
SQL: Part (II)
Qiang Yin
Spring, 2024



Announcement

• Assignment (I) has been released. Due: March 31 April 7

• All assignments should be done by yourself and yourself alone.

• Please start early and test your queries extensively.

2

https://wiki.qiangyin.me:38080/s/ad48a864-cd1d-4043-a62b-214dcb98fe79


Quick review

SELECT A1, A2, …, An

FROM R1, R2, …, Rm

WHERE P;

A basic sql query can be expressed by a SELECT-FROM-WHERE statement as shown above.

• A1, A2, …, An: a list of desired attributes in the query.
• R1, R2, …, Rm: a list of tables accessed during the query evaluation.
• P: a filtering predicate involving the attributes from R1, R2, …, Rm.

3



Aggregation and Grouping



Aggregate functions

AVG average value
MIN minimum value
MAX maximum value
SUM sum of values
COUNT number of values

An aggregate function combines a collection of values into a single value.

5



Basic aggregation

Aggregate functions can only be used in the SELECT output list.

• Find the average salary of instructors in the CS department
SELECT AVG(salary)
FROM instructor
WHERE dept_name= 'Comp. Sci.';

• Find the number of tuples in the course relation
SELECT COUNT(*) FROM course;

• Get the number of students in CS and their average credits.
SELECT COUNT(*), AVG(tot_cred)
FROM student
WHERE dept_name = 'Comp. Sci.';

6



Distinct aggregation

• Find the total number of instructors who have taught in the Spring 2010 semester.
SELECT COUNT(DISTINCT ID)
FROM teaches
WHERE semester = 'Spring' AND year = 2010;

• COUNT, SUM and AVG support keyword DISTINCT.

Question. How about MIN and MAX?

7



Aggregation with grouping

• Use a clause
GROUP BY list_of_columns

to apply aggregate functions to a group of sets of tuples.

• Get the average credit of the students for each department.
SELECT dept_name, AVG(tot_cred)
FROM student
GROUP BY dept_name;

8



Semantics of GROUP BY

SELECT ...
FROM ...
WHERE ...
GROUP BY A1, ..., Ak

1. Evaluate the relation R expressed by the FROM and WHERE clauses.

2. Group the rows of R according the GROUP BY attributes A1, …, Ak.

3. Evaluate the SELECT clause.

9



Example of GROUP BY

ID name dept_name salary
22222 Einstein Physics 95000
10101 Srinivasan Comp. Sci. 65000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000

SELECT dept_name, AVG(salary) FROM instructor GROUP BY dept_name;

ID name dept_name salary
22222 Einstein Physics 95000
10101 Srinivasan Comp. Sci. 65000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000

1. Group rows according to the values of
GROUP BY columns

dept_name avg_salary
Physics 91000
Comp. Sci. 70000

2. Compute aggregation
for each group

10



Restriction on SELECT

If a query uses aggregate/group by, then every attribute in the SELECT clause must

• either enclosed in an aggregate function, or
• in the GROUP BY list.

Remark. This ensures that the SELECT expression produces only one value for each group.

Example
The following queries are invalid.

• SELECT dept_name, ID, AVG(salary) FROM instructor GROUP BY dept_name;
• SELECT ID, MAX(salary) FROM instructor;

11



Aggregation: HAVING clause

HAVING filters groups based on the group properties including

• aggregate values
• GROUP BY column values

Example
List the average salary for each department with more than 10 instructors.

SELECT dept_name, AVG(salary)
FROM instructor
GROUP BY dept_name
HAVING COUNT(*) > 10;

Question. What attributes can be used in the HAVING clause?

12



Aggregation recap

AVG average value
MIN minimum value
MAX maximum value
SUM sum of values
COUNT number of values

• Combines a collection of values into a single value.
• The semantics of group by aggregation.
• Filter groups by the keyword HAVING.
• Pay special attentions to the attributes in SELECT when applying aggregation.

13



Null Values



Null values

• Value unknown/inapplicable
• Used for each date type
• Special rules for dealing with NULL’s

Example
SELECT ID, name
FROM instructor
WHERE salary IS NOT NULL;

15



Special rules for NULL

• Arithmetic operation:
NULL op value/NULL = NULL

• Comparison:
NULL θ value/NULL = UNKNOWN

• Aggregation functions ignore NULL, except COUNT(*).
– COUNT(*) just conuts rows.

• Evaluating aggregation functions (except COUNT) on an empty bag returns NULL.
– The count of an empty bag is 0.

• NULL cannot be used explicitly used an operand.
◦ Wrong: NULL+ 3, x = NULL
◦ Correct: x IS NULL, x IS NOT NULL

16



Three-valued logic of SQL

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5

• x AND y = min(x,y)

• x OR y = max(x,y)

• NOT x = 1− x

• WHERE and HAVING only select rows for output if the condition evaluates to TRUE.

17



Quiz

Consider the following table with null values.

id a b
1 NULL 1
2 1 NULL
3 NULL NULL
4 1 1
Table: NULL_DEMO

Question. What are the results of the following queries?

select avg(a), max(a), count(a), count(*) from null_demo;
select avg(a), max(a), count(a), count(*) from null_demo where a > 0;
select avg(a), max(a), count(a), count(*) from null_demo where b > 0;

18



Pitfalls of NULL

NULL breaks many equivalences.

-- Not equivalent due to NULL
SELECT AVG(salary) FROM instructor;
SELECT SUM(salary)/COUNT(*) FROM instructor;

SELECT * from instructor; -- Not equivalent to queries below. Why?
SELECT * FROM instructor WHERE salary > 5000 OR salary <= 5000;
SELECT * FROM instructor WHERE salary = salary;

19



More Joins



SQL join expressions

• An join expression applies an join operation to two relations and produces a new relation.

• They are typically used as subqueries in FROM clauses.

21



Theta join

R JOIN S ON join_condition

• The join_condition can be a general predicate over the relations being joined.

Example
-- student(ID, name, dept_name, tot_cred)
-- takes(ID, course_id, sec_id, semester, year, grade)

SELECT * FROM student JOIN takes ON student.ID = takes.ID;
SELECT * FROM student, takes WHERE student.ID = takes.ID;
SELECT * FROM student JOIN takes USING(ID);

Question. Is the keyword ON redundant?

22



Natural join

R NATURAL JOIN S

• Join tuples with the same values for all common attributes.
• Retain only one copy of each common column.

Example
-- student(ID, name, dept_name, tot_cred)
-- takes(ID, course_id, sec_id, semester, year, grade)
SELECT name, course_id
FROM student NATURAL JOIN takes

-- an equivalent query
SELECT name, course_id
FROM student, takes
WHERE student.ID = takes.ID

23



Natural join more relations

SELECT A_1,A_2,...,A_n
FROM R_1 NATURAL JOIN R_2 NATURAL JOIN ... R_k
WHERE P;

24



The USING keyword

Example
List the name of each student, along with the title of each course he/she takes.
-- A problematic query
SELECT name, title
FROM student NATURAL JOIN takes NATURAL JOIN course;

Problem: Attributes with the same name get equated unexpectedly in natural join.
Solution 1: Use WHERE and product to avoid joining on unrelated attributes.

SELECT name, title
FROM student NATURAL JOIN takes, course
WHERE takes.course_id = course.course_id;

Solution 2: The USING keyword specifies exactly which attributes should be joined.
SELECT name, title
FROM (student NATURAL JOIN takes) JOIN course USING (course_id);

25



Outer join motivation

course_id title dept_name credits
BIO-301 Genetics Biology 4
CS-190 Game Design Comp. Sci. 4
CS-325 Robotics Comp. Sci. 3

Table: Course

course_id prereq_id
BIO-301 BIO-101
CS-190 CS-101
CS-347 CS-101

Table: Prereq

List all the information of each course, along with the id’s of its pre-required courses.
SELECT * from course NATURAL JOIN prereq;

course_id title dept_name credits prereq_id
BIO-301 Genetics Biology 4 BIO-101
CS-190 Game Design Comp. Sci. 4 CS-101

Table: Course ▷◁ Prereq

26



Left outer join

A left outer join between R and S, denoted as R ▷◁ S includes both

• rows in R ▷◁ S, and
• dangling R rows padded with NULL’s.

Example. SELECT * from course NATURAL LEFT OUTER JOIN prereq;

course_id title dept_name credits prereq_id
BIO-301 Genetics Biology 4 BIO-101
CS-190 Game Design Comp. Sci. 4 CS-101
CS-325 Robotics Comp. Sci. 3 NULL

Table: Course ▷◁ Prereq

• ('CS-325', 'Robotics', 'Comp. Sci.', 3) is a dangling tuple in the table Course
when joining with Prereq, i.e., no tuples from Prereq matches it.

27



More outer join flavors

• A right outer join between R and S, denoted as R ▷◁ S, includes rows in R ▷◁ S plus
dangling S rows padded with NULL’s.

• A full outer join, denoted as R ▷◁ S, includes all rows from R ▷◁ S, plus
◦ dangling R rows padded with NULL’s
◦ dangling S rows padded with NULL’s

Example
-- Right outer join (1)
SELECT * FROM course NATURAL RIGHT OUTER JOIN prereq;

-- Right outer join (2)
SELECT * FROM course RIGHT OUTER JOIN prereq
ON course.course_id = prereq.course_id;

-- Right outer join (3)
SELECT * FROM course RIGHT OUTER JOIN prereq USING course_id;

28



Outer join examples

A I
3 6
1 3
3 4

Table: R(A, I)

I C E
6 1 3
4 0 4
2 2 2

Table: S(I,C,E)

A I C E
3 6 1 3
3 4 0 4

Table: Natural join R ▷◁ S

A I C E
3 6 1 3
3 4 0 4
1 3 NULL NULL

Table: Left outer join R ▷◁ S

A I C E
3 6 1 3
3 4 0 4

NULL 2 2 2
Table: Right outer join R ▷◁ S

A I C E
3 6 1 3
3 4 0 4
1 3 NULL NULL

NULL 2 2 2
Table: Full outer join R ▷◁ S

29



ON vs. WHERE

-- NULL values are preserved
SELECT * FROM course LEFT OUTER JOIN prereq
ON course.course_id = prereq.course_id;

-- NULL values are left out
SELECT * FROM course LEFT OUTER JOIN prereq ON TRUE
WHERE course.course_id = prereq.course_id;

30



Join recap

Join types
• inner join
• outer join

Join conditions
• on <predicates>
• using <A1, …, An>
• natural

31



Quick review: SQL features covered so far

• Data types & SQL DDL
• SELECT-FROM-WHERE statements
• Set and bag semantics
• Aggregation & Grouping
• Ordering
• NULL’s
• Joins

32



Subqueries



Nested subqueries

A subquery is a SELECT-FROM-WHERE expression that nested in another query.

Example
List the id’s of all courses offered in Fall 2017 but not in Spring 2018.

SELECT DISTINCT course_id --------------------------- outer query
FROM section
WHERE semester = 'Fall' AND year = 2017 AND

course_id NOT IN (SELECT course_id ---------- inner query
FROM section
WHERE semester = 'Spring' AND year = 2018);

Remark. Subqueries are enclosed by parentheses.

34



Nested subqueries (cont’d)

A subquery can be nested in a SELECT-FROM-WHERE statement almost anywhere

SELECT A1, A2, …, An

FROM R1, R2, …, Rm

WHERE P;

• FROM: every Ri can be replaced by a subquery.

• WHERE: P can include predicates involving subqueries.

• SELECT: every Ai can includes a subquery that generates a single value.

35



Subqueries in FROM clauses

• Subqueries can be used in FROM clauses since a subquery always return a relation.
SELECT dept_name, avg_salary
FROM (SELECT dept_name, avg(salary) AS avg_salary -- subquery

FROM instructor
GROUP BY dept_name)

WHERE avg_salary > 42000;

• Rename the relation returned by a subquery with keyword AS.
SELECT dept_name, avg_salary
FROM (SELECT dept_name, avg(salary)

FROM instructor
GROUP BY dept_name)
AS dept_avg(dept_name, avg_salary)

WHERE avg_salary > 42000;

36



Subqueries via EXISTS

• EXISTS (subquery): the subquery result is non-empty.
-- Find all courses offered in both Fall 2017 and Spring 2018 semester
SELECT course_id
FROM section as S
WHERE semester = 'Fall' AND year = 2017 AND

EXISTS (SELECT * FROM section as T
WHERE semester = 'Spring' AND year= 2018

AND course_id = S.course_id);

• Scoping rule: an attribute refers to the most closely nested relation with that attribute.

37



Subqueries via IN

• x IN (subquery): x is in the subquery result.
– x can either an attribute A or a tuple (A1, . . . ,An)

-- List the course_id's of all courses offered in Fall 2017
-- but not in Spring 2018
SELECT DISTINCT course_id
FROM section
WHERE semester = 'Fall' AND year = 2017 AND

course_id NOT IN (SELECT course_id
FROM section
WHERE semester = 'Spring' AND year = 2018);

38



More subqueries in WHERE

• x op ALL (subquery): x op t for all t in the subquery result.
-- Find the name of all instructors whose salary is greater than
-- the salary of all instructors in the Biology department.
SELECT name FROM instructor
WHERE salary > ALL (SELECT salary FROM instructor

WHERE dept_name = 'Biology');

• x op SOME (subquery): x op t for some t in the subquery result.
--
SELECT name FROM instructor
WHERE salary > SOME (SELECT salary FROM instructor

WHERE dept_name = 'Biology');

39



Scalar subquery

• A subquery that returns a single tuple containing a single attribute is a scalar subquery.
• A scalar subquery can be used as a value in WHERE, SELECT and HAVING clauses.

-- List the name and ID of each instructor with the highest salary
SELECT name, ID
FROM instructor
WHERE salary = (SELECT MAX(salary)

FROM instructor);

• Runtime error if subquery returns more than one row.

• NULL if subquery returns no rows.

40



Scalar subquery (cont’d)

-- List the name and the number of instructors of each department
SELECT dept_name,

(SELECT COUNT(*) FROM instructor
WHERE department.dept_name = instructor.dept_name

) AS num_instructors
FROM department;

41



Common table expression (WITH)

WITH R1(A_1, A_2, ...) As -- a temporary relation R1
(subquery_1),
R2(B_1, B_2, ...) AS -- a temporary relation R2
(subquery_2),
...

SELECT ... FROM ... WHERE ...; -- the actual query

• Defines temporary relations to be used by
– other relations defined in the same WITH clause
– the actual query.

• Only the result of the actual query are returned.
• Make queries more clear and readable.

42



WITH example

-- Find all the departments with total salary greater than
-- the average of the total salary of all departments.

WITH dept_total(dept_name, value) AS
(SELECT dept_name, SUM(salary)
FROM instructor
GROUP BY dept_name),
dept_total_avg(value) AS
(SELECT AVG(value) FROM dept_total)

SELECT dept_name
FROM dept_total, dept_total_avg
WHERE dept_total.value > dept_total_avg.value;

43



CTE with recursion

-- Edge(src,dst): the edge set of a directed graph

WITH RECURSIVE ReachableVertices(src, dst) AS (
-- Anchor member: Select all vertices
SELECT src, dst FROM Edge
UNION ALL
-- Recursive member: Find all reachable vertices
SELECT rv.src, e.dst
FROM Edge e
INNER JOIN ReachableVertices rv ON e.src = rv.dst

)
-- Select distinct pairs to avoid duplicates
SELECT DISTINCT src, dst
FROM ReachableVertices
ORDER BY src, dst;

44


	Aggregation and Grouping
	Null Values
	More Joins
	Subqueries

