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1. Godel’s Incompleteness Theorems

Let P be a program over A. Assume that PP consists of instructions «g,...,x. Let n be the
maximum index i such that R; is used by P. Then a configuration of IP is an (n. + 2)-tuple

(I—: mOJ MR mTL)J
where L < k and my,..., m, € N, meaning that « is the instruction to be executed next and
every register R; contains my, i.e., the word ||---|.

~——

m; times

We have shown:

Lemma 1.1. From the above program P we can compute an Su.-formula

XIP’(X'O""’XH:Z:UO>""yn)

such that for all Lo, ...,0,,L,mg,...,m, €N
m':XP[QOJ‘"7€T17ij0"")mn]

if and only if P, beginning with the configuration (0, £y, . . ., £, ), after finitely many steps, reaches the
configuration (L, mg, ..., my). =

Using Lemma 1.1 it is now routine to prove:
Theorem 1.2. Letr > 1.

(i) Let # C N" be an R-decidable relation. Then there is an LS=-formula ¢(vo,...,vr_1) € N such
that for all £, ...,4, 1 €N

(Eo,...,(’,r,l) ERXR +— ‘ﬁlz(p(zo,...,(’,r,l).

(ii) Let f: N — N be an R-computable function. Then there is an LS=-formula @ (vo, ..., Vs_1,V;)
such that for all o, ..., 41,4 € N

f(KO:---’er—l) =i, — mlz(P(ZO;---:Zr—hér)'

Therefore,

m ': E|:1v‘r‘ (P(EO, e ’eT—l)vT)J

where 3=1x 0(x) denotes the formula
Elx(e(x)/\Vy(e(y)%yEx)). .

Let @ C L)

Definition 1.3. Letr > 1.



(i) A relation # C NT is representable in @ if there is an LS=-formula ¢(vo, ..., v,_1) such that
forall ng,...,n.—1 €N

(Tlo,...,nr_l)E% — (Dl—(p(ﬁo,...,ﬁr_l),
(no,...,nr,1)¢%’ — q)l—_‘(p(ﬁo,...,ﬁrfl).

(i) A function F : N* — N is representable in @ if there is an LS=-formula ¢ (vo,...,Vvr_1,V;)
such that for all ng,...,n,_1,n. €N

f(n07"~3n1‘71):n1‘ - (Dl_(p(ﬁO""7ﬁ‘l‘fl3ﬁT)J
f(no;"')anl) #nT - (DF_'(p(ﬁO)-":ﬁT‘fl:ﬁT)-

Moreover,
O F I, oo, ..., Ar1,Vr). 4

Lemma 1.4. (i) If @ is inconsistent, then every relation over N and every function over N is repre-
sentable in @.

(ii) Let ® C @' C Lg’af. Then every relation representable in @ is also representable in ®’. Similarly,
every function representable in @ is representable in ®' as well.

(iii) Let @ be consistent. If ® is R-decidable, then every relation representable in ® is R-decidable,
and every function representable in @ is R-computable. -

Definition 1.5. @ allows representations if all R-decidable relations and all R-computable functions
over N are representable in ©. -

By Theorem 1.2:

Theorem 1.6. Th(91) allows representations. B

With some extra efforts we can prove:
Theorem 1.7. ®p, allows representations. -

Recall that we have exhibited the so-called Godel numbering of register programs. For later
purposes, we do the same for [S=-formulas. Let

©o, P15---, (1)

be an effective enumeration of all LS=-formulas without repetition. That is, there is a program that
prints out the sequence (1). Then for every ¢ € LS we let

[p] :==m where ¢ = @n.

Observe that both
n— @nand @ — [¢@]

are R-computable.

Theorem 1.8 (Fixed Point Theorem). Assume that ® allows representations. Then for every \ €
Lfa', there is an S,-sentence ¢ such that

® F ¢ b (le)). @)



Proof: We define a function F: N x N — N as follows. For every n, m € N

[on(m)] if free(pn) = {vo},
Fn,m) = ie., on € Lfar \ Lgar’

0 otherwise.

It is easy to see that F is R-computable, and for every ¢ € Lf“ \ L(S)“ we have
F(lol,m) = [@(m)]. (3)

Since @ allows representations, there is an S,-formula @(x,y, z) such that for alln,m,{ € N

Fin,m)=( = ®F @f(A,m,{) €)
Fin,m)#0 = ©F —@¢(fi,m,0). 5)
Moreover,
O+ Iz @p(R, ™M, 2). (6)
Let

X (vo) := Vx(@F (vo, vo, x) — W (x)).
In particular, free(x) = {vo}. Finally we define the desired
@ :=x(M) withn = [x].
We show that (2) holds. First, by (3)

F(n,n) = F(lxl,n) = [x(A)] = lel.
Then (4) implies

@ F or (1,1, [o]) (7
Recall
@ =Xx(R) = ¥x(@r(R, 7, x) = Y(x)).
Combined with (7) we obtain

O U{p} -V (le]).
Equivalently

O+ —P([o]).
For the other direction in (2), observe that (6) and (7) guarantee that

Thus o
® U {w(le]) | - ¥x(@r (R, 7, x) = B(x),

ie, ®U {1])([79])} F . It follows that

o -y (Tel) — o. 0

Definition 1.9. Let ® C LS. Then
O = {p e’

QOF ).
We say that @' is representable in @ if
{lpleN|ped }={lp]|pel’ and D F ¢}.

is representable in ®@. -



Lemma 1.10. Let ® C L5 be consistent and allow representations. Then ®" is not representable in
.

Proof: Assume that @' is representable in ®@. In particular, there is a x(vo) € Lf*" such that for all
s
(p c LOar

Ok = O+x(lo]),
oo = @F—x(lo]).

Since @ is consistent, we conclude

P = ©F—x(lo]). ®

We apply the Fixed Point Theorem 1.8 to —x to obtain a sentence ¢ such that

O+ @+ —x(le]). 9
Then
OF ¢ = 0+ —x(]) (by (9))
— Do, (by (®)
which is a contradiction. O

Theorem 1.11 (Tarski’s Undefinability of the Arithmetic Truth).

(i) Let ® C LS« be consistent and allow representations. Then ® is not representable in ®.

(ii) Th(M) is not representable in Th(MN).
Proof: By the Completeness Theorem

o= =0,
So (i) is a direct consequence of Lemma 1.10.
(ii) is a special case of (i). O

Theorem 1.12 (Godel’s First Incompleteness Theorem). Let ® C LS« be consistent and allow

representations. Moreover, ® is R-decidable. Then there is an LS=-sentence @ such that neither ® + ¢
nor @ + —eo.

Proof: Assume for every LS~-sentence ¢ either ® ¢ or ® - —¢. Thus ® is complete. By the
R-decidability of @, we can then conclude that ®" is R-decidable too.

Since @ allows representations, ®" is representable in ®. Together with the consistency of @,
we obtain a contradiction to Lemma 1.10. a

In the following we fix an R-decidable @ C Lg"“ which allows representations.

We choose an effective enumeration of all derivations in the sequent calculus associated with
Sar and define a relation .77 C N2 by

(n,m) € # <= the m-th derivation in the above enumeration ends with a sequent
II)OJ AR ’lbkfb (Y with 1J)O:v R ’Ibkfl € ®andn = [(P],

Clearly, 7 is R-decidable by the R-decidability of ®. Moreover, for every ¢ € LS«

QF ¢ <= thereisanm € Nwith ([p],m) € 7.
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Since @ allows representation, there is a @ s (vg,Vv1) € Lgm such that for every n,m € N

(n,m)e X = O@F @p(n,m), (10)
mm) g # = OF~@u(n,m). (1n
We set
DERo (X) == Fy e (x,y),
which intuitively says that x is provable in ©.
Applying Lemma 1.8 to {(x) := ~DER, (x), we obtain an Lga’-sentence @ such that
@ + ¢ +» ~DER,, ([¢]). (12)

Lemma 1.13. If @ is consistent, then @ I/ .

Proof: Assume that @ I ¢, which is given by the m-th derivation for some m € N. In other words,
(lol, m) € 2.
Then, (10) implies

O - @ (o], m).
It follows that

@ + DERo ([¢]).

By (12)
O F —e.

Thus @ is inconsistent. a
Observe that ® - 0 = 0, therefore
® is consistent <= @ —-0=0.

Hence,
CONSg := —DER([~0 = 0])

expresses that @ is consistent.
Lemma 1.14. Assume ®py C ®@. Then

® I- CONSo — —DERo ([o]),
where @ is the sentence in (12).

Proof: A tedious analysis shows that the proof of Lemma 1.13 can be carried out on the basis of
Dpa. O

Theorem 1.15 (Godel’s Second Incompleteness Theorem). Assume @ is consistent and R-decidable
with ®py C ®@. Then
@ I/ CONSgp.

Proof: Assume @ - CONSg. Then Lemma 1.14 implies
® - —DERg ([¢]).

By (12) we have
OF o,

which contradicts Lemma 1.13. O



