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1 The Syntax of First-order Logic

Example 1.1 (Group Theory).

(G1) For all x,y,z we have (xoy)oz=xo0(yoz).

(G2) For all x we have xoe = e.

(G3) For every x there is ay such that xoy =e.

A group is a triple & = (G, 0%, e?), i.e., a structure &, which satisfies (G1)-(G3). B
Example 1.2 (Equivalence Relations).

(E1) For all x we have (x,x) € R.

(E2) For all x and y if (x,y) € R then (y,x) € R.

(E3) For all x,y,zif (x,y) € Rand (y,z) € Rthen (x,z) € R.

An equivalence relation is specified by a structure 2 = (A, R%) in which R? satisfies (E1)—(E3). -

1.1 Alphabets
Definition 1.3. An alphabet is a nonempty set of symbols. |

Definition 1.4. Let A be an alphabet. Then a word w over A is a finite sequence of symbols in A,
ie.,
w = W1W2 e Wn

where n € Nand w; € A forevery i € [n] ={1,...,n}. In case n =0, then w is the empty word,
denoted by ¢. The length [w| of w is .. In particular, |¢| = 0.
A* denotes the set of all words over A, or equivalently

A* = U AN = U {wi..own Wi, wn €A}
neN neN =
Countable sets
Later on, we will need to count the number of words over a given alphabet.

Definition 1.5. A set M is countable if there exists an injective function « from N onto M, i.e.,
o : N — M is a bijection. Thereby, we can write

M= {a(n) | n € N} = {«(0), x(1),...,x(n),... }.
A set M is at most countable if M is either finite or countable. B

Lemma 1.6. Let M be a non-empty set. Then the following are equivalent.



(a) M is at most countable.
(b) There is a surjective function f : N — M.
(c) There is an injective function f : M. — N. -

Lemma 1.7. Let A be an alphabet which is at most countable. Then A* is countable. o

1.2 The alphabet of a first-order language
Definition 1.8. The alphabet of a first-order language consists of the following symbols.
(a) vg,v1,... (variables).
) —,\,V, =, +, (negation, conjunction, disjunction, implication, if and only if).
(c) V, 3, (for all, exists).
(d) =, (equality).
(e) (,), (parentheses).

(f) (1) For every n > 1 a set of n-ary relation symbols.

2
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(2) For every n > 1 a set of n-ary function symbols.

(3) A set of constants.
Note any set in (f) can be empty. =

We use A to denote the set of symbols in (a)-(e), i.e., the set of logic symbols, while S is the
set of remaining symbols in (f). Then a first-order language has

As:=AUS

as its alphabet and S as its symbol set.
Thus every first-order language has the same set A of logic symbols but might have different
symbol set S.

1.3 Terms and formulas
Throughout this section, we fix a symbol set S.

Definition 1.9. The set T® of S-terms contains precisely those words in A% which can be obtained
by applying the following rules finitely many times.

(T1) Every variable is an S-term.
(T2) Every constant in S is an S-term.
(T3) Ifty,...,t, are S-terms and f is a n-ary function symbol in S, then ft; ...t, is an S-term.

Definition 1.10. The set L® of S-formulas contains precisely those words in A% which can be
obtained by applying the following rules finitely many times.

(A1) Let t; and t, be two S-terms. Then t; = t; is an S-formula.

(A2) Let t1,...,t, be S-terms and R an n-ary relation symbol in S. Then Rt; ---t,, is also an
S-formula.

(A3) If ¢ is an S-formula, then so is —¢.

(A4) If @ and \ are S-formulas, then so is (¢ * 1) where x € {/\,V, —, <.



(A5) Let ¢ be an S-formula and x a variable. Then Vx¢ and Jx¢ are S-formulas, too.

The formulas in (A1) and (A2) are atomic, as they don’t contain any other S-formulas as
subformulas.

* —¢ is the negation of ¢.

* (@ A1) is the conjunction of ¢ and .

* (@ V1) is the disjunction of ¢ and .

* (@ — ) is the implication from ¢ to 1.

* (@ <> ) is the equivalence between ¢ and ). B
Lemma 1.11. Let S be at most countable. Then both TS and LS are countable.

Definition 1.12. Let t be an S-term. Then var(t) is the set of variables in t. Or inductively,

var(x) := {x},
var(c ) =0,
var(fty .. U var(t =
i€n

Definition 1.13. Let ¢ be an S-formula and x a variable. We say that an occurrence of x in ¢ is
free if it is not in the scope of any Vx or Ix. Otherwise, the occurrence is bound.

free() is the set of variables which have free occurrences in ¢. Or inductively,

free(t; = ty) := var(t;) Uvar(ty),
free(Rty -+ tn) == U var(t;),

ien]
free(—¢) := free(¢),
free(@ * ) .= free(@) U free(y) with x € {\,V,—, <},
free(Vx@) := free(p) \ {x},
free(Ix) := free(@) \ {x}. -

Example 1.14. The formula below shows that a variable might have both free and bound occur-
rences in the same formula.

free((Rxy — Yy—y = z)) = free(Rxy) U free(Vy—y = z)
={x,y}tU (free(y = 2) \ {y}) = {x,y,z} 2
Definition 1.15. An S-formula is an S-sentence if free(¢) = (. B
Recall that actual variables we can use are vg, v, .. ..
Definition 1.16. Let n € N. Then
L), := {¢ | ¢ an S-formula with free(¢) C {vo,...,vn_1}}.

In particular, L3 is the set of S-sentences. —|



2 The Semantics of First-order Logic

2.1 Structures and interpretations

We fix a symbol set S.

Definition 2.1. An S-structure is a pair 2l = (A, a) which satisfies the following conditions.
1. A # () is the universe of 2.
2. ais a function defined on S such that:

(a) Let R € S be an n-ary relation symbol. Then a(R) C A™.
(b) Let f € S be an n-ary function symbol. Then a(f) : A™ — A.
(c) a(c) € A for every constant ¢ € S.

For better readability, we write R, f%, and c%, or even R?, f*, and c”, instead of a(R), a(f), and
a(c). Thus for S = {R, f, ¢} we might write an S-structure as

A= (AR, %, c%) = (A, R, A, cM). 2

Examples 2.2. 1. For Sa; := {+,",0, 1} the Sx,-structure
9 = (N, 45, N, 0N, 1)

is the standard model of natural numbers with addition, multiplication, and constants 0 and
1.

2. For S5, == {+,,0,1, <} we have an S3,-structure
m< = (N: +N7 'Na ONy 1N: <N) >

i.e., the standard model of N with the natural ordering <. =

Definition 2.3. An assignment in an S-structure 2 is a mapping
B:{vi|ieN} = A. 2

Definition 2.4. An S-interpretation J is a pair (%, 3) where 2 is an S-structure and 3 is an
assignment in 2. .

Definition 2.5. Let 3 be an assignment in 2, a € A, and x a variable. Then (¢ is the assignment

defined by
a a, ify=x,
B X (y) = {[S(y), otherwise.
Then, for the S-interpretation J = (2, 3) we use J3 to denote the S-interpretation (Ql, [3%) -

2.2 The satisfaction relation J = ¢
We fix an S-interpretation J = (2, ).

Definition 2.6. For every S-term t we define its interpretation J(t) by induction on the construc-
tion of t.

(a) J(x) = B(x) for a variable x.



(b) J(c) =c* for a constant c € S.

(c) Let f € S be an n-ary function symbol and t;,...,t, S-terms. Then

I(ftr -+ tn) = 2 (3(t1), ..., I(tn)). -

Example 2.7. Let S := Sg; = {0, e} and J := (2, ) with 2 = (R, +,0), B(vo) = 2, and B(vy) = 6.
Then

J(voo(eovy)) =T(vo) +I(eovy)
2+ (J(e) +3(v2)) =2+ (0+6)=2+6=8. 2

Definition 2.8. Let ¢ be an S-formula. We define J = ¢ by induction on the construction of ¢.

(@ JEt =t2if J(t1) = J(t2).

(b) JE Rty -ty if (3(t1),...,3(tn)) € R

(c) JE —~@if T ¢ (i.e., it is not the case that J & ¢).

(d TE (@A) iIfTE ¢ and T .

(e TE(eV)ifTE@ord E.

) TE (¢ =) if T E ¢ implies T = 1.

(@) Tk (¢ ¢« V) if (J = ¢ ifand only if T = ).

(h) J | ¥xo if forall a € A we have 3% = o.

(i) 7 3xq if for some a € A we have 7§ = .

If 7 E ¢, then J is a model of ¢, of J satisfies .

Let @ be a set of S-formulas. Then J = @ if J = ¢ for all ¢ € ®. Similarly as above, we say that
J is a model of @, or J satisfies @. B

Example 2.9. Let S := Sg; and J := (2, B) with 2 = (R, +,0) and B(x) = 9 for all variables x.
Then

.
JEWYWyvoe=vy < forallr € Rwe have J— = vgoe = vy,
Vo

<= forallre Rwehaver+0=r. =

Definition 2.10. Let @ be a set of S-formulas and ¢ an S-formula. Then ¢ is a consequence of
@, written @ | ¢, if for any interpretation J it holds that J = ® implies J & .

For simplicity, in case ® = {\p} we write 1 = ¢ instead of {{} E o. .
Example 2.11. Let

DOgr :={Vvo¥1Vva (Vo 0 v1) 0 V2 = vg 0 (v 0 V),
Vvo Vo 0 € = Vg, YwoIvy Vo o vy = e}.
Then it can be shown that
q)Gr }: V\)o € o0Vgyg = Vp.

and
(OFen ): VV()HVl V1 o0Vvg = €. —

Definition 2.12. An S-formula ¢ is valid, written | ¢, if ) = ¢. Or equivalently, J & ¢ for any
J. B



Definition 2.13. An S-formula ¢ is satisfiable, if there exists an S-interpretation J with J = .
A set @ of S-formulas is satisfiable if there exists an S-interpretation J such that J = ¢ for every
ORSHON b

The next lemma is essentially the method of proof by contradiction.

Lemma 2.14. Let ® be a set of S-formulas and ¢ an S-formula. Then ® [ o if and only if ® U{—¢}
is not satisfiable. o

Proof:

® = ¢ <= Every model of ® is a model of ¢,
<= there is no model J with 7 = ® and J }£~ o,
<= there is no model J with J &= ® U{—¢},
<= ® U{—@} is not satisfiable. ad

Definition 2.15. Two S-formulas ¢ and 1 are logic equivalent if ¢ =1 and { & o. =

Example 2.16. Let ¢ be an S-formula. We define a logic equivalent ¢* which does not contain
the logic symbols N, —, >, V.

e =0 if ¢ is atomic,

(@) =097,
(@A) i==(0" V—YT),
(@ V)" = (" V),
(@ =)= (" V*),
(@ <) =—(0" V')V —(—e" V"),
(Vx@)" == —Ix—9",
(Ixe@)* := Ixe™.
Thus, it suffices to consider —,\V/, 3 as the only logic symbols in any given . o

3 Exercises

Exercise 3.1. Using first-order logic to express that

lim f(n) =4.

n—oo
In particular, please specify the symbol set S and the appropriate S-sentence.

Exercise 3.2. Let A be a finite nonempty set and S a finite symbol set. Show that there are only
finitely many S-structures with A as its universe.

Exercise 3.3. Let 2 and B be two S-structures. Their direct product 2 x B is the S-structure
defined as follows.

e The universe of 2 x B is A x B.

» For every n-ary relation symbol R € S

R*™® .= {((a1,b1),...,(an,bn)) | (a1,...,an) € R* and (by,...,bn) € R®}.

* For every n-ary function symbol f € S

2B ((a1,b1), ..., (An, bn)) = (a1, ..., an), F2(b1, ..., b))



» For every constant ¢ € S

Prove that:

(a) If 2 and B are both groups, then so is 2 x B.

(b) If 2 and B are both equivalence relations, then so is 2l x 8.
Exercise 3.4. Prove O, = Vvy e o vg = vg (cf. Example 2.11).

Exercise 3.5. An S-formula is positive if it contains no logic symbols —, —, and <>. Prove that
every positive formula is satisfiable.



