Mathematical Logic (XIII)

Yijia Chen

1. Gödel's Incompleteness Theorems

Let \mathbb{P} be a program over \mathcal{A} . Assume that \mathbb{P} consists of instructions $\alpha_0, \ldots, \alpha_k$. Let n be the maximum index i such that R_i is used by \mathbb{P} . Then a configuration of \mathbb{P} is an (n+2)-tuple

$$(L, \mathfrak{m}_0, \ldots, \mathfrak{m}_n),$$

where $L \leq k$ and $m_0, \ldots, m_n \in \mathbb{N}$, meaning that α_L is the instruction to be executed next and every register R_i contains $m_i,$ i.e., the word $\underbrace{||\cdots|}_{m_i \text{ times}}.$

We have shown:

Lemma 1.1. From the above program $\mathbb P$ we can compute an $\mathsf{S}_{ar}\text{-}\mathsf{formula}$

$$\chi_{\mathbb{P}}(x_0,\ldots,x_n,z,y_0,\ldots,y_n)$$

such that for all $\ell_0, \ldots, \ell_n, L, m_0, \ldots, m_n \in \mathbb{N}$

$$\mathfrak{N} \models \chi_{\mathbb{P}}[\ell_0, \ldots, \ell_n, \mathsf{L}, \mathsf{m}_0, \ldots, \mathsf{m}_n]$$

if and only if \mathbb{P} , beginning with the configuration $(0, \ell_0, \ldots, \ell_n)$, after finitely many steps, reaches the configuration (L, m_0, \ldots, m_n) . +

Using Lemma 1.1 it is now routine to prove:

Theorem 1.2. Let $r \ge 1$.

(i) Let $\mathscr{R} \subseteq \mathbb{N}^r$ be an R-decidable relation. Then there is an $L^{S_{ar}}$ -formula $\varphi(v_0, \ldots, v_{r-1}) \in \mathbb{N}$ such that for all $\ell_0, \ldots, \ell_{r-1} \in \mathbb{N}$

$$ig(\ell_0,\ldots,\ell_{r-1}ig)\in\mathscr{R}\quad\Longleftrightarrow\quad\mathfrak{N}\models \phi(ar{\ell}_0,\ldots,ar{\ell}_{r-1}).$$

(ii) Let $f: \mathbb{N}^r \to \mathbb{N}$ be an R-computable function. Then there is an $L^{S_{ar}}$ -formula $\varphi(v_0, \ldots, v_{r-1}, v_r)$ such that for all $\ell_0, \ldots, \ell_{r-1}, \ell_r \in \mathbb{N}$

$$f(\ell_0,\ldots,\ell_{r-1}) = \ell_r \quad \Longleftrightarrow \quad \mathfrak{N} \models \varphi(\overline{\ell}_0,\ldots,\overline{\ell}_{r-1},\overline{\ell}_r).$$

Therefore,

$$\mathfrak{N} \models \exists^{=1} \nu_{\mathrm{r}} \ \varphi(\bar{\ell}_0, \ldots, \bar{\ell}_{\mathrm{r}-1}, \nu_{\mathrm{r}}),$$

where $\exists^{=1} x \theta(x)$ denotes the formula

$$\exists x \Big(\theta(x) \land \forall y \big(\theta(y) \to y \equiv x \big) \Big). \qquad \exists x \Big(\theta(x) \land \forall y \Big(\theta(y) \to y \equiv x \Big) \Big).$$

Let $\Phi \subseteq L_0^{S_{ar}}$.

Definition 1.3. Let $r \ge 1$.

(i) A relation $\mathscr{R} \subseteq \mathbb{N}^r$ is representable in Φ if there is an $L^{S_{ar}}$ -formula $\varphi(\nu_0, \dots, \nu_{r-1})$ such that for all $n_0, \dots, n_{r-1} \in \mathbb{N}$

$$\begin{split} & \left(n_0, \dots, n_{r-1} \right) \in \mathscr{R} & \Longrightarrow \quad \Phi \vdash \phi(\bar{n}_0, \dots, \bar{n}_{r-1}), \\ & \left(n_0, \dots, n_{r-1} \right) \notin \mathscr{R} & \Longrightarrow \quad \Phi \vdash \neg \phi(\bar{n}_0, \dots, \bar{n}_{r-1}). \end{split}$$

(ii) A function $F : \mathbb{N}^r \to \mathbb{N}$ is *representable in* Φ if there is an $L^{S_{ar}}$ -formula $\varphi(\nu_0, \dots, \nu_{r-1}, \nu_r)$ such that for all $n_0, \dots, n_{r-1}, n_r \in \mathbb{N}$

$$\begin{split} f(n_0,\ldots,n_{r-1}) &= n_r \implies \Phi \vdash \phi(\bar{n}_0,\ldots,\bar{n}_{r-1},\bar{n}_r), \\ f(n_0,\ldots,n_{r-1}) \neq n_r \implies \Phi \vdash \neg \phi(\bar{n}_0,\ldots,\bar{n}_{r-1},\bar{n}_r). \end{split}$$

Moreover,

$$\Phi \vdash \exists^{=1} \nu_r \ \varphi(\bar{\mathfrak{n}}_0, \dots, \bar{\mathfrak{n}}_{r-1}, \nu_r). \qquad \qquad \dashv$$

- **Lemma 1.4.** (i) If Φ is inconsistent, then every relation over \mathbb{N} and every function over \mathbb{N} is representable in Φ .
- (ii) Let $\Phi \subseteq \Phi' \subseteq L_0^{S_{ar}}$. Then every relation representable in Φ is also representable in Φ' . Similarly, every function representable in Φ is representable in Φ' as well.
- (iii) Let Φ be consistent. If Φ is R-decidable, then every relation representable in Φ is R-decidable, and every function representable in Φ is R-computable.

Definition 1.5. Φ *allows representations* if all R-decidable relations and all R-computable functions over \mathbb{N} are representable in Φ .

By Theorem 1.2:

Theorem 1.6. $Th(\mathfrak{N})$ allows representations.

With some extra efforts we can prove:

Theorem 1.7. Φ_{PA} allows representations.

Recall that we have exhibited the so-called Gödel numbering of register programs. For later purposes, we do the same for $L^{S_{ar}}$ -formulas. Let

$$\varphi_0, \varphi_1, \dots, \tag{1}$$

 \neg

 \dashv

be an *effective* enumeration of all $L^{S_{ar}}$ -formulas without repetition. That is, there is a program that prints out the sequence (1). Then for every $\varphi \in L^{S_{ar}}$ we let

$$[\varphi] := \mathfrak{n}$$
 where $\varphi = \varphi_{\mathfrak{n}}$.

Observe that both

$$\mathfrak{n}\mapsto \varphi_{\mathfrak{n}}$$
 and $\varphi\mapsto [\varphi]$

are R-computable.

Theorem 1.8 (Fixed Point Theorem). Assume that Φ allows representations. Then for every $\psi \in L_1^{S_{ar}}$, there is an S_{ar} -sentence φ such that

$$\Phi \vdash \varphi \leftrightarrow \psi([\varphi]). \tag{2}$$

Proof: We define a function $F:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ as follows. For every $n,m\in\mathbb{N}$

$$F(n,m) := \begin{cases} \left[\phi_n(\bar{m}) \right] & \text{if free}(\phi_n) = \{\nu_0\}, \\ & \text{i.e., } \phi_n \in L_1^{S_{ar}} \setminus L_0^{S_{ar}}, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that F is R-computable, and for every $\phi \in L_1^{S_{ar}} \setminus L_0^{S_{ar}}$ we have

$$\mathsf{F}([\varphi], \mathfrak{m}) = \big[\varphi(\bar{\mathfrak{m}})\big]. \tag{3}$$

Since Φ allows representations, there is an S_{ar}-formula $\varphi_F(x, y, z)$ such that for all n, m, $\ell \in \mathbb{N}$

$$F(n,m) = \ell \implies \Phi \vdash \varphi_F(\bar{n},\bar{m},\bar{\ell}), \tag{4}$$

$$F(n,m) \neq \ell \implies \Phi \vdash \neg \varphi_F(\bar{n},\bar{m},\bar{\ell}).$$
(5)

Moreover,

$$\Phi \vdash \exists^{=1} z \ \varphi_{\mathsf{F}}(\bar{\mathsf{n}}, \bar{\mathsf{m}}, z). \tag{6}$$

Let

 $\chi(\nu_0):=\forall x\big(\phi_F(\nu_0,\nu_0,x)\to\psi(x)\big).$

In particular, free(χ) = { ν_0 }. Finally we define the desired

 $\phi:=\chi(\bar{n})\quad \text{with }n=[\chi].$

We show that (2) holds. First, by (3)

 $F(n,n)=F([\chi],n)=\left[\chi(\bar{n})\right]=[\phi].$

Then (4) implies

$$\Phi \vdash \varphi_{\mathsf{F}}(\bar{\mathfrak{n}}, \bar{\mathfrak{n}}, \overline{[\varphi]}) \tag{7}$$

Recall

 $\phi = \chi(\bar{n}) = \forall x \big(\phi_F(\bar{n},\bar{n},x) \rightarrow \psi(x) \big).$

Combined with (7) we obtain

 $\Phi \cup \{\phi\} \vdash \psi \big(\overline{[\phi]}\big).$

Equivalently

 $\Phi \vdash \phi \to \psi(\overline{[\phi]}).$

For the other direction in (2), observe that (6) and (7) guarantee that

$$\Phi \vdash \forall z \big(\varphi_{\mathsf{F}}(\bar{\mathfrak{n}}, \bar{\mathfrak{n}}, z) \to z \equiv [\varphi] \big).$$

Thus

$$\Phi \cup \Big\{\psi\big(\overline{[\phi]}\big)\Big\} \vdash \forall x \big(\phi_F(\bar{n},\bar{n},x) \rightarrow \psi(x)\big),$$

i.e., $\Phi \cup \left\{\psi\big(\overline{[\phi]}\big)\right\} \vdash \phi.$ It follows that

$$\Phi \vdash \psi(\overline{[\phi]})
ightarrow \phi.$$

 \dashv

Definition 1.9. Let $\Phi \subseteq L^{S_{ar}}$. Then

$$\Phi^{\vdash} := \left\{ \phi \in \mathsf{L}^{\mathsf{S}_{\mathsf{ar}}} \mid \Phi \vdash \phi \right\}.$$

We say that Φ^{\vdash} is representable in Φ if

$$\left\{ [\phi] \in \mathbb{N} \mid \phi \in \Phi^{\vdash} \right\} = \left\{ [\phi] \mid \phi \in L^{S_{ar}} \text{ and } \Phi \vdash \phi \right\}.$$

is representable in Φ .

Lemma 1.10. Let $\Phi \subseteq L^{S_{ar}}$ be consistent and allow representations. Then Φ^{\vdash} is not representable in Φ .

Proof: Assume that Φ^{\vdash} is representable in Φ . In particular, there is a $\chi(\nu_0) \in L_1^{S_{ar}}$ such that for all $\phi \in L_0^{S_{ar}}$

$$egin{array}{rcl} \Phidash arphi &\Longrightarrow &\Phidash \chi(\overline{[arphi]}), \ \Phidash arphi &\Longrightarrow &\Phidash \neg \chi(\overline{[arphi]}). \end{array}$$

Since Φ is consistent, we conclude

$$\Phi \not\vdash \varphi \quad \Longleftrightarrow \quad \Phi \vdash \neg \chi(\overline{[\varphi]}). \tag{8}$$

We apply the Fixed Point Theorem 1.8 to $\neg \chi$ to obtain a sentence φ such that

$$\Phi \vdash \varphi \leftrightarrow \neg \chi([\varphi]). \tag{9}$$

Then

$$\begin{split} \Phi \vdash \varphi & \Longleftrightarrow \quad \Phi \vdash \neg \chi \big(\overline{[\phi]} \big) & (by \ (9)) \\ & \Leftrightarrow \quad \Phi \not\vdash \varphi, & (by \ (8)) \end{split}$$

which is a contradiction.

Theorem 1.11 (Tarski's Undefinability of the Arithmetic Truth).

(i) Let $\Phi \subseteq L^{S_{ar}}$ be consistent and allow representations. Then Φ^{\models} is not representable in Φ .

(ii) $\operatorname{Th}(\mathfrak{N})$ is not representable in $\operatorname{Th}(\mathfrak{N})$.

Proof: By the Completeness Theorem

 $\Phi^{\models} = \Phi^{\vdash}.$

So (i) is a direct consequence of Lemma 1.10.

(ii) is a special case of (i).

Theorem 1.12 (Gödel's First Incompleteness Theorem). Let $\Phi \subseteq L^{S_{ar}}$ be consistent and allow representations. Moreover, Φ is R-decidable. Then there is an $L^{S_{ar}}$ -sentence φ such that neither $\Phi \vdash \varphi$ nor $\Phi \vdash \neg \varphi$.

Proof: Assume for every $L^{S_{ar}}$ -sentence φ either $\Phi \vdash \varphi$ or $\Phi \vdash \neg \varphi$. Thus Φ is complete. By the R-decidability of Φ , we can then conclude that Φ^{\vdash} is R-decidable too.

Since Φ allows representations, Φ^{\vdash} is representable in Φ . Together with the consistency of Φ , we obtain a contradiction to Lemma 1.10.

In the following we fix an R-decidable $\Phi \subseteq L_0^{S_{ar}}$ which allows representations.

We choose an effective enumeration of all derivations in the sequent calculus associated with S_{ar} and define a relation $\mathscr{H} \subseteq \mathbb{N}^2$ by

 $(n,m) \in \mathscr{H} \iff \text{the m-th derivation in the above enumeration ends with a sequent}$ $\psi_0,\ldots,\psi_{k-1},\phi \text{ with } \psi_0,\ldots,\psi_{k-1} \in \Phi \text{ and } n = [\phi],$

Clearly, \mathscr{H} is R-decidable by the R-decidability of Φ . Moreover, for every $\phi \in L^{S_{ar}}$

 $\Phi \vdash \varphi \iff$ there is an $\mathfrak{m} \in \mathbb{N}$ with $([\varphi], \mathfrak{m}) \in \mathscr{H}$.

Since Φ allows representation, there is a $\varphi_{\mathscr{H}}(\nu_0,\nu_1) \in L_2^{S_{ar}}$ such that for every $n, m \in \mathbb{N}$

$$(\mathfrak{n},\mathfrak{m})\in\mathscr{H}\implies\Phi\vdash\varphi_{\mathscr{H}}(\bar{\mathfrak{n}},\bar{\mathfrak{m}}),$$
 (10)

$$(\mathfrak{n},\mathfrak{m})\notin\mathscr{H} \implies \Phi\vdash \neg\varphi_{\mathscr{H}}(\bar{\mathfrak{n}},\bar{\mathfrak{m}}).$$
(11)

We set

$$\mathsf{DER}_{\Phi}(\mathsf{x}) := \exists \mathsf{y} \varphi_{\mathscr{H}}(\mathsf{x}, \mathsf{y}),$$

which intuitively says that x is provable in Φ .

Applying Lemma 1.8 to $\psi(x) := \neg DER_{\phi}(x)$, we obtain an $L_0^{S_{ar}}$ -sentence ϕ such that

$$\Phi \vdash \varphi \leftrightarrow \neg \mathsf{DER}_{\varphi}(\overline{[\varphi]}). \tag{12}$$

Lemma 1.13. *If* Φ *is consistent, then* $\Phi \not\vdash \phi$ *.*

Proof: Assume that $\Phi \vdash \varphi$, which is given by the m-th derivation for some $m \in \mathbb{N}$. In other words,

 $([\varphi], \mathfrak{m}) \in \mathscr{H}.$

 $\Phi \vdash \varphi_{\mathscr{H}}(\overline{[\varphi]}, \overline{\mathfrak{m}}).$

 $\Phi \vdash \text{Der}_{\Phi}(\overline{[\phi]}).$

 $\Phi \vdash \neg \phi$.

It follows that

By (12)

Thus Φ is inconsistent.

Observe that $\Phi \vdash 0 \equiv 0$, therefore

 Φ is consistent $\iff \Phi \not\vdash \neg 0 \equiv 0.$

Hence,

 $CONS_{\Phi} := \neg DER([\neg 0 \equiv 0])$

expresses that Φ is consistent.

Lemma 1.14. Assume $\Phi_{PA} \subseteq \Phi$. Then

$$\Phi \vdash \operatorname{Cons}_{\Phi} \rightarrow \neg \operatorname{Der}_{\Phi}([\phi]),$$

where φ is the sentence in (12).

Proof: A tedious analysis shows that the proof of Lemma 1.13 can be carried out on the basis of Φ_{PA} .

Theorem 1.15 (Gödel's Second Incompleteness Theorem). Assume Φ is consistent and R-decidable with $\Phi_{PA} \subseteq \Phi$. Then

 $\Phi \not\vdash \mathsf{Cons}_{\Phi}.$

Proof: Assume $\Phi \vdash CONS_{\Phi}$. Then Lemma 1.14 implies

$$\Phi \vdash \neg \mathsf{DER}_{\Phi}([\varphi]).$$

By (12) we have

 $\Phi \vdash \varphi$,

which contradicts Lemma 1.13.