Query Processing (1)

Spring, 2024

P Announcements

e We are recruiting new members for our research group.
e |f you are interested in joining, please drop me an email.

e Contact: q.yin@sjtu.edu.cn

P DBMS: Operator execution

Purpose:

Execute a dataflow by operation on tuples and files.

(sort to remove duplicates)
name, title

jul

X (merge join)
sort,,

PX| (hash join)

AN

II

sort,,

o‘dept,name = Music course_id, title

(use index 1)

instructor teaches course

‘ Query parsing & optimization

Operator execution

‘ Access method ‘

Concurrency control

‘ Buffer pool manager ‘

‘ Disk manager ‘

Recovery

Figure: DBMS architecture

P Recap

Tables: R, S

Tuples: t,, tg

Number of tuples: [R], |S|

Number of pages: P(R), P(S)

e Number of available buffer pool pages: B

Cost metric: number of 1/O’s

P Hash join

Applicable for equi-joins and natural joins, e.g., R<ig a—s B S.

If t; € R and t, € S can join, then they have the same value on the join attributes.

e Use a hash function h to partition both relations.

Compute the join results on each partition.

Basic in-memory hash join

e
\%7 Disk - / Memroy
R D D D Build >:;’::’%Hi’h’t’a’ﬂe‘:
D D D b - - -
EgEn AN
s | ODOog b -
NEEmEEp

Build phase: scan the outer table R and construct a hash table using a hash function h
on the join attributes.

Probe phase: scan the inner table S and use h on each tuple t € S to jump to the
location in the hash table and find a matching tuple.

e Cost: P(R) + P(S).

Buffer pool requirement: B > P(R) + 2 or roughly the outer table R can fit in memory.

P Hash join: partition phase

Memro /E?sl:\
Y N A

i[’; D D D D Partition 1
e D D D D Partition 2

- L L] | partition 81
-

Figure: Partition R with h (need to do the same for S)

e Partition both R into B — 1 partitions, using a hash function h on the join attributes.
o A buffer block/page is reserved as the output buffer for each partition.

e Partition table S in the same way.

P Hash join: build & probe phase

// Disk)

+ [EEED
Rie G[LILIDIL [icoua) vesnase
s [T »TidaB a;

OOEEE| L=\
~[OO00)

e Read each partition R; of R and build a hash table using another hash function g.
— The hash functions g and h must be different. Why?

e Read the corresponding partition S; of S in a per-page basis; then probe and join.

e R is the build relation and S is the probe relation.

P Cost analysis

Assumption

e Partition phase divides table R into (B — 1) partitions evenly. That is, each partition of R
has [P(R)/B — 1] pages.

e Build & probe requires [P(R)/B — 1] < B —2, i.e., every partition of R fits into memory.
e P(R) < (B—1)(B—2)~ B2 Thus roughly B > /P(R).

e We have no size requirement for the probe relation S.
— Use the smaller input as the build relation R.

Cost: 3(P(R) 4+ P(S))

Question. What if a partition of R is too large for memory?

P Hash-based algorithms

Union, intersection, difference.
— More or less like hash join.

Duplicate elimination.
— Eliminate duplicates within each partition.

Group by aggregation.

— (i) Apply the hash functions to the group-by columns.
— (ii) Tuples in the same group will end up in the same partition.

10

P Indexed nested loop join

1. for each tuple t, in R do
2. for each tuple ts in Index(t,.A) do
3. add t, i tg to the result

Figure: Algorithm for R<xig a—s.g S, using an index of S on attribute B

Idea: use a value of R.A to probe the index on S.B.

Cost analysis: P(R) + |R| * C.

C is the 1/O cost of an index lookup, which is 2 ~ 4 1/QO’s typically.

If both R and S support index lookup, better pick the smaller one as the outer relation.

11

P Join algorithms (recap)

Algorithms | 1/O costs
Naive Nested Loop Join | P(R) +[R|* P(S)
Block Nested Loop Join | P(R) + P(R) x P(S)
Indexed Nested Loop Join | P(R) +|R| * C
Merge Join P(R) + P(S)
In-memory Hash Join P(R) 4+ P(S)
Hash Join 3% (P(R) 4+ P(S))

Table: Algorithms for R S

See some examples of query processing here.

12

https://wiki.qiangyin.me:38080/s/afadcd01-3b7a-4826-bd62-0f952f9a945a

P Query Processing Model

P Query processing overview

(sort to remove duplicates)

Hname, title T e, ite
‘ [X] (merge join)
SELECT name, title \
FROM instructor natural join teaches sort,,
natural join course ‘
WHERE dept_name ='Music'; Odept_name = Music sort IX] (hash join)
\ ‘ 3
instructor teaches M eourse.ia e et name - Music epurse ia, e
‘ o (use index 1)
course instructor teaches course

sQLQuery | = [Logical Plan) [Physicalplan |

e Each node of a logical plan is a relational operator.
e Each node of a physical plan represents an operator algorithm.

e Data flows from the leaves of the physical plan tree up towards the root.

14

P Processing model

A DBMS's processing model defines how the system executes a physical query plan.

Materialization Model

e Compute the tree bottom-up.
e Children write intermediate results to temporary files.
e Parents read temporary files.

[terator Model

e Do not materialize intermediate results.
e Children pipeline their results to parents.
e Also known as volcano model or pipeline model.

15

P Materialization model

e Evaluate one operator at a time, starting at the leaves.

e Use intermediate results materialized into temporary

relations to evaluate next-level operators. Thascne
Example. > (HashJoin)

SELECT name
FROM department NATURAL JOIN instructor
WHERE department.building="Watson"

Tbuitding="Waston” (Filter) Instructor(SeqScan)

e Good for queries that touches a few records at a time, e.g.,
OLTP workload.

Department(SeqScan)

e Not good for OLAP queries with large intermediate results.

16

P Iterator model

Every operator maintains its own execution state and implements a next tuple method.

class Operator {
public:
virtual Status init() = 0;
virtual Status next_tuple(Tuple &tuple) = 0;

};

Figure: Operator Iterator Interface

One each invocation, the operator

e Return the next tuple in the result
e Or return a null pointer if there are no more tuples.

e Adjust state to allow subsequent tuples to be obtained.

17

P Iterator model example: pull-based execution

Projection OP

Control Flow === next_tuple()
Data Flow —— ﬁ
HashJoin OP
next_tuple()
Filter OP
@ next_tuple()

SeqgScan OP
next_tuple()

SegScan OP

@ next_tuple()

e Call next tuple() repeatedly on the root

Hname

> (HashJoin)
Obuilding="Waston” (Filter)

Instructor(SeqScan)

Department(SeqScan)

e [terators recursively call next tuple() on the inputs.

18

P Iterator model example (1): SeqScan Operator

class SeqgScanOperator : public Operator {
public:
SeqgScanOperator(Table *table) : table(table) {}
Status init() override {
iter = table->begin();
return Status::InitOk;
}
Status next_tuple(Tuple &tuple) override {
if (iter != table->end()) {
tuple = iter.get_tuple();
iter = iter.forward();
return Status::HaveMoreOutput;
}

return Status::Finished;

}

private:
Table *table;
Tablelterator iter;

};

19

P Iterator model example (2): Filter Operator

class FilterOperator : public Operator {
public:
FilterOperator(Operator *child, Expression *predicate)
: child(child), predicate(predicate) {}
Status init() override { return child->init(); }
Status next_tuple(Tuple &tuple) override {
Status status;
Tuple child_tuple;
while ((status = child->next_tuple(child_tuple)) ==
Status: :HaveMoreOutput) {
if (predicate->eval(child_tuple) == BooleanValue::True()) {
tuple = child_tuple;
return Status::HaveMoreQutput;
¥
}
return status;

}

};

20

P Iterator model example (3): HashJoin Operator

Status next_tuple(Tuple &tuple) override {
while (true) {
switch (state) {
case HashJoinState::Build:
// TODO: use the left table to build a hash table
state = HashJoinState::ProbeRight;
break;
case HashJoinState: :ProbeRight:
// TODO: use the left table to probe
if (status != Status::HaveMoreQOutput) { return status; }
break;
case HashJoinState::MatchLeft:
// TODO: join
state = HashJoinState::ProbeRight;
break;
¥
}

21

P Iterator model example: recap

Projection OP

Control Flow === next_tuple() Mhame

Data Flow ——

HashJoin OP .
next_tuple(1 (HashJoin)
Filter OP Obuilding="Waston” (Filter)
©) next_tuple(Instructor(SeqScan)
SegScan OP
]? next_tuple() @
SegScan OP
@ next_tuple() Department(SeqScan)

e Pull-based execution: (i) Call next tuple() repeatedly on the root; (ii) Iterators
recursively call next tuple() on the inputs.

e Some operators have to block until their children emit all of their tuples, e.g., Joins, Sort.

See here for more sample codes.

https://wiki.qiangyin.me:38080/s/d18e02e9-1bb0-4757-9e19-be8b13df0075

P \ectorization model

Like the iterator model, every operator maintains its own execution state and implements a
next chuck method.

class Operator {

public:
virtual Status init() = 0;
// A DataChunk contains multiple arrays (i.e. column segments)
virtual Status next_chunk(DataChunk &chunk) = O;

};

e Each invocation emits a batch of tuples instead of a single tuple.

e |deal for OLAP workloads since it greatly reduces the number of invocations per operator.

e Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.

See here for more sample codes.

23

https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://wiki.qiangyin.me:38080/s/d18e02e9-1bb0-4757-9e19-be8b13df0075

	Query Processing Model

