Mathematical Logic (XI)

Yijia Chen

1. Decidability and Enumerability

1.1. Register Machines.

We fix an alphabet

$$
\mathcal{A}:=\left\{a_{0}, \ldots, a_{r}\right\} .
$$

Every register machine (or simply, machine) has a fixed number of registers, i.e.,

$$
R_{0}, \ldots, R_{m}
$$

for some fixed $m \in \mathbb{N}$, where any register R_{i} can contain any word in \mathcal{A}^{*}. A program consists of a finite number of instructions, each starting with a label $L \in \mathbb{N}$.

There are 5 types of instructions.

L LET $R_{i}=R_{i}+a_{j}$,
where $L, i, j \in \mathbb{N}$ with $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant r$. That is, add the letter a_{j} at the end of the word in R_{i}.
\qquad
L LET $R_{i}=R_{i}-a_{j}$,
where $L, i, j \in \mathbb{N}$ with $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant r$. That is, if the word in R_{i} ends with e_{j}, then delete this a_{j}; otherwise leave the word unchanged.

L IF $\mathrm{R}_{\mathrm{i}}=\square$ THEN L' ELSE $^{2} \mathrm{~L}_{0}$ OR L_{1} OR \cdots OR L_{r},

where $L, L^{\prime}, L_{0}, \ldots, L_{r} \in \mathbb{N}$. That is, if R_{i} contains \square, then go the instruction labelled L^{\prime}. Otherwise, if R_{i} contains a word ending with the a_{j}, then go to the instruction labelled L_{j}.
-

L PRINT,

where $L \in \mathbb{N}$. That is, output the word in R_{0}.

L HALT,

with $L \in \mathbb{N}$. That is, the program halts.
Definition 1.1. A register program (or simply program) is a finite sequence $\alpha_{0}, \ldots, \alpha_{k}$ of instructions with the following properties.
(i) Every α_{i} has label $L=i$.
(ii) Every jump operation refers to a label $\leqslant k$.
(iii) Only the last instruction α_{k} is a halt instruction.

Definition 1.2. A program \mathbb{P} starts with $w \in \mathcal{A}^{*}$ if in the beginning of the execution of \mathbb{P} we have $R_{0}=w$ and all other $R_{i}=\square$.
If \mathbb{P} starts with w and eventually reaches the last halt instruction, then we write

$$
\mathbb{P}: w \rightarrow \text { halt. }
$$

Otherwise,

$$
\mathbb{P}: w \rightarrow \infty
$$

The notation

$$
\mathbb{P}: w \rightarrow w^{\prime}
$$

means that if \mathbb{P} starts with w, then it eventually halts, and during the course of computation, has printed exactly one string w^{\prime}.

Definition 1.3. Let $W \subseteq \mathcal{A}^{*}$.
(i) A program \mathbb{P} decides W if for all $w \in \mathcal{A}^{*}$

$$
\begin{array}{ll}
\mathbb{P}: w \rightarrow \square & \text { if } w \in W \\
\mathbb{P}: w \rightarrow w^{\prime} \text { with } w^{\prime} \neq \square & \text { if } w \notin W
\end{array}
$$

(ii) W is register-decidable, or R-decidable for short, if there is program which decides W.

Definition 1.4. Let $W \subseteq \mathcal{A}^{*}$.
(i) A program \mathbb{P} enumerates W if started with \square, \mathbb{P} prints out exactly the words in W (in some order with possible repetitions).
(ii) W is register-enumerable, or R-enumerable for short, if there is program which enumerates W.

Proposition 1.5. Let $W \subseteq \mathcal{A}^{*}$. Then W is R-decidable if and only if both W and $\mathcal{A}^{*} \backslash W$ are R-enumerable.

Definition 1.6. Let $\mathrm{F} \subseteq \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$, where \mathcal{A} and \mathcal{B} are two alphabets.
(i) A program \mathbb{P} computes F if for all $w \in \mathcal{A}^{*}$

$$
\mathbb{P}: w \rightarrow F(w)
$$

(ii) F is register-computable, or R-computable for short, if there is program which computes F . \dashv
1.2. The halting problem for the register machines. Again let $\mathcal{A}:=\left\{a_{0}, \ldots, a_{r}\right\}$ be a fixed alphabet. Our goal is to define for every program \mathbb{P} over \mathcal{A} a word $\mathcal{w}_{\mathbb{P}} \in \mathcal{A}^{*}$. To that end, we first introduce an auxiliary alphabet

$$
\mathcal{B}:=\mathcal{A} \cup\{A, B, C, \ldots, Z\} \cup\{0,1, \ldots, 9\} \cup\{=,+,-, \square, \mid\} .
$$

As usual, we understand that the words in \mathcal{B}^{*} are ordered lexicographically. Then every program can be naturally encoded as a word in \mathcal{B}^{*}. For instance

0 LET $\mathrm{R}_{1}=\mathrm{R}_{1}-\mathrm{a}_{0}$
1 PRINT

2 HALT

is identified with the word

$$
\text { 0LETR1 }=\text { R1 }-\mathrm{a}_{0} \mid \text { 1PRINT } \mid \text { 2HALT. }
$$

Note that a_{0} is single letter from the alphabet $\mathcal{A} \subseteq \mathcal{B}$. Assume that this word is the n-th word in the lexicographical ordering of \mathcal{B}^{*}. Then we set

$$
w_{\mathbb{P}}:=\underbrace{a_{0} a_{0} \cdots a_{0}}_{n \text { times }} .
$$

Finally let

$$
\Pi:=\left\{w_{\mathbb{P}} \mid \mathbb{P} \text { a program over } \mathcal{A}\right\} .
$$

The mapping

$$
\mathbb{P} \mapsto w_{\mathbb{P}}
$$

is often called the Gödel numbering, and $w_{\mathbb{P}}$ is the Gödel number of \mathbb{P}.
Lemma 1.7. Π is R -decidable.

Theorem 1.8. Let \mathcal{A} be a fixed alphabet.
(i) The set

$$
\Pi_{\text {halt }}^{\prime}:=\left\{w_{\mathbb{P}} \mid \mathbb{P} \text { a program over } \mathcal{A} \text { and } \mathbb{P}: w_{\mathbb{P}} \rightarrow \text { halt }\right\}
$$

is not R-decidable.
(ii) The set

$$
\Pi_{\text {halt }}:=\left\{w_{\mathbb{P}} \mid \mathbb{P} \text { a program over } \mathcal{A} \text { and } \mathbb{P}: \square \rightarrow \text { halt }\right\}
$$

is not R-decidable.
Proof: (i) Assume that there is a program \mathbb{P}_{0} which decides $\Pi_{\text {halt }}^{\prime}$. That is, for every program \mathbb{P}

$$
\begin{array}{ll}
\mathbb{P}_{0}: w_{\mathbb{P}} \rightarrow \square & \text { if } \mathbb{P}: w_{\mathbb{P}} \rightarrow \text { halt } \\
\mathbb{P}_{0}: w_{\mathbb{P}} \rightarrow w^{\prime} \text { with } w^{\prime} \neq \square & \text { if } \mathbb{P}: w_{\mathbb{P}} \rightarrow \infty .
\end{array}
$$

Assume furthermore that \mathbb{P}_{0} has the form
$0 \ldots$...
1

10 PRINT
k HALT
We change \mathbb{P}_{0} in such a way that if \mathbb{P}_{0} prints out \square, then the modified program will never halt. To that end, we replace the last k-th halt instruction by two instructions that "reverse the halting behavior", and replace every print instruction by a "jump" instruction that directly goes to the end:

0
$1 \ldots .$.

10 IF $\mathrm{R}_{0}=\square$ THEN k ELSE k OR k OR \cdots OR k
i.e, goto the k-th instruction no matter what is in R_{0}
:
k IF $\mathrm{R}_{0}=\square$ THEN k ELSE $\mathrm{k}+1$ OR $\mathrm{k}+1$ OR \cdots OR $k+1$
$k+1$ HALT
Let \mathbb{P}_{1} be the resulting program. It is then easy to see that for any program \mathbb{P}

$$
\begin{array}{ll}
\mathbb{P}_{1}: w_{\mathbb{P}} \rightarrow \infty & \text { if } \mathbb{P}: w_{\mathbb{P}} \rightarrow \text { halt } \\
\mathbb{P}_{1}: w_{\mathbb{P}} \rightarrow \text { halt } & \text { if } \mathbb{P}: w_{\mathbb{P}} \rightarrow \infty
\end{array}
$$

As a result,

$$
\begin{array}{ll}
\mathbb{P}_{1}: w_{\mathbb{P}_{1}} \rightarrow \infty & \text { if } \mathbb{P}_{1}: w_{\mathbb{P}_{1}} \rightarrow \text { halt } \\
\mathbb{P}_{1}: w_{\mathbb{P}_{1}} \rightarrow \text { halt } & \text { if } \mathbb{P}_{1}: w_{\mathbb{P}_{1}} \rightarrow \infty
\end{array}
$$

which is certainly a contradiction.
(ii) Towards a contradiction, assume that \mathbb{P}_{0} decides $\Pi_{\text {halt }}$. That is, for every program \mathbb{P}

$$
\begin{array}{ll}
\mathbb{P}_{0}: w_{\mathbb{P}} \rightarrow \square & \text { if } \mathbb{P}: \square \rightarrow \text { halt } \\
\mathbb{P}_{0}: w_{\mathbb{P}} \rightarrow w^{\prime} \text { with } w^{\prime} \neq \square & \text { if } \mathbb{P}: \square \rightarrow \infty \tag{1}
\end{array}
$$

Now for every program \mathbb{P} we assign in an effective way a program \mathbb{P}^{+}such that

$$
\begin{equation*}
\mathbb{P}: w_{\mathbb{P}} \rightarrow \text { halt } \quad \Longleftrightarrow \mathbb{P}^{+}: \square \rightarrow \text { halt. } \tag{2}
\end{equation*}
$$

Being effective means that there is a further program \mathbb{T} that computes the mapping

$$
\boldsymbol{w}_{\mathbb{P}} \rightarrow w_{\mathbb{P}^{+}} .
$$

The construction of \mathbb{T} is tedious but not difficult.
With \mathbb{P}_{0} and \mathbb{T} we design a program which decides $\Pi_{\text {halt }}^{\prime}$. On any $w \in \mathcal{A}^{*}$, the program first test whether $w=w_{\mathbb{P}}$ for some \mathbb{P}. If not, it rejects immediately ${ }^{1}$. Otherwise, it uses \mathbb{T} to computes $w_{\mathbb{P}^{+}}$. Then the program calls \mathbb{P}_{0} on input $w_{\mathbb{P}^{+}}$. By (2) and (1), it correctly decides whether

$$
\mathbb{P}: w_{\mathbb{P}} \rightarrow \text { halt. }
$$

This gives us the desired contradiction to (i).
It remains to show the construction of \mathbb{P}^{+}from any given \mathbb{P} that fulfills (2). Assume that

$$
\mathcal{w}_{\mathbb{P}}=\underbrace{a_{0} a_{0} \ldots a_{0}}_{n \text { times }}
$$

Let \mathbb{P}^{+}begin with

$$
0 \text { LET } \mathrm{R}_{0}=\mathrm{R}_{0}+\mathrm{a}_{0}
$$

[^0]1 LET $R_{0}=R_{0}+a_{0}$
$\mathrm{n}-1$ LET $\mathrm{R}_{0}=\mathrm{R}_{0}+\mathrm{a}_{0}$
and followed by the instructions of \mathbb{P} with all labels increased by n.

1.3. The undecidability of first-order logic.

Theorem 1.9. The set

$$
\begin{equation*}
\left\{\varphi \in \mathrm{L}_{0}^{S_{\infty}} \mid \models \varphi\right\} \tag{3}
\end{equation*}
$$

is not R-decidable.
Proof: By Theorem 1.8 (ii) for the alphabet $\mathcal{A}=\{\mid\}$ the problem $\Pi_{\text {halt }}$ is not R -decidable. Our goal is to show that the assumed R-decidability of (3) would contradict this result. To that end, for every program \mathbb{P} we will construct in an effective way a $\varphi_{\mathbb{P}} \in \mathrm{L}_{0}^{\mathrm{S}_{\infty}}$ such that

$$
\mathbb{P}: \square \rightarrow \text { halt } \quad \Longleftrightarrow \quad \vDash \varphi_{\mathbb{P}} .
$$

Here, the effectivity means that there is a program \mathbb{P}_{1} which computes the mapping

$$
\mathbb{P} \mapsto \varphi_{\mathbb{P}}
$$

Once this is done, given an input $w \in \mathcal{A}^{*}$, we can first check whether $w=\mathcal{w}_{\mathbb{P}}$, if so, extract the program \mathbb{P} and compute $\varphi_{\mathbb{P}}$ using \mathbb{P}_{1}. Thus if (3) is decidable, we can apply the corresponding decision program on input $\varphi_{\mathbb{P}}$ to decide whether $\mathbb{P}: \square \rightarrow$ halt. Hence, we could decide $\Pi_{\text {halt }}$.

Let \mathbb{P} consist of instructions $\alpha_{0}, \ldots, \alpha_{k}$, in particular every α_{i} has its label i. Furthermore, assume that the maximum index of the registers which \mathbb{P} uses is n. Hence, the registers referred by all α_{i} 's are among R_{0}, \ldots, R_{n}.

Key to our construction of $\varphi_{\mathbb{P}}$ is the notion of configurations of \mathbb{P}. An $(n+2)$-tuple

$$
\left(L, m_{0}, \ldots, m_{n}\right)
$$

is a configuration of \mathbb{P} (on input \square) after s steps if

- starting with input \square the program \mathbb{P} runs at least s steps,
- after s steps, the instruction α_{L} is to be executed next,
- and for every $0 \leqslant i \leqslant n$ the register R_{i} contains the word

$$
\underbrace{\| \cdots \mid}_{m_{i} \text { times }}
$$

at that moment. To ease presentation, in the following we will simply say that R_{i} contains the number m_{i}.

Observe that then the execution of \mathbb{P} on the $s+1$-th step is completely determined by the configuration (L, m_{0}, \ldots, m_{n}).

The initial configuration, i.e., the configuration of \mathbb{P} after 0 step is

$$
(0,0, \ldots, 0)
$$

Recall that α_{k} is the last instruction of \mathbb{P}, i.e., the only halt instruction. Therefore

$$
\begin{align*}
\mathbb{P}: \square \rightarrow \text { halt } \Longleftrightarrow & \text { for some } s, m_{0}, \ldots, m_{n} \in \mathbb{N} \\
& \quad \text { the tuple }\left(k, m_{0}, \ldots, m_{n}\right) \text { is the configuration of } \mathbb{P} \text { after } s \text { steps. } \tag{4}
\end{align*}
$$

We choose four symbols from $S^{\infty}: R:=R_{0}^{n+3},\left\langle:=R_{0}^{2}, f:=f_{0}^{1}\right.$, and $c:=c_{0}$, and set

$$
S:=\{R,<, f, c\} .
$$

Then we associate with \mathbb{P} an S-structure $\mathfrak{A}_{\mathbb{P}}$ which "describes" the execution (i.e., the behaviour) of \mathbb{P} on input \square. We set $A_{\mathbb{P}}:=\mathbb{N},\left\langle^{\mathcal{A}_{\mathbb{P}}}:=\{(i, j) \mid i, j \in \mathbb{N}\right.$ and $i<j\}, f^{\mathfrak{L}_{\mathbb{P}}}(\mathfrak{i}):=\mathfrak{i}+1$ for every $i \in \mathbb{N}$, $c^{\mathfrak{L H}_{\mathrm{P}}}:=0$, and

$$
R^{\mathcal{L}_{\mathbb{P}}}:=\left\{\left(s, L, m_{0}, \ldots, m_{n}\right) \mid\left(L, m_{0}, \ldots, m_{n}\right) \text { is the configuration of } \mathbb{P} \text { after } s \text { steps }\right\} .
$$

Towards the definition of $\varphi_{\mathbb{P}}$ in (3), we first construct a sentence $\psi_{\mathbb{P}}$ which expresses the execution of \mathbb{P} on \square. We abbreviate $c, f c, f f c, \ldots$ by $\overline{0}, \overline{1}, \overline{2}, \ldots$, respectively. The desired $\psi_{\mathbb{P}}$ should satisfy the following two properties:
(P1) $\mathfrak{A}_{\mathbb{P}} \models \psi_{\mathbb{P}}$.
(P2) Let \mathfrak{A} be an S-structure with $\mathfrak{A} \models \psi_{\mathbb{P}}$. Furthermore, (L, m_{0}, \ldots, m_{n}) is the configuration of \mathbb{P} after s steps. Then

$$
\mathfrak{A} \models R \bar{s} \bar{L} \bar{m}_{0} \cdots \bar{m}_{n} .
$$

We set

$$
\psi_{\mathbb{P}}:=\psi_{0} \wedge R \bar{o} \overline{0} \cdots \overline{0} \wedge \psi_{\alpha_{0}} \wedge \cdots \wedge \psi_{\alpha_{k-1}},
$$

where each conjunct is defined as follows. The first

$$
\begin{aligned}
\psi_{0}:="<\text { is an ordering" } & \wedge \forall x(c<x \vee x \equiv c) \wedge \forall x(x<\mathrm{fx}) \\
& \wedge \forall x \forall \mathrm{y}(x<y \rightarrow(\mathrm{fx}<\mathrm{y} \vee \mathrm{fx} \equiv \mathrm{y})),
\end{aligned}
$$

i.e., $<$ is an ordering, c is the minimum element, $\mathrm{f} x$ is the successor of x.

For $\alpha \in\left\{\alpha_{0}, \ldots, \alpha_{k-1}\right\}$ we define φ_{α} by a case analysis.
$-\alpha=\operatorname{LLET} R_{i}=R_{i}+\mid$. Then let

$$
\psi_{\alpha}:=\forall x \forall y_{0} \cdots \forall y_{n}\left(R x \bar{L} y_{0} \cdots y_{n} \rightarrow R f x \bar{L}+1 y_{0} \cdots y_{i-1} f y_{i} y_{i+1} \cdots y_{n}\right) .
$$

$-\alpha=\operatorname{LLET} R_{i}=R_{i}-\mid$. Then let

$$
\begin{aligned}
\psi_{\alpha}:=\forall x \forall y_{0} \cdots \forall y_{n}\left(R x \bar{L} y_{0} \cdots y_{n}\right. & \rightarrow \\
& \left(\left(y_{i} \equiv \overline{0} \wedge R f x \overline{\mathrm{~L}+1} y_{0} \cdots y_{n}\right)\right. \\
& \vee\left(\neg y _ { i } \equiv \overline { 0 } \wedge \exists \mathfrak { u } \left(f u \equiv y_{i}\right.\right. \\
& \left.\left.\left.\left.\wedge R f x \overline{\mathrm{~L}+1} y_{0} \cdots y_{i-1} u y_{i+1} \cdots y_{n}\right)\right)\right)\right) .
\end{aligned}
$$

$-\alpha=\operatorname{LIF} R_{i}=\square$ THEN L' ELSE L_{0}. Then let

$$
\begin{aligned}
\psi_{\alpha}:=\forall x \forall y_{0} \cdots \forall y_{n}\left(R x \bar{L} y_{0} \cdots y_{n} \rightarrow\right. & \left(\left(y_{i} \equiv \overline{0} \wedge R f x \overline{L^{\prime}} y_{0} \cdots y_{n}\right)\right. \\
& \left.\left.\vee\left(\neg y_{i} \equiv \overline{0} \wedge R f x \overline{L_{0}} y_{0} \cdots y_{n}\right)\right)\right) .
\end{aligned}
$$

$-\alpha=$ L PRINT. Then let

$$
\psi_{\alpha}:=\forall x \forall y_{0} \cdots \forall y_{n}\left(R x \bar{L} y_{0} \cdots y_{n} \rightarrow R f x \overline{L+1} y_{0} \cdots y_{n}\right) .
$$

The verification of (P1) and (P2) is left as an exercise.
Finally let

$$
\varphi_{\mathbb{P}}:=\psi_{\mathbb{P}} \rightarrow \exists x \exists y_{0} \cdots \exists y_{n} R x \bar{k} y_{0} \cdots y_{n} .
$$

Now we verify that $\mathbb{P}: \square \rightarrow$ halt if and only if $\models \varphi_{\mathbb{P}}$. First, assume $\models \varphi_{\mathbb{P}}$, in particular

$$
\mathfrak{A}_{\mathbb{P}} \models \varphi_{\mathbb{P}}
$$

By (P1) we conclude

$$
\mathfrak{A}_{\mathbb{P}} \models \exists x \exists y_{0} \cdots \exists y_{n} R x \bar{k} y_{0} \cdots y_{n}
$$

Then there are some $s, m_{0}, \ldots, m_{n} \in A_{\mathbb{P}} \subseteq \mathbb{N}$ such that $\left(k, m_{0}, \ldots, m_{n}\right)$ is the configuration of \mathbb{P} after s steps. Therefore, \mathbb{P} reaches the last halt instruction after s steps, hence $\mathbb{P}: \square \rightarrow$ halt.

Conversely, assume $\mathbb{P}: \square \rightarrow$ halt. Let \mathfrak{A} be an S-structure. We need to show that $\mathfrak{A} \models$ $\varphi_{\mathbb{P}}$. Clearly, if $\mathfrak{A} \not \vDash \psi_{\mathbb{P}}$, then we are already done. Thus, assume $\mathfrak{A} \models \psi_{\mathbb{P}}$. Let $s_{\mathbb{P}} \in \mathbb{N}$ be the number of steps which \mathbb{P} carries out until it reaches the last halt instruction α_{k}. Hence, for some $m_{0}, \ldots, m_{n} \in \mathbb{N}$ the tuple

$$
\left(k, m_{0}, \ldots, m_{n}\right)
$$

is the configuration of \mathbb{P} after $s_{\mathbb{P}}$ steps. Now (P2) implies that

Therefore

$$
\mathfrak{A} \models \varphi_{\mathbb{P}} .
$$

This finishes the proof.

2. Exercises

Exercise 2.1. Prove that the set

$$
\left\{w_{\mathbb{P}} \mid \mathbb{P} \text { is a program over } \mathcal{A} \text { and } \mathbb{P}: w \rightarrow \text { halt for some } w \in \mathcal{A}^{*}\right\}
$$

is not R-decidable.
Exercise 2.2. Prove that the set

$$
\left\{w_{\mathbb{P}} \mid \mathbb{P} \text { is a program over } \mathcal{A} \text { and } w_{\mathbb{P}} \notin \mathrm{O}_{\mathbb{P}}\right\}
$$

is not R -enumerable, where \mathbb{P} starts with \square and $\mathrm{O}_{\mathbb{P}}$ consists of the words output by \mathbb{P} during the course of its execution.

Exercise 2.3. Prove (P1) and (P2) in the proof of Theorem 1.9.

Exercise 2.4. Show that

$$
\left\{\varphi \in \mathrm{L}_{0}^{S_{\infty}} \mid \varphi \text { is satisfiable }\right\}
$$

is not R-enumerable.

[^0]: ${ }^{1}$ i.e., prints out some $w^{\prime} \neq \square$ and halts.

