
Indexing
Spring, 2024

Data storage structures (review)

CS45565 Katz 75000

Physics 8700033456 Gold

CS 6500010101 Srinivasan

Physics 9500022222 Einstein

SalaryDept_nameNameID

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Database File

Physics 9500022222 Einstein

Tuple

Varchar Varchar FloatInt

20 27 PhysicsEinstein9500022222

0 4 2012 27Header

Table

Tuple #1Tuple #2

Tuple #3Tuple #4

Slotted database page

• Tables are stored in database files.
• Each database file consists of a collection of pages.
• Each page holds a collection of tuples.

2

DBMS: Access method

Purpose: Support DBMS’s execution engine to
read/write data from pages more efficiently.

Query parsing & optimization

Operator execution

Access method

Buffer pool manager

Disk manager

C
on

cu
rre

nc
y

co
nt

ro
l

Re
co

ve
ry

Figure: DBMS architecture

3

Indexing basics

Example
598 Chapter 13 Data Storage Structures

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 13.7 Sequential file for instructor records.

an overflow block. In either case, adjust the pointers so as to chain together the
records in search-key order.

Figure 13.8 shows the file of Figure 13.7 after the insertion of the record (32222,
Verdi, Music, 48000). The structure in Figure 13.8 allows fast insertion of new records,
but it forces sequential file-processing applications to process records in an order that
does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach works
well. Eventually, however, the correspondence between search-key order and physical
order may be totally lost over a period of time, in which case sequential processing will
become much less efficient. At this point, the file should be reorganized so that it is once
again physically in sequential order. Such reorganizations are costly and must be done
during times when the system load is low. The frequency with which reorganizations
are needed depends on the frequency of insertion of new records. In the extreme case
in which insertions rarely occur, it is possible always to keep the file in physically sorted
order. In such a case, the pointer field in Figure 13.7 is not needed.

The B+-tree file organization, which we describe in Section 14.4.1, provides efficient
ordered access even if there are many inserts, deletes, and updates, without requiring
expensive reorganizations.

13.3.3 Multitable Clustering File Organization

Most relational database systems store each relation in a separate file, or a separate set
of files. Thus, each file, and as a result, each block, stores records of only one relation,
in such a design.

• Table instructor uses sequential file organization based on search key ID.
– Records are ordered according to the attribute ID.

• Total number of pages of table instructor: 1,000 pages.

• Estimate the number of pages to read from disk for the query
SELECT * FROM instructor WHERE ID = '22222';

5

Example (cont’d)
598 Chapter 13 Data Storage Structures

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 13.7 Sequential file for instructor records.

an overflow block. In either case, adjust the pointers so as to chain together the
records in search-key order.

Figure 13.8 shows the file of Figure 13.7 after the insertion of the record (32222,
Verdi, Music, 48000). The structure in Figure 13.8 allows fast insertion of new records,
but it forces sequential file-processing applications to process records in an order that
does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach works
well. Eventually, however, the correspondence between search-key order and physical
order may be totally lost over a period of time, in which case sequential processing will
become much less efficient. At this point, the file should be reorganized so that it is once
again physically in sequential order. Such reorganizations are costly and must be done
during times when the system load is low. The frequency with which reorganizations
are needed depends on the frequency of insertion of new records. In the extreme case
in which insertions rarely occur, it is possible always to keep the file in physically sorted
order. In such a case, the pointer field in Figure 13.7 is not needed.

The B+-tree file organization, which we describe in Section 14.4.1, provides efficient
ordered access even if there are many inserts, deletes, and updates, without requiring
expensive reorganizations.

13.3.3 Multitable Clustering File Organization

Most relational database systems store each relation in a separate file, or a separate set
of files. Thus, each file, and as a result, each block, stores records of only one relation,
in such a design.

• Sequential scan: requires reading 1000 pages in the worst case.

• Binary search: ⌈log 21000⌉ = 10.
• Index scan: 3 pages + 1 page (assuming that the index files uses 3 pages).
• Index scan is also effective if the table is organized as a heap file.

6

Example (cont’d)
598 Chapter 13 Data Storage Structures

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 13.7 Sequential file for instructor records.

an overflow block. In either case, adjust the pointers so as to chain together the
records in search-key order.

Figure 13.8 shows the file of Figure 13.7 after the insertion of the record (32222,
Verdi, Music, 48000). The structure in Figure 13.8 allows fast insertion of new records,
but it forces sequential file-processing applications to process records in an order that
does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach works
well. Eventually, however, the correspondence between search-key order and physical
order may be totally lost over a period of time, in which case sequential processing will
become much less efficient. At this point, the file should be reorganized so that it is once
again physically in sequential order. Such reorganizations are costly and must be done
during times when the system load is low. The frequency with which reorganizations
are needed depends on the frequency of insertion of new records. In the extreme case
in which insertions rarely occur, it is possible always to keep the file in physically sorted
order. In such a case, the pointer field in Figure 13.7 is not needed.

The B+-tree file organization, which we describe in Section 14.4.1, provides efficient
ordered access even if there are many inserts, deletes, and updates, without requiring
expensive reorganizations.

13.3.3 Multitable Clustering File Organization

Most relational database systems store each relation in a separate file, or a separate set
of files. Thus, each file, and as a result, each block, stores records of only one relation,
in such a design.

• Sequential scan: requires reading 1000 pages in the worst case.
• Binary search: ⌈log 21000⌉ = 10.

• Index scan: 3 pages + 1 page (assuming that the index files uses 3 pages).
• Index scan is also effective if the table is organized as a heap file.

6

Example (cont’d)
14.2 Ordered Indices 627

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.2 Dense index.

search-key (dept name) order. We continue processing records until we encounter a
record for a department other than History.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense indices
in that they require less space and they impose less maintenance overhead for insertions
and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the specific
application, a good compromise is to have a sparse index with one index entry per

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.3 Sparse index.

• Sequential scan: requires reading 1000 pages in the worst case.
• Binary search: ⌈log 21000⌉ = 10.
• Index scan: 3 pages + 1 page (assuming that the index files uses 3 pages).
• Index scan is also effective if the table is organized as a heap file.

6

Index data structure

• Search key: an attribute or a set of attributes used to look up records in a file.

• An index file consists of records (called index entries) of the form

search key pointer

• An index file is usually much smaller than the original file.

• We will only consider ordered indexes in this lecture.
◦ Ordered indexes: search keys are organized in sorted order.
◦ Hash indexes: search keys are distributed uniformly across buckets via a has function.

7

Dense indexes

• One index entry for each search key value.
14.2 Ordered Indices 627

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.2 Dense index.

search-key (dept name) order. We continue processing records until we encounter a
record for a department other than History.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense indices
in that they require less space and they impose less maintenance overhead for insertions
and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the specific
application, a good compromise is to have a sparse index with one index entry per

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.3 Sparse index.

Figure: Dense index on attribute ID of table instructor

• It is possible that one index entry may point to multiple records.

8

Dense indexes

• One index entry for each search key value.
628 Chapter 14 Indexing

Biology
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

Figure 14.4 Dense index with search key dept name.

block. The reason this design is a good trade-off is that the dominant cost in processing a
database request is the time that it takes to bring a block from disk into main memory.
Once we have brought in the block, the time to scan the entire block is negligible.
Using this sparse index, we locate the block containing the record that we are seeking.
Thus, unless the record is on an overflow block (see Section 13.3.2), we minimize block
accesses while keeping the size of the index (and thus our space overhead) as small as
possible.

For the preceding technique to be fully general, we must consider the case where
records for one search-key value occupy several blocks. It is easy to modify our scheme
to handle this situation.

14.2.2 Multilevel Indices

Suppose we build a dense index on a relation with 1,000,000 tuples. Index entries are
smaller than data records, so let us assume that 100 index entries fit on a 4-kilobyte
block. Thus, our index occupies 10,000 blocks. If the relation instead had 100,000,000
tuples, the index would instead occupy 1,000,000 blocks, or 4 gigabytes of space. Such
large indices are stored as sequential files on disk.

If an index is small enough to be kept entirely in main memory, the search time
to find an entry is low. However, if the index is so large that not all of it can be kept
in memory, index blocks must be fetched from disk when required. (Even if an index
is smaller than the main memory of a computer, main memory is also required for a
number of other tasks, so it may not be possible to keep the entire index in memory.)
The search for an entry in the index then requires several disk-block reads.

Binary search can be used on the index file to locate an entry, but the search still
has a large cost. If the index would occupy b blocks, binary search requires as many as
⌈log2(b)⌉ blocks to be read. (⌈x⌉ denotes the least integer that is greater than or equal
to x; that is, we round upward.) Note that the blocks that are read are not adjacent

Figure: Dense index on attribute dept_name of table instructor

• It is possible that one index entry may point to multiple records.

8

Spare indexes

• Index entries for only some search key values.
– Typically one index entry for each block.

14.2 Ordered Indices 627

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.2 Dense index.

search-key (dept name) order. We continue processing records until we encounter a
record for a department other than History.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense indices
in that they require less space and they impose less maintenance overhead for insertions
and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the specific
application, a good compromise is to have a sparse index with one index entry per

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.3 Sparse index.
Figure: Sparse index on attribute ID of table instructor

• Applicable only when records are ordered by the search key. Why?
9

Clustering indexes
14.2 Ordered Indices 627

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.2 Dense index.

search-key (dept name) order. We continue processing records until we encounter a
record for a department other than History.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense indices
in that they require less space and they impose less maintenance overhead for insertions
and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the specific
application, a good compromise is to have a sparse index with one index entry per

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.3 Sparse index.

• Recall that index entries are sorted on the search key in an ordered index.

• Clustering index: search key order also defines the sequential order of data records.

• A clustering index is also known as a primary index.

10

Non-clustering index

14.2 Ordered Indices 627

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.2 Dense index.

search-key (dept name) order. We continue processing records until we encounter a
record for a department other than History.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense indices
in that they require less space and they impose less maintenance overhead for insertions
and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the specific
application, a good compromise is to have a sparse index with one index entry per

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 14.3 Sparse index.

Brandt
Califieri
Crick
Einstein

 El Said
Gold

Mozart
Singh

Srinvasan
Wu

Katz
Kim

• Non-clustering index: search key order differs from the sequential order of data records.
• A non-clustering index is also known as a secondary index.
• Secondary index is always dense. Why?

11

Recap

• An index is a data structure that improve the speed of data retrieval.

• Each index entry includes a search key and a pointer to a specific record.

• An index file is typically much smaller than the actual data files.

• Dense indexes vs. sparse indexes

• Clustering indexes vs. non-clustering indexes.

12

B+-tree

B+-tree

2420 3936 665443 8278 9894

433620 94

78

1813

Root

Leaf

Non-leaf

Figure: A sample B+-tree with max_fanout= 4

A B+-tree in a self-balancing search tree with following properties.

• Perfectly balanced; search, insertions, and deletions are in logarithmic time.
• Optimized for disk-based DBMS: one node per block/page, large fan-out.

14

B+-tree node

KP KP …KP KP P1 1 2 2 3 3 n-1 n-1 n

• Each B+-tree node contains at most n−1 search keys and n pointers.
– n is referred to as the max_fanout parameter.

• Search keys are arranged in sorted order:

K1 < K2 < · · · < Km < . . .

• Every active pointer Pi points to a node in the next level.

• In practice, n can be hundreds, i.e., large fan-out.

15

B+-tree node

2420 3936 665443 8278 9894

433620
94

78

1813

Root

Leaf

Non-leaf

Next-leaf
pointer

K< 20

20
 ≤

K <
36

36
 ≤

 K
 <

 4
3 K ≥ 43

• Pi points the sub-tree of search keys K with

Ki−1 ⩽ K < Ki.

• Leaf nodes are chained up by the last pointer Pn, i.e., next-leaf pointer.
• Other active pointers Pi in leaf nodes point to the data page corresponding to key Ki.
• Index entries to data pages are stored in leaf nodes only.

16

B+-tree invariant

• Balance invariant: all leaves are at the same level.

• Occupancy invariant: all nodes (except root) are at least half-full.

Min #(Active pointers) Min #(Keys)
Root 2 1
Internal node ⌈n/2⌉ ⌈n/2⌉− 1
Leaf node ⌊n/2⌋ ⌊n/2⌋

Table: Half-full constraint for B+-trees

Claim. The height of a B+-tree with N search keys is at most ⌈log ⌈n/2⌉N⌉.

17

B+-tree in practice

• N = 1, 000, 000.
• Page size: 4k bytes, index entry size 40 bytes.
• n = 100.
• ⌈log ⌈n/2⌉N⌉ = 4. That is, at most 4 I/O’s for every lookup.
• If we cache the root node in buffer pool, then at most 3 I/O’s are needed.

18

Query (1)

242018 3936 665443 8278 9894

4336 94

78
Look up 54

• SELECT * FROM R WHERE K=54;

• SELECT * FROM R WHERE K=80;

• This type of query is known as point query.

19

Query (1)

242018 3936 665443 8278 9894

4336 94

78
Look up 80

Not found

• SELECT * FROM R WHERE K=54;

• SELECT * FROM R WHERE K=80;

• This type of query is known as point query.

19

Query (1)

242018 3936 665443 8278 9894

4336 94

78
Look up 80

Not found

• SELECT * FROM R WHERE K=54;

• SELECT * FROM R WHERE K=80;

• This type of query is known as point query.

19

Query (2)

242018 3936 665443 8278 9894

4336 94

78

1. Look up 37 first

2. Follow the next leaf pointer until hit the upper bound

• SELECT * FROM R WHERE k >= 37 AND K <= 90;

• This type of query is known as range query.

20

Insertion (1)

242018 3936 665443 8278 9894

4336 94

78Insert 80

Figure: Insert key 80 (n = 4)

• Locate the leaf node for the key to be inserted.
• Insert the key directly when the target node has enough space.

21

Insertion (1)

242018 3936 665443 828078 9894

4336 94

78Insert 80

Figure: Insert key 80 (n = 4)

• Locate the leaf node for the key to be inserted.
• Insert the key directly when the target node has enough space.

21

Insertion (2)

242018 3936 665443 8278 9894

4336 94

78Insert 13

13

1. Node is overfull.

Figure: Insert key 13 (n = 4)

• Split the target node if the insertion make it overfull.

• Need to copy the middle key up and adjust the pointers accordingly.

22

Insertion (2)

2420 3936 665443 8278 9894

433620 94

78Insert 13

2. Split node and copy
the key 20 up.

1813

Figure: Insert key 13 (n = 4)

• Split the target node if the insertion make it overfull.
• Need to copy the middle key up and adjust the pointers accordingly.

22

Insertion (3)

2420 3936 665443 8278 9894

433620 94

78Insert 73

1813

73

1. Split node after insertion.

Figure: Insert key 73 (n = 4)

• Node splitting can propagate recursively.

• When splitting a non-leaf node, the the middle key is push up rather than copied.
• In the worst case, the root is split and a new root is created, linking to the split nodes.

– Consequently, the tree height increases by one.

23

Insertion (3)

2420 3936 5443 8278 9894

66433620 94

78Insert 73

1813

2. Copy the key 66 up.

7366

3. Node is full again

Figure: Insert key 73 (n = 4)

• Node splitting can propagate recursively.

• When splitting a non-leaf node, the the middle key is push up rather than copied.
• In the worst case, the root is split and a new root is created, linking to the split nodes.

– Consequently, the tree height increases by one.

23

Insertion (3)

2420 3936 5443 8278 9894

3620 94

78Insert 73

1813

4. Split non-leaf node.

7366

6643

Figure: Insert key 73 (n = 4)

• Node splitting can propagate recursively.
• When splitting a non-leaf node, the the middle key is push up rather than copied.

• In the worst case, the root is split and a new root is created, linking to the split nodes.
– Consequently, the tree height increases by one.

23

Insertion (3)

2420 3936 5443 8278 9894

3620 94

7843Insert 73

1813 7366

66

5. Push the key 43 up.

Figure: Insert key 73 (n = 4)

• Node splitting can propagate recursively.
• When splitting a non-leaf node, the the middle key is push up rather than copied.
• In the worst case, the root is split and a new root is created, linking to the split nodes.

– Consequently, the tree height increases by one.

23

Insertion recap

1. Find the correct leaf L for the given key to be inserted.
2. Add a new entry into L in sorted order.

◦ If L has enough space, the operation is done.
◦ If L becomes overfull, then

(a) Split L into two nodes L and L ′.
(b) Redistribute entries evenly and copy up the middle key.
(c) Adjust the pointers accordingly, including

(i) next-leaf pointers, and (ii) a pointer from parent of L to L ′.

3. To split a non-leaf node, redistribute entries evenly and push up the middle key.
4. Process the nodes recursively until all nodes are half-full.

24

Deletion (1)

1813 2420 3936 5443 7366 828078 999894

3620 66 94

7843Delete 80

Figure: Delete key 80 (n = 4)

25

Deletion (1)

1813 2420 3936 5443 7366 8278 999894

3620 66 94

7843Delete 80

Figure: Delete key 80 (n = 4)

25

Deletion (2)

1813 2420 3936 5443 7366 8278 999894

3620 66 94

7843Delete 82

1. The leaf node
becomes under-full
after deleting 82

X

Figure: Delete key 82 (n = 4)

• If the target node is underfull after a deletion, then try to borrow one key from siblings.

• Remember to fix the key in the affected parent node.
– Replace the affected key with the middle key of the two updated children.

26

Deletion (2)

1813 2420 3936 5443 7366 9478 9998

3620 66 94

7843Delete 82

2. Borrow the key 94
from the right sibling.

Figure: Delete key 82 (n = 4)

• If the target node is underfull after a deletion, then try to borrow one key from siblings.

• Remember to fix the key in the affected parent node.
– Replace the affected key with the middle key of the two updated children.

26

Deletion (2)

1813 2420 3936 5443 7366 9478 9998

3620 66 94

7843Delete 82

2. Borrow the key 94
from the right sibling.

Figure: Delete key 82 (n = 4)

• If the target node is underfull after a deletion, then try to borrow one key from siblings.
• Remember to fix the key in the affected parent node.

– Replace the affected key with the middle key of the two updated children.

26

Deletion (2)

1813 2420 3936 5443 7366 9478 9998

3620 66 98

7843
Delete 82

3. Replace the key 94
with 98 to fix the parent.

Figure: Delete key 82 (n = 4)

• If the target node is underfull after a deletion, then try to borrow one key from siblings.
• Remember to fix the key in the affected parent node.

– Replace the affected key with the middle key of the two updated children.

26

Deletion (3)

1813 2420 3936 5443 7366

3620 66

43
Delete 20

1. Cannot borrow a
key from siblings.

X

Figure: Delete key 20 (n = 4)

• If borrowing is not possible, merge the affected node with one sibling.

• When merging leafs, remove the key associated with the merged nodes from the parent.

27

Deletion (3)

1813 24 3936 5443 7366

3620 66

43Delete 20

2. Merge with a sibling

Figure: Delete key 20 (n = 4)

• If borrowing is not possible, merge the affected node with one sibling.
• When merging leafs, remove the key associated with the merged nodes from the parent.

27

Deletion (3)

1813 393624 5443 7366

3620 66

43
Delete 20

3. Remove 36 from
the parent node. X

Figure: Delete key 20 (n = 4)

• If borrowing is not possible, merge the affected node with one sibling.
• When merging leafs, remove the key associated with the merged nodes from the parent.

27

Deletion (3)

1813 393624 5443 7366

20 66

43
Delete 20

4. The parent node is
still half-full. Done.

Figure: Delete key 20 (n = 4)

• If borrowing is not possible, merge the affected node with one sibling.
• When merging leafs, remove the key associated with the merged nodes from the parent.

27

Deletion (4)

1813 2420 3936 5443 7366

3620 66

43Delete 73

1. Cannot borrow a
key from siblings.

X
Figure: Delete key 73 (n = 4)

• When borrowing from an internal node, rotate the borrowed key through its parent.

28

Deletion (4)

1813 2420 3936 5443 66

3620 66

43Delete 73

2. Merge with a sibling

Figure: Delete key 73 (n = 4)

• When borrowing from an internal node, rotate the borrowed key through its parent.

28

Deletion (4)

1813 2420 3936 665443

3620 66

43Delete 73

3. Remove 66 from
the parent node X

Figure: Delete key 73 (n = 4)

• When borrowing from an internal node, rotate the borrowed key through its parent.

28

Deletion (4)

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

Figure: Delete key 73 (n = 4)

• When borrowing from an internal node, rotate the borrowed key through its parent.

28

Deletion (4)

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

1813 2420 3936 665443

3620

43Delete 73

4. To make the parent
node half-full. Borrow
one from its sibling.

1813 2420 3936 665443

20 43

36Delete 73

5. Rotate the borrowed key
through the parent node

Figure: Delete key 73 (n = 4)

• When borrowing from an internal node, rotate the borrowed key through its parent.

28

Deletion (5)

1813 393624 5443 7366

20 66

43
Delete 54

1. Merge underful leaf
nodes after deletion.

Figure: Delete key 54 (n = 4)

• Deletion can be propagated up all the way to root.

• When merging two non-leaf nodes, we need to pull a key down from the parent.
• When root becomes empty, remove it and make its child as the new root.

29

Deletion (5)

1813 393624 736643

20 66

43
Delete 54

2. Delete 66 from parent.

X

Figure: Delete key 54 (n = 4)

• Deletion can be propagated up all the way to root.

• When merging two non-leaf nodes, we need to pull a key down from the parent.
• When root becomes empty, remove it and make its child as the new root.

29

Deletion (5)

1813 393624 736643

20 66

43
Delete 54

3. Merge two non-leaf
nodes. Pull 43 down. X

Figure: Delete key 54 (n = 4)

• Deletion can be propagated up all the way to root.
• When merging two non-leaf nodes, we need to pull a key down from the parent.

• When root becomes empty, remove it and make its child as the new root.

29

Deletion (5)

1813 393624 736643

4320

Delete 54

4.The root Is empty now.

Figure: Delete key 54 (n = 4)

• Deletion can be propagated up all the way to root.
• When merging two non-leaf nodes, we need to pull a key down from the parent.
• When root becomes empty, remove it and make its child as the new root.

29

Deletion (5)

1813 393624 736643

4320

Delete 54

4. Remove the old root. The
merged node is now root.

Figure: Delete key 54 (n = 4)

• Deletion can be propagated up all the way to root.
• When merging two non-leaf nodes, we need to pull a key down from the parent.
• When root becomes empty, remove it and make its child as the new root.

29

Deletion Recap

1. Find the correct leaf L.
2. Remove the entry from L for the given key.

◦ If L is still half-full, the operation is done.
◦ If L becomes under-full, then

(a) First try to redistribute by borrowing one from siblings.
(b) If redistribution fails, then merge L and a sibling.

3. When merging two leaf nodes, remove from the parent the key associated
with the two leaf nodes to be merged.

4. When merging two non-leaf nodes, pull down the associated key instead.
5. When borrowing from internal nodes, rotate the borrowed key through the parent node.
6. Process the nodes recursively until all nodes are half-full.

30

Performance analysis

I/O Cost
Query log ⌈n/2⌉N

Insertion log ⌈n/2⌉N

Deletion log ⌈n/2⌉N

31

B+-tree vs. B-tree

• B+-trees store data entries in leaf nodes only.
– All key lookups require the same number of I/O’s.

• B-trees store data entries in both leaf and non-leaf nodes.
– Records in non-leaf nodes can be accessed with fewer I/O’s.

Problems with B-tree in disk-based DBMS:

1. Storing more data in non-leaf nodes decreases fanout and increases the tree height.
2. It takes more I/O’s to access records in leaves, and the majority of records are in leaves.
3. Range query is more complicated in B-trees.

32

	Indexing basics
	B+-tree

