Indexing

Spring, 2024

P Data storage structures (review)

Table Tuple
D Name | Dept_name | Salary ‘ 22202 ‘ Einstein | Physics ‘ 95000 ‘

20222 | Einstein | Physics 95000 Int Varchar 3 Varchar Float

10101 Srinivasan cs 65000 ‘

33456 | Gold Physics 87000

45565 | Katz cs 75000 ra— N 12 20 27

1 ‘20‘27‘ 22222 ‘ 95000 | Einstein | Physics
o 4

|
| seacer alololel J1]
Page 5 Page 6
I Tuple #2 Tuple #1

Database File Slotted database page

e Tables are stored in database files.
e Each database file consists of a collection of pages.

e Each page holds a collection of tuples.

P DBMS: Access method

Purpose: Support DBMS's execution engine to
read/write data from pages more efficiently.

Query parsing & optimization

Operator execution

Access method

Concurrency control

Disk manager

Buffer pool manager ‘

Recovery

Figure: DBMS architecture

P Indexing basics

P Example

10101 Srinivasan | Comp. Sci. 65000 —7
12121 Wu Finance 90000 4

15151 Mozart Music 40000 —7
22222 Einstein Physics 95000 _7
32343 | El Said History 60000 _7
33456 Gold Physics 87000 —7
45565 | Katz Comp. Sci. 75000 _7
58583 | Califieri History 62000 —7
76543 Singh Finance 80000 —7
76766 Crick Biology 72000 —7
83821 Brandt Comp. Sci. 92000 _7
98345 | Kim Elec. Eng. 80000 77

L

e Table instructor uses sequential file organization based on search key ID.
— Records are ordered according to the attribute ID.

e Total number of pages of table instructor: 1,000 pages.

e Estimate the number of pages to read from disk for the query

SELECT * FROM instructor WHERE ID = '22222';

P Example (cont'd)

10101 Srinivasan | Comp. Sci. 65000 —7
12121 Wu Finance 90000 4

15151 Mozart Music 40000 —7
22222 Einstein Physics 95000 —7
32343 | El Said History 60000 _7
33456 | Gold Physics 87000 -7
45565 | Katz Comp. Sci. | 75000 _7
58583 | Califieri History 62000 -7
76543 Singh Finance 80000 -7
76766 Crick Biology 72000 -7
83821 Brandt Comp. Sci. 92000 -7
98345 | Kim Elec. Eng. 80000 77

L

e Sequential scan: requires reading 1000 pages in the worst case.

P Example (cont'd)

10101 Srinivasan | Comp. Sci. 65000 —7
12121 Wu Finance 90000 4

15151 Mozart Music 40000 —7
22222 Einstein Physics 95000 —7
32343 | El Said History 60000 _7
33456 | Gold Physics 87000 -7
45565 | Katz Comp. Sci. | 75000 _7
58583 | Califieri History 62000 -7
76543 Singh Finance 80000 -7
76766 Crick Biology 72000 -7
83821 Brandt Comp. Sci. 92000 -7
98345 | Kim Elec. Eng. 80000 77

L

e Sequential scan: requires reading 1000 pages in the worst case.
e Binary search: [log »1000] = 10.

P Example (cont'd)

10101 10101 |Srinivasan | Comp. Sci. 65000 =

12121 12121 (Wu Finance 90000 _7
15151 15151 |Mozart Music 40000 ;7
22222 22222 | Einstein Physics 95000 —7
32343 32343 | El Said History 60000 _7
33456 33456 |Gold Physics 87000 —7
45565 45565 |Katz Comp. Sci. 75000 ﬁ7
58583 58583 | Califieri History 62000 _7
76543 76543 |Singh Finance 80000 ﬁ7
76766 76766 | Crick Biology 72000 ﬁ7
83821 83821 |Brandt Comp. Sci. 92000 —7
98345 98345 | Kim Elec. Eng. 80000 77

Sequential scan: requires reading 1000 pages in the worst case.
Binary search: [log »1000] = 10.
Index scan: 3 pages + 1 page (assuming that the index files uses 3 pages).

Index scan is also effective if the table is organized as a heap file.

D Index data structure

Search key: an attribute or a set of attributes used to look up records in a file.

An index file consists of records (called index entries) of the form

| search key [pointer |

An index file is usually much smaller than the original file.

e We will only consider ordered indexes in this lecture.
o Ordered indexes: search keys are organized in sorted order.

o Hash indexes: search keys are distributed uniformly across buckets via a has function.

P Dense indexes

e One index entry for each search key value.

10101 10101 |Srinivasan | Comp. Sci. 65000 1
12121 12121 |Wu Finance 90000 i
15151 15151 |Mozart Music 40000 i
22222 22222 |Einstein Physics 95000 -
32343 32343 | El Said History 60000 -
33456 33456 | Gold Physics 87000 <
45565 45565 |Katz Comp. Sci. 75000

58583 58583 | Califieri History 62000 —
76543 76543 | Singh Finance 80000 =
76766 76766 | Crick Biology 72000 -
83821 83821 |Brandt Comp. Sci. 92000 —
98345 98345 |Kim Elec. Eng. 80000 _t

vavvvvvvvvv

Figure: Dense index on attribute ID of table instructor

P Dense indexes

e One index entry for each search key value.

Biology 76766 | Crick Biology 72000 7
Comp. Sci. 10101 | Srinivasan | Comp. Sci. 65000 =
Elec. Eng. 45565 | Katz Comp. Sci. 75000 1
Finance \ 83821 | Brandt Comp. Sci. 92000 4
History \ 98345 | Kim Elec. Eng. | 80000 | |
Music 12121 | Wu Finance 90000
Physics \\ 76543 | Singh Finance 80000 i
32343 | El Said History 60000 i
58583 | Califieri History 62000 i
15151 | Mozart Music 40000 B
22222 | Einstein Physics 95000 i
33465 | Gold Physics 87000 | _ |

NRARRRRRRAN

Figure: Dense index

e |t is possible that one index entry may point to multiple records.

on attribute dept _name of table instructor

P Spare indexes

e Index entries for only some search key values.

— Typically one index entry for each block.

10101

32343

76766

10101 |Srinivasan | Comp. Sci. | 65000 B
12121 |Wu Finance 90000 4
15151 |[Mozart Music 40000 4
22222 |Einstein Physics 95000 i
32343 |El Said History 60000 B
33456 |Gold Physics 87000 -
45565 |Katz Comp. Sci. | 75000

58583 |Califieri History 62000 4
76543 |Singh Finance 80000 ..
76766 |Crick Biology 72000 o
83821 |Brandt Comp. Sci. | 92000 -
98345 [Kim Elec. Eng. 80000 |

JVVVVUVVVVVV

Figure: Sparse index on attribute ID of table instructor

e Applicable only when records are ordered by the search key. Why?

P Clustering indexes

10101 10101 |Srinivasan | Comp. Sci. 65000 —7
12121 12121 |Wu Finance 90000 4

15151 15151 |Mozart Music 40000 —7
22222 22222 | Einstein Physics 95000 —7
32343 32343 | El Said History 60000 _7
33456 33456 |Gold Physics 87000 —7
45565 45565 |Katz Comp. Sci. 75000 _7
58583 58583 | Califieri History 62000 _7
76543 76543 | Singh Finance 80000 _7
76766 76766 |Crick Biology 72000 _7
83821 83821 |Brandt Comp. Sci. 92000 —7
98345 98345 |Kim Elec. Eng. 80000 77

e Recall that index entries are sorted on the search key in an ordered index.
e Clustering index: search key order also defines the sequential order of data records.

e A clustering index is also known as a primary index.

P Non-clustering index

Brandt 10101 |Srinivasan | Comp. Sci. 65000 —7
Califieri| 12121 |Wu Finance 90000 =
Crick % 15151 |Mozart Music 40000 —::;
Einstein| / 22222 |Einstein Physics 95000 —7
El Said W 32343 |El Said History 60000 _7
Gold N 33456 |Gold Physics 87000 —7
Katz \ 45565 |Katz Comp. Sci. 75000 —7
Kim 58583 | Califieri History 62000 —
Mozart 76543 |Singh Finance 80000 _7
Singh | 76766 | Crick Biology 72000 —7
Srinvasan 83821 |Brandt Comp. Sci. 92000 _7
Wu 98345 |Kim Elec. Eng. 80000 77

e Non-clustering index: search key order differs from the sequential order of data records.
e A non-clustering index is also known as a secondary index.

e Secondary index is always dense. Why?

P Recap

An index is a data structure that improve the speed of data retrieval.

An index file is typically much smaller than the actual data files.

Dense indexes vs. sparse indexes

Clustering indexes vs. non-clustering indexes.

Each index entry includes a search key and a pointer to a specific record.

12

P B-tree

P Br-tree

Root --
Non-leaf --

Leaf

{20[24] }»{a6]30] }»{43]54]66] > 78[82] |+[04]08] |
vy v Y] I

Figure: A sample B*-tree with max_ fanout= 4

A BT-tree in a self-balancing search tree with following properties.

e Perfectly balanced; search, insertions, and deletions are in logarithmic time.

e Optimized for disk-based DBMS: one node per block/page, large fan-out.

14

P B-tree node

Ki

K,

Py

Ks

o]

+— 0

-«

—n is referred to as the max_fanout parameter.

Search keys are arranged in sorted order:

Ki<Ko<--<Kp<...

Every active pointer P; points to a node in the next level.

In practice, n can be hundreds, i.e., large fan-out.

Each BT-tree node contains at most n—1 search keys and n pointers.

15

P B-tree node

Root

\43\54\66}——{78\82\ F>94o8] |
vy)

P; points the sub-tree of search keys K with

Ki_1 < K< Kj.

Leaf nodes are chained up by the last pointer P, i.e., next-leaf pointer.

Index entries to data pages are stored in leaf nodes only.

Other active pointers P; in leaf nodes point to the data page corresponding to key Kj.

16

D Bt-tree invariant

e Balance invariant: all leaves are at the same level.

e Occupancy invariant: all nodes (except root) are at least half-full.

Min #(Active pointers) Min #(Keys)

Root 2 1
Internal node [n/2] [n/2] -1
Leaf node In/2] [n/2]

Table: Half-full constraint for B*-trees

Claim. The height of a B*-tree with N search keys is at most [log my21NT.

17

P Br-tree in practice

N =1, 000, 000.

Page size: 4k bytes, index entry size 40 bytes.

n = 100.

[log tn/21N] =4. That is, at most 4 1/O’s for every lookup.

If we cache the root node in buffer pool, then at most 3 1/O’s are needed.

18

P Query (1)

Look up 54

sl |]

36[43] | |o4]

[\

[18]20]24}-»{3639]

F+{43]54]66 > 78 82

F>94] 98]

e SELECT * FROM R WHERE K=54;

19

P Query (1)

Look up 80 ..
w43 | loal |]
Not found
[18]20|24»{36]30| |»43]54]66>{78]82] | 94]08| |

e SELECT * FROM R WHERE K=54;

e SELECT * FROM R WHERE K=80;

19

P Query (1)

sl |]

Look up 80

36[43] | |o4]

Not found

[18]20|24 -»{36[30] |»43]54]66+{78]82]

b 94]08]

e SELECT * FROM R WHERE K=54;
e SELECT * FROM R WHERE K=80;

e This type of query is known as point query.

19

P Query (2)

7l |

1. Look up 37 first

36/43] | loa| []

[18]20]24}-»{36]30] | >{43[54 66| >{78]82] |>94]98]

2. Follow the next leaf pointer until hit the upper bound

e SELECT * FROM R WHERE k >= 37 AND K <= 90;

e This type of query is known as range query.

20

P Insertion (1)

Insert 80 .-

36[43] | [o4] |

[N\

18[20[24}-»(36[30] |+43[54]66[>{78[82] |{0a[08] |

Figure: Insert key 80 (n = 4)

e Locate the leaf node for the key to be inserted.

e Insert the key directly when the target node has enough space.

21

P Insertion (1)

Insert 80 .-

ss[43] | JE

F>43[54 66> 78[80[82] >/ 04]98] |

Figure: Insert key 80 (n = 4)

e Locate the leaf node for the key to be inserted.

e Insert the key directly when the target node has enough space.

21

P Insertion (2)

Insert 13 .-

1. Node is overfull. 36‘43‘ ‘ }94‘ ‘ ‘

3‘18[20[24}—%‘36‘39‘ F>43]54]66 1> 78[82] |>{94]08] |

Figure: Insert key 13 (n = 4)

e Split the target node if the insertion make it overfull.

22

Insertion (2)

Insert 13 .-

2. Split node and copy
the key 20 up.

o 1]

[20]24] |{36[30] |>[43]54]66[>78/82| |- 94]08] |

Figure: Insert key 13 (n = 4)

e Split the target node if the insertion make it overfull.

e Need to copy the middle key up and adjust the pointers accordingly.

22

P Insertion (3)

Insert 73

1. Split node after insertion.

: :
[20]24] }+{36]a9] H43[54[66H[78]82| >loa]os] |

Figure: Insert key 73 (n = 4)

e Node splitting can propagate recursively.

23

P Insertion (3)

Insert 73

2. Copy the key 66 up.

3. Node is full again

[20]24] }+[36]ao] |+{43][54] |>[es]73

{78]82]

}—>{94]08]

l

Figure: Insert key 73 (n = 4)

e Node splitting can propagate recursively.

23

P Insertion (3)

Insert 73

4. Split non-leaf node.

20[36] | [safe]] . N

[20]24]

e e8] _J-»faaei] _}-+lealra }-+lrafee] }-Jeilse]]

Figure: Insert key 73 (n = 4)

e Node splitting can propagate recursively.

e When splitting a non-leaf node, the the middle key is push up rather than copied.

23

P Insertion (3)

Insert 73

5. Push the key 43 up.

[20]24] }+[36s0] |+{43][s4] }>{es][73] }»{78[e2] |—+{o4]os] |

Figure: Insert key 73 (n = 4)

e Node splitting can propagate recursively.
e When splitting a non-leaf node, the the middle key is push up rather than copied.

e |n the worst case, the root is split and a new root is created, linking to the split nodes.

— Consequently, the tree height increases by one.

23

P Insertion recap

1. Find the correct leaf L for the given key to be inserted.

2. Add a new entry into L in sorted order.
o If L has enough space, the operation is done.
o If L becomes overfull, then

(a) Split L into two nodes L and L.
(b) Redistribute entries evenly and copy up the middle key.
(c) Adjust the pointers accordingly, including
(i) next-leaf pointers, and (i) a pointer from parent of L to L’.

3. To split a non-leaf node, redistribute entries evenly and push up the middle key.

4. Process the nodes recursively until all nodes are half-full.

24

P Deletion (1)

4378]_ |

Delete 80
olse] o [
[13[18] |»{20]24] |»36/30] |>43[54] [»[66]73] |»{78]80[82}> 04 08]09]

Figure: Delete key 80 (n = 4)

25

P Deletion (1)

4078

Delete 80
2ofa8] o)
[13]18] |»{20[24] |»36[30] |>43]54| |»[66[73] |[»>{78[82] |»{94]08]09]

Figure: Delete key 80 (n = 4)

25

P Deletion (2)

Delete 82 !

1. The leaf node
becomes under-full
after deleting 82

o o] [

[13]18] |»l20[24] |»s6[39] |»43[54] I>e6|73] |{78]3] |+ 94|08]09]

Figure: Delete key 82 (n = 4)

e If the target node is underfull after a deletion, then try to borrow one key from siblings.

26

P Deletion (2)

Delete 82 !

2. Borrow the key 94
from the right sibling.

o4l |]

[13[18] |»20[24] |»36[30] |»43[54] I>es|73] |»{78]o4] |+[e8]oo]]

Figure: Delete key 82 (n = 4)

e If the target node is underfull after a deletion, then try to borrow one key from siblings.

26

Deletion (2)

Delete 82 !

2. Borrow the key 94
from the right sibling.

o4l |]

[13[18] |»20[24] |»36[30] |»43[54] I>es|73] |»{78]o4] |+[e8]oo]]

Figure: Delete key 82 (n = 4)

e If the target node is underfull after a deletion, then try to borrow one key from siblings.

e Remember to fix the key in the affected parent node.
— Replace the affected key with the middle key of the two updated children.

26

Deletion (2)

78] |

Delete 82

3. Replace the key 94

with 98 to fix the parent. . m-.

alie] o fo[aa]olaefas] +laalss] 1ee[ral o{rafsa] Jolaalss]

Figure: Delete key 82 (n = 4)

e If the target node is underfull after a deletion, then try to borrow one key from siblings.

e Remember to fix the key in the affected parent node.
— Replace the affected key with the middle key of the two updated children.

26

P Deletion (3)

Delete 20 ..

1. Cannot borrow a
key from siblings.

20[36] | CI

136]39] »43]54] [»e6[73] |

Figure: Delete key 20 (n = 4)

e |f borrowing is not possible, merge the affected node with one sibling.

27

P Deletion (3)

Delete 20 ..

2. Merge with a sibling

20[36] | CI

1[18] 2] | [~[3efs] [»as[sa] +ee[7a] |

Figure: Delete key 20 (n = 4)

e |f borrowing is not possible, merge the affected node with one sibling.

e When merging leafs, remove the key associated with the merged nodes from the parent.

27

P Deletion (3)

Delete 20 ..
3. Remove 36 from

the parent node. 20 ‘x‘ {66 ‘
Sal1s] | (24]36 30} 43lsa] |

Figure: Delete key 20 (n = 4)

e |f borrowing is not possible, merge the affected node with one sibling.

e When merging leafs, remove the key associated with the merged nodes from the parent.

27

P Deletion (3)

Delete 20

4. The parent node is
still half-full. Done.

[24]36[39———{43[54| F»l66/73] |

Figure: Delete key 20 (n = 4)

e |f borrowing is not possible, merge the affected node with one sibling.

e When merging leafs, remove the key associated with the merged nodes from the parent.

27

P Deletion (4)

Delete 73

1. Cannot borrow a
key from siblings.

[13] 18]

I—»20[24] |>36[a0| |[»43[54] +es[”

Figure: Delete key 73 (n = 4)

28

P Deletion (4)

Delete 73 ..

2. Merge with a sibling

20[36] | CI

Figure: Delete key 73 (n = 4)

28

P Deletion (4)

Delete 73

3. Remove 66 from
the parent node

[13[18]

—i202¢] [>o6[39] 43|54]66)

Figure: Delete key 73 (n = 4)

28

P Deletion (4)

Delete 73

4. To make the parent

node half-full. Borrow
one from its sibling.

[13]18]

F—>20[24] |+{36[39] ——43[54]66

Figure: Delete key 73 (n = 4)

28

P Deletion (4)

Delete 73 ..

5. Rotate the borrowed key
through the parent node 20‘ ‘ ‘ 43‘ ‘ ‘

[13[18] —20[24] [+{36[30] ——43[54]66

Figure: Delete key 73 (n =4)

e When borrowing from an internal node, rotate the borrowed key through its parent.

28

P Deletion (5)

Delete 54 ..

1. Merge underful leaf
nodes after deletion.

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.

29

P Deletion (5)

Delete 54

2. Delete 66 from parent.

F——{24[36[30——»

[13]18]

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.

29

P Deletion (5)

Delete 54

3. Merge two non-leaf
nodes. Pull 43 down.

[13]18] ——»/24[36[30}——

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.

e When merging two non-leaf nodes, we need to pull a key down from the parent.

29

P Deletion (5)

Delete 54

4.The root Is empty now.

Figure: Delete key 54 (n =4)
e Deletion can be propagated up all the way to root.

e When merging two non-leaf nodes, we need to pull a key down from the parent.

e When root becomes empty, remove it and make its child as the new root.

29

P Deletion (5)

Delete 54

4. Remove the old root. The
merged node is now root.

{2436 |30 ——{43[66] 73]

Figure: Delete key 54 (n =4)

e Deletion can be propagated up all the way to root.
e When merging two non-leaf nodes, we need to pull a key down from the parent.

e When root becomes empty, remove it and make its child as the new root.

29

P Deletion Recap

1. Find the correct leaf L.

2. Remove the entry from L for the given key.

o If L is still half-full, the operation is done.
o If L becomes under-full, then

(a) First try to redistribute by borrowing one from siblings.
(b) If redistribution fails, then merge L and a sibling.

3. When merging two leaf nodes, remove from the parent the key associated
with the two leaf nodes to be merged.

4. When merging two non-leaf nodes, pull down the associated key instead.
5. When borrowing from internal nodes, rotate the borrowed key through the parent node.

6. Process the nodes recursively until all nodes are half-full.

30

P Performance analysis

Query
Insertion
Deletion

|/O Cost
|Og /2] N
l0g fn /21N
Iog [n/2] N

31

D Bt-tree vs. B-tree

e BT-trees store data entries in leaf nodes only.
— All key lookups require the same number of 1/O’s.

e B-trees store data entries in both leaf and non-leaf nodes.
— Records in non-leaf nodes can be accessed with fewer 1/O’s.

Problems with B-tree in disk-based DBMS:
1. Storing more data in non-leaf nodes decreases fanout and increases the tree height.

2. It takes more |/O’s to access records in leaves, and the majority of records are in leaves.

3. Range query is more complicated in B-trees.

32

	Indexing basics
	B+-tree

