
Relational Database Design Theory (I)
Spring, 2024



Course overview

Relational databases
• Relational data model ✓
• Relational algebra ✓
• Structured query language ✓
• Relational database design theory

DBMS internals
• Database storage
• Indexing
• Query processing and optimization
• Concurrency control
• Crash recovery

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y 

co
nt

ro
l

Re
co

ve
ry

Figure: Classical DBMS architecture

Other topics (TBD): (i) graph database, (ii) parallel query processing

2



A bad design

sid cid cname room grade
123 AI-3613 Database 1-108 A+
223 AI-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

• Data redundancy: information for the same course is recorded multiple times
• Update/insertion/deletion anomalies

3



Anomalies in a bad design

sid cid cname room grade
123 AI-3613 Database 1-108 A+
223 AI-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

• Insertion anomaly: Cannot add data to db due to the absence of other data.
– What happens if we want to add a new course CS2950?

• Deletion anomaly: Lose unintended information as a side effect when deleting tuples.
– What happens if the student with sid 345 quit the course ICE-1404?

• Update anomaly: To update info of one tuple, we may have to update others as well.
– What happens if the room of AI-3613 is changed?

4



A good design

Decompose R into two smaller tables R1 and R2.

sid cid cname room grade
123 AI-3613 Database 1-108 A+
223 AI-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

• The decomposition is lossless since

R = R1 ▷◁ R2.

That is, all tuples are preserved.
• Redundancy and anomalies are eliminated.

sid cid grade
123 AI-3613 A+
223 AI-3613 B+
123 CS-101 A
334 CS-101 A-
345 ICE-1404P A

Table: R1(sid, cid, grade)

cid cname room
AI-3613 Database 1-108
CS-101 CS Intro. 3-325
ICE-1404P Database 2-203

Table: R2(cid, cname, room)

5



Database design theory

• Decide whether a particular relation schema R is in “good” from.

• In the case that R is not in “good” form, decompose R into a set of relation schemas
{R1,R2, . . . ,Rn} such that each Ri is in good form (normal form).

• The resulting decomposition is lossless and helps avoid anomalies.

6



Agenda

• Functional dependency theory (this lecture)

• NF’s and decomposition algorithms (next lecture)

7



Functional Dependency Theory



Functional dependencies

Let X = {A1, . . . ,An} and Y = {B1, . . . ,Bm} be sets of attributes.

Definition [Functional dependency]
A functional dependency (FD) is of the form

X→ Y

that requires the attributes of X functionally determining the attributes Y.

In particular, a relation R satisfies X→ Y if for every two tuples t1 and t2 of R

∧n
i=1t1[Ai] = t2[Ai]→ ∧m

j=1t1[Bj] = t2[Bj].

• FD’s are unique-value constraints.
• A FD X→ Y holds on a relational schema R if every instance of R satisfies X→ Y.
• If Y ⊆ X, then X→ Y is trivial.

9



Notation convention

• A1 . . .An represents {A1, . . . ,An}.
• Attributes: A, B, C, D, E
• Sets of attributes: X, Y, Z
• XY represents X ∪ Y

10



FD example

sid cid cname room grade
123 AI-3613 Database 1-108 A+
223 AI-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

• cid→ cname
• cid→ room
• cid→ {cname, room}

• sid, cid→ grade

11



Keys and FD’s

Definition
Given a relation R, a set X of attributes is a candidate key if

• X functionally determines all other attributes of R, i.e., X is a superkey.
• No proper subset of X functionally determines all other attributes of R.

–That is, X is minimal.

12



Reasoning about FD’s

Definition
• A set F of FD’s logically implies a set G of FD’s if every relation instance that

satisfies all the FD’s in F also satisfies all the FD’s in G.
• F and G are equivalent if (i) F logically implies G and (ii) G logically implies F.

Example
• {A→ B} logically implies {AC→ BC}.
• {A→ B,B→ C} logically implies {A→ C}.
• {A→ B,B→ C} is equivalent to {A→ B,B→ C,A→ C}.
• {A1A2 → B1B2B3} is equivalent to {A1A2 → B1,A1A2 → B2,A1A2 → B3}.

13



Closure of attributes

Definition [Attribute closure]
Let X be a set of attributes and F be a set of FD’s. The closure of X under F, written as
X+
F , is the set of all attributes B such that F logically implies X→ B.

Example
Let F = {A→ B,A→ C,CD→ E,CD→ K,B→ E}. Then

• {A}+F = {A,B,C}, {C,D}+F = {C,D,E,K}.
• {A,D}+F = {A,B,C,D,E,K}.

• We omit the subscript F and write X+ if F is clear from the context.
• To determine whether F logically implies X→ Y it suffices to check whether Y ⊆ X+.
• To see if X is a superkey of R, it suffices to check if X+ contains all the attributes of R.

14



Computing attribute closure

Input: A set of attributes X and a set of FD’s F
Output: X+

F

1. Z← X;
2. repeat
3. if ex. X ′ → Y ′ in F s.t. X ′ ⊆ Z and Y ′ \ Z ̸= ∅
4. then Z← Z ∪ Y ′;
5. until (Z no longer changes);
6. return Z;

Figure: Computing attribute closure

• F = {A→ B,A→ C,CD→ E,CD→ K,B→ E}

• What is {A,D}+F ?
• Is {A,D} a superkey/candidate key?

15



Algorithm correctness (I)

Correctness. X̂+
F = X+

F , where X̂+
F the algorithm output.

• X̂+
F ⊆ X+

F . X ⊆ X+
F and by I.H. every new element introduced in line 4 is also in X+

F .

• X+
F ⊆ X̂+

F . Let B be an attribute not in X̂+
F . It suffices to show that F cannot imply

X→ B. That is, there is a table R s.t.(i) R satisfies F, and (ii) R does not satisfy X→ B.

Let X̂+
F = {A1,A2, . . . ,An} and X̂+

F = {B1,B2, . . . ,Bm}. We define R as

A1 A2 . . . An B1 B2 . . . Bm

1 1 . . . 1 1 1 . . . 1
1 1 . . . 1 0 0 . . . 0

It should be clear that R does not satisfy X→ B. It remains to verify that R satisfies F.

Claim. R satisfies F.

16



Algorithm correctness (II)

Input: A set of attributes X and a set of FD’s F
Output: X+

F

1. Z← X;
2. repeat
3. if ex. X ′ → Y ′ in F s.t. X ′ ⊆ Z and Y ′ \ Z ̸= ∅
4. then Z← Z ∪ Y ′;
5. until (Z no longer changes);
6. return Z;

Figure: Computing attribute closure

Claim. R satisfies F.
Proof. We prove it by contraction.
Let X ′ → Y ′ be an FD in F that R does not satisfy. By construction, we must have
X ′ ⊆ {A1,A2, . . . ,An} and Y ′ ∩ {B1,B2, . . . ,Bm} ̸= ∅.

It follows that all the attributes in Y ′ should also be included in X̂+
F (lines 3-4).

This contradicts to that fact that Y ′ ∩ {B1, . . . ,Bm} ̸= ∅. 17



Closure of FD’s

Definition
The closure of F, denoted by F+, is the set of all FD’s logically implied by F.

Question. Given a set of FD’s F, how to decide whether X→ Y ∈ F+?

• Approach 1: compute X+ and check whether Y ⊆ X+.
• Approach 2: use Armstrong’s axioms.

18



Armstrong’s axioms

• Reflexivity: If Y ⊆ X, then X→ Y.
• Augmentation: If X→ Y, then XZ→ YZ.
• Transitivity: If X→ Y and Y → Z, then X→ Z.

Theorem (Armstrong ’74). The Armstrong’s axioms are both sound and complete.

• Soundness: Only correct FD’s are derived.

• Completeness: Every FD in F+ can be derived by using the axioms.

19



Motivation for canonical cover

• A set of FD’s F defines a set of unique-value constraints.

• We want a minimal set F ′ of FD’s to reduce constraint checking cost.

• F ′ should be equivalent to F to ensure correctness.

A canonical cover Fc of F is a minimal set of FD’s equivalent to F.

20



Extraneous attributes

An attribute of a FD X→ Y in FD is extraneous if we can remove it without changing F+.

• An attribute A ∈ X is extraneous and can be removed from the LHS of X→ Y if
F logically implies (F \ {X→ Y}) ∪ {(X \ {A})→ Y}.

• Example. F = {AB→ C,A→ D,D→ C}

• An attribute B ∈ Y is extraneous and can be removed from the RHS of X→ Y if
(F \ {X→ Y}) ∪ {X→ (Y \ {B})} logically implies F.

• Example. F = {A→ CD,D→ C}

Lemma 1
1. A ∈ X is extraneous in X→ Y iff Y ⊆ (X \ {A})+F .
2. B ∈ Y is extraneous in X→ Y iff B ∈ X+

F′ , where F ′ = (F \ {X→ Y})∪ {X→ (Y \ {B})}.

21



Canonical cover

Definition
A canonical cover Fc for F is a set of FD’s equivalent to F such that

• No FD in Fc contains an extraneous attribute.
• Each LHS of a FD in Fc is unique.

22



Computing canonical cover

Input: A set F of FD’s
Output: A canonical cover Fc of F
1. Fc ← F;
2. repeat
3. for each pair of FD’s X→ Y1 and X→ Y2 in Fc do
4. replace them with X→ Y1Y2;
5. if ex. a FD in Fc with an extraneous attribute then
6. remove the extraneous attribute and update Fc;
7. until (Fc no longer changes)
8. return Fc;

Figure: Computing canonical cover

23



Canonical cover examples

Let F = {A→ BC,B→ C,A→ B,AB→ C}.

• F0c = {A→ BC,B→ C,AB→ C}

• F1c = {A→ B,B→ C,AB→ C}

• F2c = {A→ B,B→ C}

Let F = {A→ BC,B→ AC,C→ AB}.

• Fc = {A→ B,B→ C,C→ A}.
• Fc = {A→ C,C→ B,B→ A}.
• Fc = {A→ C,B→ C,C→ AB}.

24



Recap

• A function dependency X→ Y is a unique-value constraint. It means that

whenever two tuples agree on all attributes in X, they must also agree on all attributes in Y.

• X+
F : the closure of X under F is the set of all attributes functionally determined by X.

• A canonical cover Fc of F is a minimal set of FD’s equivalent to F.

• Two simple algorithms to compute X+
F and Fc.

⇒ We will use FD as a tool to design normalization algorithms.

25


	Functional Dependency Theory

