Mathematical Logic (XII)

Yijia Chen

1. Theories and Decidability

Definition 1.1. A set $T \subseteq \mathrm{~L}_{0}^{\mathrm{S}}$ of L-sentences is a theory if

- T is satisfiable,
- and T is closed under consequences, i.e., for every $\varphi \in \mathrm{L}_{0}^{\mathrm{S}}$, if $\mathrm{T} \models \varphi$, then $\varphi \in \mathrm{T}$.

Example 1.2. Let \mathfrak{A} be an S-structure. Then

$$
\operatorname{Th}(\mathfrak{A}):=\left\{\varphi \in \mathrm{L}_{0}^{\mathrm{S}} \mid \mathfrak{A} \models \varphi\right\}
$$

is a theory.

Definition 1.3. Let $\mathfrak{N}:=(\mathbb{N},+, \cdot, 0,1)$. Then $\operatorname{Th}(\mathfrak{N})$ is called (elementary) arithmetic.

Definition 1.4. Let $T \subseteq \mathrm{~L}_{0}^{\mathrm{S}}$. We define

$$
\mathrm{T}^{\vDash}:=\left\{\varphi \in \mathrm{L}_{0}^{\mathrm{S}} \mid \mathrm{T} \models \varphi\right\} .
$$

Lemma 1.5. All the following are equivalent.

- T^{\vDash} is a theory.
- T is satisfiable.
$-\mathrm{T}^{\vDash} \neq \mathrm{L}_{0}^{\mathrm{S}}$.

Definition 1.6. The Peano Arithmetic Φ_{PA} consists of the following S_{ar}-sentences, where $\mathrm{S}_{\mathrm{ar}}=$ $\{+, \cdot, 0,1\}$:

$$
\begin{array}{ll}
\forall x \neg x+1 \equiv 0, & \forall x \forall y(x+1 \equiv y+1 \rightarrow x \equiv y) \\
\forall x x+0 \equiv x, & \forall x \forall y x+(y+1) \equiv(x+y)+1 \\
\forall x x \cdot 0 \equiv 0, & \forall x \forall y x \cdot(y+1) \equiv x \cdot y+x
\end{array}
$$

and for all $n \in \mathbb{N}$, all variables x_{1}, \ldots, x_{n}, y, and all $\varphi \in L^{S_{a r}}$ with

$$
\operatorname{free}(\varphi) \subseteq\left\{x_{1}, \ldots, x_{n}, y\right\}
$$

the sentence

$$
\forall x_{1} \cdots \forall x_{n}\left(\left(\varphi \frac{0}{y} \wedge \forall y\left(\varphi \rightarrow \varphi \frac{\mathrm{y}+1}{\mathrm{y}}\right)\right) \rightarrow \forall \mathrm{y} \varphi\right)
$$

Remark 1.7. It is easy to see that $\mathfrak{N} \models \Phi_{\text {PA }}$, i.e., $\Phi_{\text {PA }}^{\models} \subseteq \operatorname{Th}(\mathfrak{N})$. We will show that $\Phi_{\text {PA }}^{\models} \subsetneq \operatorname{Th}(\mathfrak{N}) . \dashv$

Definition 1.8. Let $\mathrm{T} \subseteq \mathrm{L}_{0}^{S}$ be a theory.
(i) T is R-axiomatizable if there exists an R -decidable $\Phi \subseteq \mathrm{L}_{0}^{S}$ with $\mathrm{T}=\Phi^{=}$.
(ii) T is finitely axiomatizable if there exists a finite $\Phi \subseteq \mathrm{L}_{0}^{S}$ with $\mathrm{T}=\Phi^{=}$.

Clearly any finitely axiomatizable T is R -axiomatizable.

Theorem 1.9. Every R-axiomatizable theory is R-enumerable.
Proof: Let $\mathrm{T}=\Phi^{\models}$ where $\Phi \subseteq \mathrm{L}_{0}^{S}$ is R-decidable. We can effectively generate all derivable sequent proofs and check for each proof whether all the used assumptions belong to Φ (by the R-decidability of Φ).

Remark 1.10. There are R-axiomatizable theories that are not R-decidable, e.g., for $S=S_{\infty}$ and $\Phi=\emptyset$

$$
\Phi^{\models}=\left\{\varphi \in \mathrm{L}^{\mathrm{S}_{\infty}} \mid \models \varphi\right\} .
$$

Definition 1.11. A theory $\mathrm{T} \subseteq \mathrm{L}_{0}^{S}$ is complete if for any $\varphi \in \mathrm{L}_{0}^{S}$, either $\varphi \in \mathrm{T}$ or $\neg \varphi \in \mathrm{T}$. \dashv
Remark 1.12. Let \mathfrak{A} be an S-structure. Then the theory $\operatorname{Th}(\mathfrak{A})$ is complete.
Theorem 1.13. (i) Every R-axiomatizable complete theory is R-decidable.
(ii) Every R-enumerable complete theory is R-decidable.

2. The Undecidability of Arithmetic

Theorem 2.1. $\mathrm{Th}(\mathfrak{N})$ is not R-decidable.
Again, for the alphabet $\mathcal{A}=\{\mid\}$ we consider the halting problem

$$
\Pi_{\text {halt }}:=\left\{w_{\mathbb{P}} \mid \mathbb{P} \text { a program over } \mathcal{A} \text { and } \mathbb{P}: \square \rightarrow \text { halt }\right\}
$$

For any program \mathbb{P} over \mathcal{A} we will construct effectively an $S_{\text {ar }}$-sentence $\varphi_{\mathbb{P}}$ (i.e., $\varphi_{\mathbb{P}}$ can be computed by a register machine) such that

$$
\mathfrak{N} \models \varphi_{\mathbb{P}} \quad \Longleftrightarrow \quad \mathbb{P}: \square \rightarrow \text { halt. }
$$

Assume that \mathbb{P} consists of instructions $\alpha_{0}, \ldots, \alpha_{k}$. Let n be the maximum index i such that R_{i} is used by \mathbb{P}. Recall that a configuration of \mathbb{P} is an $(n+2)$-tuple

$$
\left(L, m_{0}, \ldots, m_{n}\right)
$$

where $L \leqslant k$ and $m_{0}, \ldots, m_{n} \in \mathbb{N}$, meaning that α_{L} is the instruction to be executed next and every register R_{i} contains m_{i}, i.e., the word $\underbrace{\|\cdots\|}_{m_{i} \text { times }}$.

Lemma 2.2. For every program \mathbb{P} over \mathcal{A} we can compute an S_{ar}-formula

$$
x_{\mathbb{P}}\left(x_{0}, \ldots, x_{n}, z, y_{0}, \ldots, y_{n}\right)
$$

such that for all $\ell_{0}, \ldots, \ell_{n}, L, m_{0}, \ldots, m_{n} \in \mathbb{N}$

$$
\mathfrak{N} \models \chi_{\mathbb{P}}\left[\ell_{0}, \ldots, \ell_{n}, L, m_{0}, \ldots, m_{n}\right]
$$

if and only if \mathbb{P}, beginning with the configuration $\left(0, \ell_{0}, \ldots, \ell_{n}\right)$, after finitely many steps, reaches the configuration ($\mathrm{L}, \mathrm{m}_{0}, \ldots, \mathrm{~m}_{\mathrm{n}}$).

Using the formula $\chi_{\mathbb{P}}$ in Lemma 2.2, we define

$$
\varphi_{\mathbb{P}}:=\exists y_{0} \cdots \exists y_{n} \chi_{\mathbb{P}}\left(0, \ldots, 0, \bar{k}, y_{0}, \ldots, y_{n}\right)
$$

where $\bar{k}:=\underbrace{1+\cdots+1}_{\mathrm{k} \text { times }}$. Then By Lemma 2.2 , we conclude $\mathfrak{N} \models \varphi_{\mathbb{P}}$ if and only if \mathbb{P}, beginning with the initial configuration $(0,0, \ldots, 0)$, after finitely many steps, reaches the configuration $\left(k, m_{0}, \ldots, m_{n}\right)$, i.e., $\mathbb{P}: \square \rightarrow$ halt. This finishes our proof of Theorem 2.1.

By Theorem 2.1, Theorem 1.13, and Remark 1.12:
Corollary 2.3. $\operatorname{Th}(\mathfrak{N})$ is neither R-axiomatizable nor R-enumerable. Thus

$$
\Phi_{\mathrm{PA}}^{\models} \subsetneq \operatorname{Th}(\mathfrak{N})
$$

Proof of Lemma 2.2. Recall that $\chi_{\mathbb{P}}$ expresses in \mathfrak{N} that there is an $s \in \mathbb{N}$ and a sequence of configurations C_{0}, \ldots, C_{s} such that
$-C_{0}=\left(0, x_{0}, \ldots, x_{n}\right)$,
$-C_{s}=\left(z, y_{0}, \ldots, y_{n}\right)$,

- for all $i<s$ we have $C_{i} \xrightarrow{\mathbb{P}} C_{i+1}$, i.e., from the configuration C_{i} the program \mathbb{P} will reach C_{i+1} in one step.
We slightly rewrite the above formulation as that there is an $s \in \mathbb{N}$ and a sequence of natural numbers

$$
\begin{equation*}
\underbrace{a_{0}, \ldots, a_{n+1}}_{C_{0}} \underbrace{a_{n+2}, \ldots, a_{(n+2)+(n+1)}}_{C_{1}} \cdots \underbrace{a_{s \cdot(n+2)}, \ldots, a_{s \cdot(n+2)+(n+1)}}_{C_{s}} \tag{1}
\end{equation*}
$$

such that
$-a_{0}=0, a_{1}=x_{0}, \ldots, a_{n+1}=x_{n}$,
$-a_{s \cdot(n+2)}=z, a_{s \cdot(n+2)+1}=y_{0}, \ldots, a_{s \cdot(n+2)+(n+1)}=y_{n}$,

- for all $i<s$ we have

$$
\left(a_{i \cdot(n+2)}, \ldots, a_{i \cdot(n+2)+(n+1)}\right) \xrightarrow{\mathbb{P}}\left(a_{(i+1) \cdot(n+2)}, \ldots, a_{(i+1) \cdot(n+2)+(n+1)}\right) .
$$

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in \mathfrak{N}. So we need the following beautiful (elementary) number-theoretic tool.

Lemma 2.4 (Gödel's β-function). There is a function $\beta: \mathbb{N}^{3} \rightarrow \mathbb{N}$ with the following properties.
(i) For every $r \in \mathbb{N}$ and every sequence $\left(a_{0}, \ldots, a_{r}\right)$ in \mathbb{N} there exist $t, p \in \mathbb{N}$ such that for all $i \leqslant r$

$$
\beta(t, p, i)=a_{i}
$$

(ii) β is definable in $L^{S_{a r}}$. That is, there is an $S_{a r}$-formula $\varphi_{\beta}(x, y, z, w)$ such that for all $t, q, i, a \in$ \mathbb{N}

$$
\mathfrak{N} \models \varphi_{\beta}[t, q, i, a] \quad \Longleftrightarrow \quad \beta(t, q, i)=a .
$$

Equipped with the above β function and the formula φ_{β}, we define the desired $\chi_{\mathbb{P}}$ as follows.

$$
\begin{aligned}
& \exists \mathrm{t} \exists \mathrm{p} \exists \mathrm{~s}\left(\varphi_{\beta}(\mathrm{t}, \mathrm{p}, 0,0) \wedge \varphi_{\beta}\left(\mathrm{t}, \mathrm{p}, 1, x_{0}\right) \wedge \cdots \wedge \varphi_{\beta}\left(\mathrm{t}, \mathrm{p}, \overline{\mathrm{n}+1}, x_{n}\right)\right. \\
& \wedge \varphi_{\beta}(t, p, s \cdot \overline{n+2}, z) \wedge \varphi_{\beta}\left(t, p, s \cdot \overline{n+2}+1, y_{0}\right) \\
& \wedge \cdots \wedge \varphi_{\beta}\left(t, p, s \cdot \overline{n+2}+\overline{n+1}, y_{n}\right) \\
& \wedge \forall i\left(i<s \rightarrow \forall u \forall u_{0} \cdots \forall u_{n} \forall u^{\prime} \forall u_{0}^{\prime} \cdots \forall u_{n}^{\prime}\right. \\
& \left(\varphi_{\beta}(t, p, i \cdot \overline{n+2}, u) \wedge \varphi_{\beta}\left(t, p, i \cdot \overline{n+2}+1, u_{0}\right)\right. \\
& \wedge \cdots \wedge \varphi_{\beta}\left(t, p, i \cdot \overline{n+2}+\overline{n+1}, u_{n}\right) \\
& \wedge \varphi_{\beta}\left(t, p,(i+1) \cdot \overline{n+2}, u^{\prime}\right) \wedge \varphi_{\beta}\left(t, p,(i+1) \cdot \overline{n+2}+1, u_{0}^{\prime}\right) \\
& \wedge \cdots \wedge \varphi_{\beta}\left(t, p,(i+1) \cdot \overline{n+2}+\overline{n+1}, u_{n}^{\prime}\right) \\
& \left.\left.\left.\rightarrow "\left(u, u_{0}, \ldots, u_{n}\right) \xrightarrow{\mathbb{P}}\left(u^{\prime}, u_{0}^{\prime}, \ldots, u_{n}^{\prime}\right) "\right)\right)\right) .
\end{aligned}
$$

Here,

$$
"\left(u, u_{0}, \ldots, u_{n}\right) \xrightarrow{\mathbb{P}}\left(u^{\prime}, u_{0}^{\prime}, \ldots, u_{n}^{\prime}\right) "
$$

stands for a formula describing one-step computation of \mathbb{P} from configuration $\left(u, u_{0}, \ldots, u_{n}\right)$ to configuration $\left(u^{\prime}, u_{0}^{\prime}, \ldots, u_{n}^{\prime}\right)$. Such a formula can be defined as a conjunction

$$
\psi_{0} \wedge \cdots \wedge \psi_{k-1}
$$

Recall that the program \mathbb{P} consists of instructions $\alpha_{0}, \ldots, \alpha_{k}$ where the last α_{k} is the halt instruction. Thus, say α_{j} is

$$
j \text { LET } R_{1}=R_{1}+\mid,
$$

then we let

$$
\psi_{j}:=u \equiv \bar{j} \rightarrow\left(u^{\prime} \equiv u+1 \wedge u_{0}^{\prime} \equiv u_{0} \wedge u_{1}^{\prime} \equiv u_{1}+1 \wedge u_{2}^{\prime} \equiv u_{2} \wedge \ldots \wedge u_{n}^{\prime} \equiv u_{n}\right)
$$

The remaining details are left to the reader.
Proof of Lemma 2.4: Let $\left(a_{0}, \ldots, a_{r}\right)$ be a sequence over \mathbb{N}. Choose a prime

$$
p>\max \left\{a_{0}, \ldots, a_{r}, r+1\right\}
$$

and set

$$
\begin{align*}
t:=1 \cdot p^{0}+a_{0} \cdot p^{1}+2 \cdot p^{2}+a_{1} \cdot p^{3}+\cdots & +(i+1) \cdot p^{2 i}+a_{i} \cdot p^{2 i+1} \\
& +\cdots+(r+1) \cdot p^{2 r}+a_{r} \cdot p^{2 r+1} \tag{2}
\end{align*}
$$

In other words, the p-adic representation of t is precisely

$$
a_{r}(r+1) \cdots a_{i}(i+1) \cdots a_{1} 2 a_{0} 1
$$

Claim. Let $i \leqslant r$ and $a \in \mathbb{N}$. Then $a=a_{i}$ if and only if there are $b_{0}, b_{1}, b_{2} \in \mathbb{N}$ such that:
(B1) $t=b_{0}+b_{1}\left((i+1)+a \cdot p+b_{2} \cdot p^{2}\right)$,
(B2) $a<p$,
(B3) $\mathrm{b}_{0}<\mathrm{b}_{1}$,
(B4) $b_{1}=p^{2 m}$ for some $m \in \mathbb{N}$.

Proof of the claim. Assume $a=a_{i}$. We set

$$
\begin{aligned}
& b_{0}:=1 \cdot p^{0}+a_{0} \cdot p^{1}+2 \cdot p^{2}+a_{1} \cdot p^{3}+\cdots+i \cdot p^{2 i-2}+a_{i-1} \cdot p^{2 i-1} \\
& b_{1}:=p^{2 i} \\
& b_{2}:=(i+2)+a_{i+1} \cdot p+\cdots+a_{r} \cdot p^{2(r-i)-1}
\end{aligned}
$$

By (2) it is routine to verify that all (B1)-(B4) hold.
Conversely,

$$
\begin{aligned}
t= & \left(1 \cdot p^{0}+a_{0} \cdot p^{1}+2 \cdot p^{2}+a_{1} \cdot p^{3}+\cdots+i \cdot p^{2 i-2}+a_{i-1} \cdot p^{2 i-1}\right) \\
& +(i+1) \cdot p^{2 i}+a \cdot p^{2 i+1} \\
& +\left((i+2)+a_{i+1} \cdot p+\cdots+a_{r} \cdot p^{2(r-i)-1}\right) \cdot p^{2 i+2} \\
= & b_{0}+(i+1) \cdot p^{2 m}+a \cdot p^{2 m+1}+b_{2} \cdot p^{2 m+2}
\end{aligned}
$$

It is well known that the p-adic representation of any number is unique. Together with $b_{0}<p^{2 m}$, we conclude $a=a_{i}$.

Since p is chosen to be a prime, it is easy to verify that (B4) is equivalent to (B4') b_{1} is a square, and for any $d>1$ if $d \mid b_{1}$, then $p \mid d$.

Finally for every $t, q, i \in \mathbb{N}$ we define $\beta(t, q, i)$ to be smallest $a \in \mathbb{N}$ such that there are $\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \in \mathbb{N}$ such that
$-\mathrm{t}=\mathrm{b}_{0}+\mathrm{b}_{1}\left((i+1)+\mathrm{a} \cdot \mathrm{q}+\mathrm{b}_{2} \cdot \mathrm{q}^{2}\right)$,
$-\mathrm{a}<\mathrm{q}$,
$-b_{0}<b_{1}$,
$-b_{1}$ is a square, and for any $d>1$ if $d \mid b_{1}$, then $q \mid d$.
If no such a exists, then we let $\beta(t, q, i):=0$.
By the above argument, (i) holds by choosing q to be a sufficiently large prime. To show (ii) we define

$$
\begin{aligned}
\varphi_{\beta}(x, y, z, w):= & \left(\psi(x, y, z, w) \wedge \forall w^{\prime}\left(\psi\left(x, y, z, w^{\prime}\right) \rightarrow\left(w^{\prime} \equiv w \vee w<w^{\prime 1}\right)\right)\right) \\
& \vee(\neg \psi(x, y, z, w) \wedge w \equiv 0)
\end{aligned}
$$

Here $\psi(x, y, z, w)$ expresses the properties (B1), (B2), (B3), and (B4'):

$$
\begin{aligned}
\psi(x, y, z, w):=\exists \mathfrak{u}_{0} \exists \mathfrak{u}_{1} \exists \mathfrak{u}_{2}(& x \equiv u_{0}+u_{1} \cdot\left((z+1)+w \cdot y+u_{2} \cdot y \cdot y\right) \\
& \wedge w<y \wedge u_{0}<u_{1} \\
& \left.\wedge \exists v u_{1} \equiv v \cdot v \wedge \forall v\left(\exists v^{\prime} u_{1} \equiv v \cdot v^{\prime} \rightarrow\left(v \equiv 1 \vee \exists v^{\prime} v \equiv y \cdot v^{\prime}\right)\right)\right)
\end{aligned}
$$

3. Exercises

Exercise 3.1. Prove that

$$
\Phi_{\mathrm{PA}} \models \forall x \forall y x+y \equiv y+x
$$

Exercise 3.2. Let T be an R-enumerable theory. Show that T is R-axiomatizable.
Exercise 3.3. Construct an $S_{a r}$-formula $\varphi_{\exp }(x, y, z)$ such that for every $a, b, c \in \mathbb{N}$

$$
c=a^{b} \quad \Longleftrightarrow \mathfrak{N} \models \varphi_{\exp }[a, b, c]
$$

[^0]
[^0]: ${ }^{1} w<w^{\prime}$ stands for the formula $\exists v\left(\neg v \equiv 0 \wedge w+v \equiv w^{\prime}\right)$.

