50

i40

30

20

h

g

A

50

C

20

e

f

i40 d

g

g

f

C

f

20

20

c

c

A

20

B

20

b

b

R
S R ⨝ S

• |R| = 4, |S| = 6
• P(R) = 2, P(S) = 3.
• If R is the outer table, then the cost is 8.
• If S is the outer table, then the cost is 9.

18

Cost analysis

• Cost: P(R) + P(R) ∗ P(S)
• Buffer pool requirement: B = 3

Optimization: If B pages are available in the buffer pool for the join operation, then

• B− 2 pages for scanning the outer table R

• One page for inner table scan
• The rest page for buffering the output
• Total cost: P(R) + ⌈P(R)/(B− 2)⌉ ∗ P(S)

19

Merge join

• Require equality predicate, e.g., equi-joins or natural joins.

• If R or S is not sorted by the join attributes, then sort it first.

• All tuples with the same value on the joined attributes are in consecutive order.

• Merge scan the sorted tables and emit tuples that match.

20

Merge join

1. /* ps/pr points to the first tuple of R/S */
2. while pr! = EOF & ps! = EOF do
3. while tpr[A] < tps[A] do ++pr;
4. while tpr[A] > tps[A] do ++ps;
5. while tpr[A] = tps[A] do
6. pss := ps; /* set pss to the first match */
7. while tpr[A] = tpss[A] do
8. add tpr ▷◁ tpss to result;
9. ++pss;

10. ++pr;
11. ps := pss; /* all matches processed, advance ps */

40

20

d

c

A

10

B

20

a

b

j50

i40

30

20

h

g

A

5

C

20

e

f

i40 d

g

g

f

C

f

20

20

c

c

A

20

B

20

b

b

pr
ps pss

R
S

R ⨝ S

21

Cost analysis

• Most cases: Sorting + P(R) + P(S).

• Assumption: Every set of match
candidates in S can fit in buffer pool.

• Worst case: Sorting + P(R) + P(R) ∗ P(S)

• Assumption: Everything joins and B = 3.

22

Hash join

• Applicable for equi-joins and natural joins, e.g., R ▷◁R.A=S.B S.

• If t1 ∈ R and t2 ∈ S can join, then they have the same value on the join attributes.

• Use a hash function h to partition both relations.

• Compute the join results on each partition.

23

Basic in-memory hash join

Disk

Hash table

R

S

Build

Input

Output

Probe

Memroy

h

• Build phase: scan the outer table R and construct a hash table using a hash function h

on the join attributes.
• Probe phase: scan the inner table S and use h on each tuple t ∈ S to jump to the

location in the hash table and find a matching tuple.
• Cost: P(R) + P(S).
• Buffer pool requirement: B ⩾ P(R) + 2 or roughly the outer table R can fit in memory.

24

Hash join: partition phase

… …R

Input

Output

1

2

B-1

Memroy Disk

h

Partition 1

Partition 2

Partition B-1

Figure: Partition R with h (need to do the same for S)

• Partition both R into B− 1 partitions, using a hash function h on the join attributes.
• A buffer block/page is reserved as the output buffer for each partition.
• Partition table S in the same way.

25

Hash join: build & probe phase

Hash table

S

Build

Input

Output

Probe

g

1

2

B-1

Memroy

g

R
1

2

B-1

…
…

Disk

• Read each partition Ri of R and build a hash table using another hash function g.
– The hash functions g and h must be different. Why?

• Read the corresponding partition Si of S in a per-page basis; then probe and join.
• R is the build relation and S is the probe relation.

26

Cost analysis

Assumption

• Partition phase divides table R into (B− 1) partitions evenly. That is, each partition of R
has ⌈P(R)/B− 1⌉ pages.

• Build & probe requires ⌈P(R)/B− 1⌉ ⩽ B− 2, i.e., every partition of R fits into memory.
• P(R) ⩽ (B− 1)(B− 2) ≈ B2. Thus roughly B ⩾

√
P(R).

• We have no size requirement for the probe relation S.
— Use the smaller input as the build relation R.

Cost: 3(P(R) + P(S))

Question. What if a partition is too large for memory?

27

Hash-based algorithms

• Union, intersection, difference.
– More or less like hash join.

• Duplicate elimination.
– Eliminate duplicates within each partition.

• Group by aggregation.
– (i) Apply the hash functions to the group-by columns.
– (ii) Tuples in the same group will end up in the same partition.

28

Indexed nested loop join

1. for each tuple tr in R do
2. for each tuple ts in Index(tr.A) do
3. add tr ▷◁ ts to the result

Figure: Algorithm for R ▷◁R.A=S.B S, using an index of S on attribute B

• Cost analysis: P(R) + |R| ∗ C.
• C is the I/O cost of an index lookup, which is 2 ∼ 4 I/O’s typically.
• If both R and S support index lookup, better pick the smaller one as the outer relation.

29

Join algorithms (recap)

Algorithms I/O costs
Naive Nested Loop Join P(R) + |R| ∗ P(S)
Block Nested Loop Join P(R) + P(R) ∗ P(S)
Indexed Nested Loop Join P(R) + |R| ∗ C

Merge Join P(R) + P(S)
In-memory Hash Join P(R) + P(S)

Hash Join 3 ∗ (P(R) + P(S))

Table: Algorithms for R ▷◁ S

30

	Sorting
	Join

