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1. Gödel’s Incompleteness Theorems

Let P be a program over A. Assume that P consists of instructions α0, . . . ,αk. Let n be the
maximum index i such that Ri is used by P. Then a configuration of P is an (n+ 2)-tuple

(L,m0, . . . ,mn),

where L 6 k and m0, . . . ,mn ∈ N, meaning that αL is the instruction to be executed next and
every register Ri contains mi, i.e., the word | | · · · |︸ ︷︷ ︸

mi times

.

We have shown:

Lemma 1.1. From the above program P we can compute an Sar-formula

χP(x0, . . . , xn, z,y0, . . . ,yn)

such that for all `0, . . . , `n,L,m0, . . . ,mn ∈ N

N |= χP[`0, . . . , `n,L,m0, . . . ,mn]

if and only if P, beginning with the configuration (0, `0, . . . , `n), after finitely many steps, reaches the
configuration (L,m0, . . . ,mn). a

Using Lemma 1.1 it is now routine to prove:

Theorem 1.2. Let r > 1.

(i) Let R ⊆ Nr be an R-decidable relation. Then there is an LSar -formula ϕ(v0, . . . , vr−1) ∈ N such
that for all `0, . . . , `r−1 ∈ N(

`0, . . . , `r−1
)
∈ R ⇐⇒ N |= ϕ(¯̀0, . . . , ¯̀r−1).

(ii) Let f : Nr → N be an R-computable function. Then there is an LSar -formula ϕ(v0, . . . , vr−1, vr)
such that for all `0, . . . , `r−1, `r ∈ N

f(`0, . . . , `r−1
)
= `r ⇐⇒ N |= ϕ(¯̀0, . . . , ¯̀r−1, ¯̀r).

Therefore,
N |= ∃=1vr ϕ(¯̀0, . . . , ¯̀r−1, vr),

where ∃=1x θ(x) denotes the formula

∃x
(
θ(x)∧ ∀y

(
θ(y)→ y ≡ x

))
. a

Let Φ ⊆ LSar
0 .

Definition 1.3. Let r > 1.
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(i) A relation R ⊆ Nr is representable in Φ if there is an LSar -formula ϕ(v0, . . . , vr−1) such that
for all n0, . . . ,nr−1 ∈ N(

n0, . . . ,nr−1
)
∈ R =⇒ Φ ` ϕ(n̄0, . . . , n̄r−1),(

n0, . . . ,nr−1
)
/∈ R =⇒ Φ ` ¬ϕ(n̄0, . . . , n̄r−1).

(ii) A function F : Nr → N is representable in Φ if there is an LSar -formula ϕ(v0, . . . , vr−1, vr)
such that for all n0, . . . ,nr−1,nr ∈ N

f(n0, . . . ,nr−1) = nr =⇒ Φ ` ϕ(n̄0, . . . , n̄r−1, n̄r),

f(n0, . . . ,nr−1) 6= nr =⇒ Φ ` ¬ϕ(n̄0, . . . , n̄r−1, n̄r).

Moreover,
Φ ` ∃=1vr ϕ(n̄0, . . . , n̄r−1, vr). a

Lemma 1.4. (i) If Φ is inconsistent, then every relation over N and every function over N is repre-
sentable in Φ.

(ii) LetΦ ⊆ Φ ′ ⊆ LSar
0 . Then every relation representable inΦ is also representable inΦ ′. Similarly,

every function representable in Φ is representable in Φ ′ as well.

(iii) Let Φ be consistent. If Φ is R-decidable, then every relation representable in Φ is R-decidable,
and every function representable in Φ is R-computable. a

Definition 1.5. Φ allows representations if all R-decidable relations and all R-computable functions
over N are representable in Φ. a

By Theorem 1.2:

Theorem 1.6. Th(N) allows representations. a

With some extra efforts we can prove:

Theorem 1.7. ΦPA allows representations. a

Recall that we have exhibited the so-called Gödel numbering of register programs. For later
purposes, we do the same for LSar -formulas. Let

ϕ0,ϕ1, . . . , (1)

be an effective enumeration of all LSar -formulas without repetition. That is, there is a program that
prints out the sequence (1). Then for every ϕ ∈ LSar we let

[ϕ] := n where ϕ = ϕn.

Observe that both
n 7→ ϕn and ϕ 7→ [ϕ]

are R-computable.

Theorem 1.8 (Fixed Point Theorem). Assume that Φ allows representations. Then for every ψ ∈
LSar

1 , there is an Sar-sentence ϕ such that

Φ ` ϕ↔ ψ
(
[ϕ]

)
. (2)
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Proof: We define a function F : N× N→ N as follows. For every n,m ∈ N

F(n,m) :=


[
ϕn(m̄)

]
if free(ϕn) = {v0},

i.e., ϕn ∈ LSar
1 \ LSar

0 ,

0 otherwise.

It is easy to see that F is R-computable, and for every ϕ ∈ LSar
1 \ LSar

0 we have

F([ϕ],m) =
[
ϕ(m̄)

]
. (3)

Since Φ allows representations, there is an Sar-formula ϕF(x,y, z) such that for all n,m, ` ∈ N

F(n,m) = ` =⇒ Φ ` ϕF(n̄, m̄, ¯̀), (4)

F(n,m) 6= ` =⇒ Φ ` ¬ϕF(n̄, m̄, ¯̀). (5)

Moreover,
Φ ` ∃=1z ϕF(n̄, m̄, z). (6)

Let
χ(v0) := ∀x

(
ϕF(v0, v0, x)→ ψ(x)

)
.

In particular, free(χ) = {v0}. Finally we define the desired

ϕ := χ(n̄) with n = [χ].

We show that (2) holds. First, by (3)

F(n,n) = F([χ],n) =
[
χ(n̄)

]
= [ϕ].

Then (4) implies
Φ ` ϕF

(
n̄, n̄, [ϕ]

)
(7)

Recall
ϕ = χ(n̄) = ∀x

(
ϕF(n̄, n̄, x)→ ψ(x)

)
.

Combined with (7) we obtain
Φ ∪ {ϕ} ` ψ

(
[ϕ]

)
.

Equivalently
Φ ` ϕ→ ψ

(
[ϕ]

)
.

For the other direction in (2), observe that (6) and (7) guarantee that

Φ ` ∀z
(
ϕF(n̄, n̄, z)→ z ≡ [ϕ]

)
.

Thus
Φ ∪
{
ψ
(
[ϕ]

)}
` ∀x

(
ϕF(n̄, n̄, x)→ ψ(x)

)
,

i.e., Φ ∪
{
ψ
(
[ϕ]

)}
` ϕ. It follows that

Φ ` ψ
(
[ϕ]

)
→ ϕ. 2

Definition 1.9. Let Φ ⊆ LSar . Then

Φ` :=
{
ϕ ∈ LSar

∣∣ Φ ` ϕ} .

We say that Φ` is representable in Φ if{
[ϕ] ∈ N

∣∣ ϕ ∈ Φ`} = {[ϕ] ∣∣ ϕ ∈ LSar and Φ ` ϕ
}

.

is representable in Φ. a
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Lemma 1.10. Let Φ ⊆ LSar be consistent and allow representations. Then Φ` is not representable in
Φ.

Proof: Assume that Φ` is representable in Φ. In particular, there is a χ(v0) ∈ LSar
1 such that for all

ϕ ∈ LSar
0

Φ ` ϕ =⇒ Φ ` χ
(
[ϕ]

)
,

Φ 6` ϕ =⇒ Φ ` ¬χ
(
[ϕ]

)
.

Since Φ is consistent, we conclude

Φ 6` ϕ ⇐⇒ Φ ` ¬χ
(
[ϕ]

)
. (8)

We apply the Fixed Point Theorem 1.8 to ¬χ to obtain a sentence ϕ such that

Φ ` ϕ↔ ¬χ
(
[ϕ]

)
. (9)

Then

Φ ` ϕ ⇐⇒ Φ ` ¬χ
(
[ϕ]

) (
by (9)

)
⇐⇒ Φ 6` ϕ,

(
by (8)

)
which is a contradiction. 2

Theorem 1.11 (Tarski’s Undefinability of the Arithmetic Truth).

(i) Let Φ ⊆ LSar be consistent and allow representations. Then Φ|= is not representable in Φ.

(ii) Th(N) is not representable in Th(N).

Proof: By the Completeness Theorem
Φ|= = Φ`.

So (i) is a direct consequence of Lemma 1.10.

(ii) is a special case of (i). 2

Theorem 1.12 (Gödel’s First Incompleteness Theorem). Let Φ ⊆ LSar be consistent and allow
representations. Moreover, Φ is R-decidable. Then there is an LSar -sentence ϕ such that neitherΦ ` ϕ
nor Φ ` ¬ϕ.

Proof: Assume for every LSar -sentence ϕ either Φ ` ϕ or Φ ` ¬ϕ. Thus Φ is complete. By the
R-decidability of Φ, we can then conclude that Φ` is R-decidable too.

Since Φ allows representations, Φ` is representable in Φ. Together with the consistency of Φ,
we obtain a contradiction to Lemma 1.10. 2

In the following we fix an R-decidable Φ ⊆ LSar
0 which allows representations.

We choose an effective enumeration of all derivations in the sequent calculus associated with
Sar and define a relation H ⊆ N2 by

(n,m) ∈H ⇐⇒ the m-th derivation in the above enumeration ends with a sequent

ψ0, . . . ,ψk−1,ϕ with ψ0, . . . ,ψk−1 ∈ Φ and n = [ϕ],

Clearly, H is R-decidable by the R-decidability of Φ. Moreover, for every ϕ ∈ LSar

Φ ` ϕ ⇐⇒ there is an m ∈ N with
(
[ϕ],m

)
∈H .
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Since Φ allows representation, there is a ϕH (v0, v1) ∈ LSar
2 such that for every n,m ∈ N

(n,m) ∈H =⇒ Φ ` ϕH (n̄, m̄), (10)

(n,m) /∈H =⇒ Φ ` ¬ϕH (n̄, m̄). (11)

We set
DERΦ(x) := ∃yϕH (x,y),

which intuitively says that x is provable in Φ.

Applying Lemma 1.8 to ψ(x) := ¬DERϕ(x), we obtain an LSar
0 -sentence ϕ such that

Φ ` ϕ↔ ¬DERϕ
(
[ϕ]

)
. (12)

Lemma 1.13. If Φ is consistent, then Φ 6` ϕ.

Proof: Assume that Φ ` ϕ, which is given by the m-th derivation for some m ∈ N. In other words,(
[ϕ],m

)
∈H .

Then, (10) implies
Φ ` ϕH

(
[ϕ], m̄

)
.

It follows that
Φ ` DERΦ

(
[ϕ]

)
.

By (12)
Φ ` ¬ϕ.

Thus Φ is inconsistent. 2

Observe that Φ ` 0 ≡ 0, therefore

Φ is consistent ⇐⇒ Φ 6` ¬0 ≡ 0.

Hence,
CONSΦ := ¬DER

(
[¬0 ≡ 0]

)
expresses that Φ is consistent.

Lemma 1.14. Assume ΦPA ⊆ Φ. Then

Φ ` CONSΦ → ¬DERΦ
(
[ϕ]

)
,

where ϕ is the sentence in (12).

Proof: A tedious analysis shows that the proof of Lemma 1.13 can be carried out on the basis of
ΦPA. 2

Theorem 1.15 (Gödel’s Second Incompleteness Theorem). Assume Φ is consistent and R-decidable
with ΦPA ⊆ Φ. Then

Φ 6` CONSΦ.

Proof: Assume Φ ` CONSΦ. Then Lemma 1.14 implies

Φ ` ¬DERΦ
(
[ϕ]

)
.

By (12) we have
Φ ` ϕ,

which contradicts Lemma 1.13. 2
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