
Relational Database Design Theory (II)
Spring, 2024

Announcements

• Assignment (I) due: Apr 7, 2024

- Please test your queries extensively before submission.

• Assignment (II) has been released.

2

https://wiki.qiangyin.me:38080/s/0d2f8345-bed4-4625-b321-414f36e47ba8

Functional dependencies

Let X = {A1, . . . ,An} and Y = {B1, . . . ,Bm} be sets of attributes.

Definition [Functional dependency]
A functional dependency (FD) is of the form

X→ Y

that requires the attributes of X functionally determining the attributes Y.

In particular, a relation R satisfies X→ Y if for every two tuples t1 and t2 of R

∧n
i=1t1[Ai] = t2[Ai]→ ∧m

j=1t1[Bj] = t2[Bj].

• FD’s are unique-value constraints.
• A FD X→ Y holds on a relational schema R if every instance of R satisfies X→ Y.
• If Y ⊆ X, then X→ Y is trivial.

3

Notation convention

• A1 . . .An represents {A1, . . . ,An}.
• Attributes: A, B, C, D, E
• Sets of attributes: X, Y, Z
• XY represents X ∪ Y

4

Anomalies in a bad design

sid cid cname room grade
123 AI-3613 Database 1-108 A+
223 AI-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

• Insertion anomaly: Cannot add data to db due to the absence of other data.
– What happens if we want to add a new course CS2950?

• Deletion anomaly: Lose unintended information as a side effect when deleting tuples.
– What happens if the student with sid 345 quit the course ICE-1404?

• Update anomaly: To update info of one tuple, we may have to update others as well.
– What happens if the room of AI-3613 is changed?

5

Normalization theory

• Decide whether a particular relation schema R is in “good” from.

• In the case that R is not in “good” form, decompose R into a set of relation schemas
{R1,R2, . . . ,Rn} such that each Ri is in good form (normal form).

• The resulting decomposition should avoid anomalies.

6

A better design

Goal: Decompose R into R1 and R2 s.t.

R = R1 ▷◁ R2

sid cid cname room grade
123 AI-3613 Database 1-108 A+
223 AI-3613 Database 1-108 B+
123 CS-101 CS Intro. 3-325 A
334 CS-101 CS Intro. 3-325 A-
345 ICE-1404P Database 2-203 A

Table: R(sid, cid, cname, room, grade)

s_id c_id grade
123 AI-3613 A+
223 AI-3613 B+
123 CS-101 A
334 CS-101 A-
345 ICE-1404P A

Table: R1(sid, cid, grade)

c_id cname room
AI-3613 Database 1-108
CS-101 CS Intro. 3-325
ICE-1404P Database 2-203

Table: R2(cid, cname, room)

• F = {cid→ {cname, room}, {sid, cid}→ grade}.
• cid is a superkey of R2, i.e., cid→ {cid, cname, room}.

7

Decomposition criteria

• Lossless join
Be able to reconstruct the original relation by joining smaller ones.

• Redundancy and anomalies avoidance
Avoid unnecessary redundancy and anomalies.

• Dependency preservation
Minimize the cost to check the integrity constraints defined in terms of FD’s.

8

Lossless join decomposition

Let R be a relation schema consists of attributes A1, . . . ,An.

A decomposition of relation schema R is to replace R by

R1, . . . ,Rk

for some k ⩾ 2 such that

• Each Ri contains a subset of {A1, . . . ,An} for i = 1, . . . ,k, and
• Every attribute of R appears as an attribute of at least one of the new relations.

Definition
A decomposition R1, . . . ,Rn of R is lossless join if for every instance I of R, it holds that

I = I(R1) ▷◁ . . . ▷◁ I(Rn).

With lossless join decomposition, we are able to reconstruct the original relation via join.
9

Lossless join decomposition (cont’d)

Lemma 1
Suppose that R is decomposed into R1 and R2. If either R1 ∩ R2 → R1 or R1 ∩ R2 → R2,
then the decomposition is join lossless.

Proof. Let I be an relation instance of R.
1. I ⊆ ΠR1(I) ▷◁ ΠR2(I) holds for all instances.
2. ΠR1(I) ▷◁ ΠR2(I) ⊆ I.
Assume w.l.o.g. that R1 ∩ R2 → R1. Let t be a tuple in ΠR1(I) ▷◁ ΠR2(I), we show that t ∈ T .
There are tuples t1, t2 ∈ I such that

ΠR1(t1) = ΠR1(t) and ΠR2(t2) = ΠR2(t).

Since ΠR1∩R2(t1) = ΠR1∩R2(t2) and I satisfies R1 ∩ R2 → R1, we have ΠR1(t2) = ΠR1(t).
It follows that t2 = t. Thus t is also in I.

10

Boyce-Codd Normal Form

Definition [Boyce-Codd Normal Form]
A relation schema R is in Boyce-Codd Normal Form (BCNF) w.r.t. a set F of FD’s if for
every FD X→ Y in the closure F+ with X ⊆ R and Y ⊆ R, one of the following holds:

• X→ Y is trivial.
• X is a superkey of R, i.e., X→ R is in F+.

A database scheme is in BCNF if every relation scheme in it is in BCNF.

Example
• R = (A,B,C), F = {A→ B,B→ C}.Then R is not in BCNF.
• R1 = (A,B), R2 = (B,C), F = {A→ B,B→ C}.Then both R1 and R2 are in BCNF.

11

Why using BCNF

A B C
1 2 3
.

1 4 ?

Table: R(A,B,C) with FD {A→ C}

• If a table is not in BCNF, then some attributes’ value can derived using FDs.
– In the table R(A,B,C) , the missing value must be 3 by the FD rule A→ C.

• BCNF: every attribute in every tuple contains data that cannot be inferred by FDs.
– If a relation is in BCNF, then no redundancy can be observed by means of FDs.

12

BCNF decomposition algorithm

Input: A schema R and a set F of FD’s
Output: A BCNF decomposition {R1, . . . ,Rn} of R
1. D← {R};
2. while ex. some R ′ ∈ D that is not in BCNF do
3. choose a non-trivial X→ Y in F+ with XY ⊆ R ′ and X ̸→ R ′;
4. R1 ← XY; R2 ← X ∪ (R ′ \ XY);
5. D← (D \ {R ′}) ∪ {R1,R2}; // decompose R ′ to R1 and R2;
6. return D;

Figure: BCNF decomposition algorithm

Example
Let R = (A,B,C,D,E) and F = {A→ B,BC→ D}.

• D1 = {(A,B), (A,C,D,E)} // using A→ B

• D2 = {(A,B), (A,C,D), (A,C,E)} // using AC→ D

Remark. Every decomposition step is lossless. 13

Dependency preserving decomposition

Definition
Let F be a set of FD’s on a schema R, and let R1,…, Rn be a decomposition of R. The
restriction of F to Ri is the set Fi of all FD’s in F+ that include only attributes of Ri.

Definition
Let F be a set of FD’s on a schema R. A decomposition R1, . . . ,Rn of R is dependency
preserving w.r.t. F if

F+ = (

n∪
i=1

Fi)
+,

where Fi is the restriction of F to Ri.

A decomposition preserves dependencies if its original FD’s do not span multiple tables.

14

BCNF and dependency preserving

Example
Let R = (A,B,C) and F = {A→ B,B→ C,A→ C}

• A BCNF decomposition of R is {R1 = (A,B), R2 = (B,C)}.

• Another BCNF decomposition of R is {R ′
1 = (A,C), R ′

2 = (A,B)}.

Question. Which decomposition is dependency preserving?

Remark. BCNF decomposition does not warrant dependency preservation.

15

Third Normal Form (3NF)

Definition [Third Normal Form]
A relation schema R is in Third Normal Form (3NF) w.r.t. a set F of FD’s if for every FD
X→ Y in F+ at least one of the following holds:

• X→ Y is trivial
• X is a superkey
• Every attribute in Y \ X is contained in a candidate key of R.

Similarly, a database schema is in 3NF if every relation schema in it is in 3NF.

Remark. If R is in BCNF, then R is in 3NF.

16

3NF example

student_id advisor_id dept
125 15733 CS
125 14698 EE
224 14698 EE
246 15733 CS

Table: R(student_id, advisor_id, dept)

Two FD’s defined over R
• student_id, dept → advisor_id
• advisor_id → dept

1. R has two candidate keys
◦ {student_id, dept}
◦ {student_id, advisor_id}

2. R is not in BCNF but in 3NF.

3. Redundancy and update anomaly in 3NF.

Remark. We can show that R has no dependency preserving BCNF decompositions.

17

Canonical cover (review)

• A set of FD’s F defines a set of unique-value constraints.

• We want a minimal set F ′ of FD’s to reduce constraint checking cost.

• F ′ should be equivalent to F to ensure correctness.

Definition
A canonical cover Fc for F is a set of FD’s equivalent to F such that

• No FD in Fc contains an extraneous attribute.
• Each LHS of a FD in Fc is unique.

A canonical cover Fc of F is a minimal set of FD’s equivalent to F.

18

3NF synthesis algorithm

Input: A schema R and a set F of FD’s
Output: A 3NF decomposition {R1, . . . ,Rn} of R
1. computes Fc; D← {};
2. for each X→ Y ∈ Fc do
3. D← D ∪ {Ri(X,Y)};
4. if no relation schema in D contains a candidate key of R then
5. let Z be a candidate key of R;
6. D← D ∪ {R ′(Z)};
7. remove redundant relations; // optional
8. return D;

Figure: 3NF synthesis algorithm

19

3NF synthesis algorithm example

R = (A,B,C,D,E), F = {AB→ C,C→ B,A→ D}.
R has two candidate keys: ABE, ACE.

1. F is already a canonical cover.
2. Add R1(A,B,C), R2(B,C) and R3(A,D) to D.
3. Add R4(A,B,E) or R4(A,C,E) to D.
4. Remove R2(B,C) from D since it is part of R1(A,B,C).

20

Correctness (I)

• Dependency preservation follows from F+c = F+ directly.

• Lossless join since at least one schema in D contains a candidate key of R.

• 3NF. Every Ri in D is in 3NF.

Lemma 2
Let F be a set of FD’s holds on a schema R and R1, . . . ,Rn be a decomposition of R.
Furthermore, assume the following:

• For every X→ Y in F, there exists some Ri that contains all the attributes in XY.
• At least one schema in the decomposition contains a candidate key of R.

Then the decomposition R1, . . . ,Rn is join lossless.

21

Correctness (II)

Claim. Let Ri be a schema generated from a FD X→ Y in Fc and X ′ → A be an arbitrary
non-trivial FD in F+c with A ∈ Y and X ′ ⊆ XY. Then X ′ is a superkey of Ri.

Proof. We show that if X ′ is not a superkey of Ri, then A is extraneous in X→ Y.
By assumption, there exists an attribute B ∈ X s.t. B ̸∈ (X ′)+. Otherwise, X ′ is a superkey.
It follows that Fc \ {X→ Y} implies X ′ → A. Then

(Fc \ {X→ Y}) ∪ {X→ Y \ {A}} implies X→ Y.

As a consequence, A ∈ Y is extraneous for X→ Y in Fc. Contradiction.

22

More normal forms

• 1st Normal Form (1NF)
• 2ed Normal Form (2NF)
• 3rd Normal Form (3NF)
• Boyce-Codd Normal Form
• 4th & 5th Normal Forms

1NF
2NF

4NF
5NF

BCNF
3NF

Figure: Normal Forms

23

Recap

• Lossless join decomposition

• Dependency preserving decomposition

• BCNF and BCNF decomposition algorithm

• 3NF and 3NF synthesis algorithm

24

