Mathematical Logic (X)
Yijia Chen

1. The Lowenheim-Skolem Theorem and the Compactness Theorem

Using the term-interpretation, it is routine to verify:

Theorem 1.1 (Léwenheim-Skolem). Let ® C L° be at most countable and satisfiable. Then there is
an S-interpretation J = (21, 3) such that

— the universe A of 2 is at most countable,

—andJ E O. 4

The following is a more general version.

Theorem 1.2 (Downward Léwenheim-Skolem). Let ® C LS be satisfiable. Then there is an S-
interpretation 3 = (2,) such that

- Al < T3 =L5),
—and J = . B

Corollary 1.3. Let S :={+, x, <, 0, 1} with the usual meaning and
Or={pely | (R, +-<0,1) F o}

Then there is a countable S-structure 21 with 2 = Op. -

By the Completeness Theorem:
Theorem 1.4 (Compactness). (a) ® = o if and only if there is a finite ®g C ® with ®g E .
(b) @ is satisfiable if and only if every finite ®y C @ is satisfiable. =

In fact, the “compactness” is a notion from topology. We can explain the topological perspective
of Theorem 1.4 using finite covers from analysis. For every ¢ € L° we define

Mod(¢) :=={J | Tk ¢},

and
Mod(®) := {3 |3 = @} = (] Mod(1).

PYew

We show that Theorem 1.4 is equivalent to the following finite cover property.

Proposition 1.5. Mod(¢) C (J,cq Mod () if and only if for some finite ®o C @ we have

Mod(¢) C U Mod (). N

Pedy

Proof of Theorem 1.4 using Proposition 1.5:

® k= @ < Mod(®) C Mod(e)

<= Mod(p) C Mod(®)
<= Mod(¢) ﬂ Mod (P
Yedw
<= Mod(@ U Mod (P
Ped
<= Mod(— U Mod(—)
Yeo
<= Mod(—) C U Mod(—) for some finite ®¢ C O (by Proposition 1.5)
Pedy
< Mod(¢) U Mod () for some finite ®y C ©
Pedy
< Mod(¢) ﬂ Mod () for some finite @y C ©
Pedy
— ﬂ Mod () € Mod(¢) for some finite &y C O
Ppedy
<= Mod(®y) C Mod(¢) for some finite &y C O
<= g & ¢ for some finite &g C O.]

Proof of Proposition 1.5 by Theorem 1.4: The direction from right to left is trivial. So we assume
that
Mod(¢ U Mod (¢
Yed
Claim. {— |V € O} = —o.

Proof of the claim. Let J be an interpretation with
TE{VIVe DL
That is, J = — for every P € ®. We can deduce that
Je (] Mod(—p) <= T € (| Mod(h)
IS Ve

Je | Mod(y)

PED

= 7J¢ | Mod(y)
Pped

— J ¢ Mod(o) (by Mod(¢) € | J Mod(p)

Ped

— T —o.
This finishes the proof of the claim. -

Now we apply Theorem 1.4 to the above claim. In particular, there is a finite ®y C @ such that

{Fb b e @t =0

Then arguing similarly as above, we obtain

Mod(¢) € | Mod(1). 0

Phed,

Theorem 1.6. Let ® C LS such that for every n € N there exists an S-interpretation J,, = (An,)
with |[An| > nand J,, = ®. Then there is an S-interpretation J = (2,) with infinite A and J = ®.

Proof: For every n > 2 we define a sentence

P>n = E|V0 s E|Vn71 /\ Vi = V5.

0<i<j<n
Clearly for any structure 2[(regardless of the symbol set S)
AE@e>n = [AlZ2n.

Now consider
YVi=0U{@sn|n>2}.

Of course every finite subset of ¥ is contained in
Y =0 U {@>n|2<n <o}

for a sufficiently large ny € N. By assumption, the interpretation J,,, witnesses that ¥,,, is satisfi-
able. Therefore, by the Compactness Theorem, V itself is satisfiable. The result follows immedi-
ately. O

Theorem 1.7 (Upward Léwenheim-Skolem). Let ® C LS and assume that there is an S-interpretation
J = (2, B) such that A is infinite and J = ®. Then, for any set B there is an S-interpretation
J=(2,p)with |A| > |Bland J E ©.

Proof: For any b € B we introduce a new constant ¢y, ¢ S. In particular, ¢y, # ¢y, for any b, b’ € B
with b # b. Then consider

Yi=0U {—cp = cpr

b,b’ € Bwith b #b’}.

Since @ has an infinite interpretation, every finite subset of V is satisfiable. By the Compactness
Theorem, we conclude that @ is satisfiable. Clearly the structure in any interpretation which
satisfies W must have size as large as |B|. O

Corollary 1.8. Let S ={+, x,<,0, 1} and
Oy = {(P €L | (N, +,-,<,0,1) = <P}-

Then there is a uncountable S-structure A with 2 | Oy. B

2. Decidability and Enumerability

A. Procedure and Decidability.
Definition 2.1. Let A be an alphabet (which we always assume to be finite) and W C A*.

(i) Let P be a procedure/program (which we will make precise shortly afterwards). P is a
decision procedure for W if on every input w € A* the procedure P will eventually halt and
output some w’ € A* such that

— if w € W, then w’ = O, where O is the empty string,
- ifw ¢ W, thenw’ £ 0.

(i) W is decidable if there is a decision procedure for W. =

B. Enumerability.
Definition 2.2. Let A be an alphabet and W C A*.

(i) A procedure PP is an enumeration procedure for W if P (without any input) outputs all the
words in W (in some order and possibly with repetitions).

(i) W is enumerable if there is an enumeration procedure for W. =

Lemma 2.3. If there is an enumeration procedure for W, then there is an enumeration procedure for

W without repetitions. =
Lemma 2.4. Let A be finite. Then A* is enumerable. =
Let
Seo = {cCo,C1,... } (every c; is a constant)
U U {R3,RY, ...} (every RI" is an n-ary relation symbol)
n>1
U U {fe.1,...} (every fI' is an n-ary function symbol).
n>1
Lemma 2.5.
{@EL?) bm}

is enumerable.

Proof: [sketch] By the Completeness Theorem

S
{(p el

b@}:{¢€Q“‘F@}

Thus, we can enumerate all possible proofs/derivations of symbol set S, thus obtain all those
@ € Ly~ with - o. o
C. The Relationship between Decidability and Enumerability.

Theorem 2.6. Every decidable set is enumerable.

Proof: Assume that the procedure P decides W C A*. By Lemma 2.4 we can enumerate allw € A*.
For each w we can decide whether w € W by calling P. If so, we output w and proceed to the
next string. Otherwise, we move to the next string without outputting w. a

We will see later that the converse of Theorem 2.6 does not hold, i.e., there are enumerable
sets which are not decidable. Nevertheless, we can show:

Theorem 2.7. Let W C A*. Then W is decidable if and only if both W and A* \ W are enumerable.

Proof: The direction from left to right is straightforward by Theorem 2.6 and by observing that
A*\ W is decidable as well. For the converse, we have two procedures, P; which enumerates W,
and P, which enumerates A* \ W.

Then given an input w € A*, we simulate two procedures P; and P, simultaneously?, eventu-
ally w will appear in exactly one of the outputs of P; and P,. Then we can answer whether w € W
accordingly. a

D. Computable Functions.

Definition 2.8. Let A and B be two alphabets. A procedure that for each input w € A* outputs a
w’ € B* determines a function f : A* — B* defined by

W= W,

f is said to be computable. -

2.1. Register Machines. We fix an alphabet
A:={ag,...,a;}.
Every register machine (or simply, machine) has a fixed number of registers, i.e.,
Ro,...,Rm

for some fixed m € N, where any register R; can contain any word in A*. A program consists of a
finite number of instructions, each starting with a label L € N.

There are 5 types of instructions.

LLETRiZRi"FCIj,

where L,1,j € Nwith 0 < i< mand 0 <j < r. Thatis, add the letter a; at the end of the
word in R;.

LLETRi:Ri—aj,

where L,1,j € Nwith 0 <i<mand 0 <j <. Thatis, if the word in R; ends with e;, then
delete this a;; otherwise leave the word unchanged.

LIFR; =OTHEN L' ELSE [, ORL[;0R ---OR L,,

where L,L',Lo,...,L. € N. That is, if R; contains O, then go the instruction labelled L’.
Otherwise, if R; contains a word ending with the letter a;, then go to the instruction labelled
L.

L PRINT,

where L € N. That is, output the word in Ry.

L HAIT,
with L € N. That is, the program halts.

1More precisely, we simulate the steps of ’; and P, alternatively, i.e., the first step of P, the first step of P, the second
step of IP;, the second step of P, ...

Definition 2.9. A register program (or simply program) is a finite sequence «y, ..., oy of instruc-
tions with the following properties.

(i) Every «; has label L = i.
(ii) Every jump operation refers to a label < k.

(iii) Only the last instruction « is a halt instruction. =

Definition 2.10. A program P starts with w € A* if in the beginning of the execution of P we
have Rg = w and all other R; = O.

If P starts with w and eventually reaches the last halt instruction, then we write

P:w — halt.
Otherwise,
P:w — oo.
The notation
P:w—w

means that if P starts with w, then it eventually halts, and during the course of computation, has
printed exactly one string w'. 4

3. Exercises

Exercise 3.1. Let S = (). Prove:

(i) Thereisa ® C I_(S) such that for any S-structure 2/

AE® <« |A|is infinite.

(ii) Thereisno ¢ € Lg such that for any S-structure 2

A= @ <= |A|isinfinite.

Exercise 3.2. A graph G consists of a vertex set V(G) and an edge set E(G). We say that G is
3-colorable if there is a mapping ¢ : V(G) — [3] such that for every edge {u, v} € E(G) we have

c(u) #£c(v).

A subgraph H of G satisfies that V(H) C V(G) and E(H) C E(G). Prove that G is 3-colorable if
and only if every finite subgraph of G is 3-colorable.

