Mathematical Logic (II)

Yijia Chen

1 The Syntax of First-order Logic

Example 1.1 (Group Theory).
(G1) For all x, y, z we have $(x \circ y) \circ z=x \circ(y \circ z)$.
(G2) For all x we have $x \circ e=e$.
(G3) For every x there is a y such that $x \circ y=e$.
A group is a triple $\mathfrak{G}=\left(G, \circ^{\mathscr{G}}, e^{\mathfrak{G}}\right)$, i.e., a structure \mathfrak{G}, which satisfies (G1)-(G3).
Example 1.2 (Equivalence Relations).
(E1) For all x we have $(x, x) \in R$.
(E2) For all x and y if $(x, y) \in R$ then $(y, x) \in R$.
(E3) For all x, y, z if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.
An equivalence relation is specified by a structure $\mathfrak{A}=\left(A, R^{\mathfrak{A}}\right)$ in which R^{A} satisfies (E1)-(E3).

1.1 Alphabets

Definition 1.3. An alphabet is a nonempty set of symbols.
Definition 1.4. Let \mathbb{A} be an alphabet. Then a word w over \mathbb{A} is a finite sequence of symbols in \mathbb{A}, i.e.,

$$
w=w_{1} w_{2} \cdots w_{n}
$$

where $n \in \mathbb{N}$ and $w_{i} \in \mathbb{A}$ for every $\mathfrak{i} \in[n]=\{1, \ldots, n\}$. In case $n=0$, then w is the empty word, denoted by ε. The length $|w|$ of w is n. In particular, $|\varepsilon|=0$.
\mathbb{A}^{*} denotes the set of all words over \mathbb{A}, or equivalently

$$
\mathbb{A}^{*}=\bigcup_{n \in \mathbb{N}} A^{n}=\bigcup_{n \in \mathbb{N}}\left\{w_{1} \ldots w_{n} \mid w_{1}, \ldots, w_{n} \in \mathbb{A}\right\} .
$$

Countable sets

Later on, we will need to count the number of words over a given alphabet.
Definition 1.5. A set M is countable if there exists an injective function α from \mathbb{N} onto M, i.e., $\alpha: \mathbb{N} \rightarrow M$ is a bijection. Thereby, we can write

$$
M=\{\alpha(n) \mid n \in \mathbb{N}\}=\{\alpha(0), \alpha(1), \ldots, \alpha(n), \ldots\} .
$$

A set M is at most countable if M is either finite or countable.
Lemma 1.6. Let M be a non-empty set. Then the following are equivalent.
(a) M is at most countable.
(b) There is a surjective function $\mathrm{f}: \mathbb{N} \rightarrow \mathrm{M}$.
(c) There is an injective function $\mathrm{f}: \mathrm{M} \rightarrow \mathbb{N}$.

Lemma 1.7. Let \mathbb{A} be an alphabet which is at most countable. Then \mathbb{A}^{*} is countable.

1.2 The alphabet of a first-order language

Definition 1.8. The alphabet of a first-order language consists of the following symbols.
(a) v_{0}, v_{1}, \ldots (variables).
(b) $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, (negation, conjunction, disjunction, implication, if and only if).
(c) \forall, \exists, (for all, exists).
(d) \equiv, (equality).
(e) (,), (parentheses).
(f) (1) For every $n \geqslant 1$ a set of n-ary relation symbols.
(2) For every $n \geqslant 1$ a set of n-ary function symbols.
(3) A set of constants.

Note any set in (f) can be empty.
We use \mathbb{A} to denote the set of symbols in (a)-(e), i.e., the set of logic symbols, while S is the set of remaining symbols in (f). Then a first-order language has

$$
\mathbb{A}_{S}:=\mathbb{A} \cup S
$$

as its alphabet and S as its symbol set.
Thus every first-order language has the same set \mathbb{A} of logic symbols but might have different symbol set S.

1.3 Terms and formulas

Throughout this section, we fix a symbol set S.
Definition 1.9. The set T^{S} of S-terms contains precisely those words in \mathbb{A}_{S}^{*} which can be obtained by applying the following rules finitely many times.
(T1) Every variable is an S-term.
(T2) Every constant in S is an S -term.
(T3) If t_{1}, \ldots, t_{n} are S-terms and f is a n-ary function symbol in S, then $f t_{1} \ldots t_{n}$ is an S-term. \dashv
Definition 1.10. The set L^{S} of S-formulas contains precisely those words in \mathbb{A}_{S}^{*} which can be obtained by applying the following rules finitely many times.
(A1) Let t_{1} and t_{2} be two S-terms. Then $t_{1} \equiv t_{2}$ is an S-formula.
(A2) Let t_{1}, \ldots, t_{n} be S-terms and R an n-ary relation symbol in S. Then $R t_{1} \cdots t_{n}$ is also an S-formula.
(A3) If φ is an S-formula, then so is $\neg \varphi$.
(A4) If φ and ψ are S-formulas, then so is $(\varphi * \psi)$ where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.
(A5) Let φ be an S-formula and x a variable. Then $\forall x \varphi$ and $\exists x \varphi$ are S-formulas, too.
The formulas in (A1) and (A2) are atomic, as they don't contain any other S-formulas as subformulas.

- $\neg \varphi$ is the negation of φ.
- $(\varphi \wedge \psi)$ is the conjunction of φ and ψ.
- $(\varphi \vee \psi)$ is the disjunction of φ and ψ.
- $(\varphi \rightarrow \psi)$ is the implication from φ to ψ.
- $(\varphi \leftrightarrow \psi)$ is the equivalence between φ and ψ.

Lemma 1.11. Let S be at most countable. Then both T^{S} and L^{S} are countable.
Definition 1.12. Let t be an S-term. Then $\operatorname{var}(\mathrm{t})$ is the set of variables in t . Or inductively,

$$
\begin{aligned}
\operatorname{var}(\mathrm{x}) & :=\{\mathrm{x}\}, \\
\operatorname{var}(\mathrm{c}) & :=\emptyset, \\
\operatorname{var}\left(\mathrm{ft}_{1} \ldots \mathrm{t}_{\mathrm{n}}\right) & :=\bigcup_{\mathfrak{i} \in[\mathrm{n}]} \operatorname{var}\left(\mathfrak{t}_{\mathfrak{i}}\right) .
\end{aligned}
$$

Definition 1.13. Let φ be an S-formula and x a variable. We say that an occurrence of χ in φ is free if it is not in the scope of any $\forall x$ or $\exists x$. Otherwise, the occurrence is bound.
free (φ) is the set of variables which have free occurrences in φ. Or inductively,

$$
\begin{aligned}
\operatorname{free}\left(\mathrm{t}_{1} \equiv \mathrm{t}_{2}\right) & :=\operatorname{var}\left(\mathrm{t}_{1}\right) \cup \operatorname{var}\left(\mathrm{t}_{2}\right), \\
\operatorname{free}\left(\operatorname{Rt}_{1} \cdots \mathrm{t}_{\mathfrak{n}}\right) & :=\bigcup_{\mathfrak{i} \in[\mathfrak{n}]} \operatorname{var}\left(\mathrm{t}_{\mathrm{i}}\right), \\
\operatorname{free}(\neg \varphi) & :=\operatorname{free}(\varphi), \\
\operatorname{free}(\varphi * \psi) & :=\operatorname{free}(\varphi) \cup \text { free }(\psi) \quad \text { with } * \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}, \\
\operatorname{free}(\forall x \varphi) & :=\operatorname{free}(\varphi) \backslash\{x\}, \\
\operatorname{free}(\exists x \varphi) & :=\text { free }(\varphi) \backslash\{x\} .
\end{aligned}
$$

Example 1.14. The formula below shows that a variable might have both free and bound occurrences in the same formula.

$$
\begin{aligned}
\text { free }((\operatorname{Rxy} \rightarrow \forall y \neg y \equiv z)) & =\text { free }(\operatorname{Rxy}) \cup \text { free }(\forall y \neg y \equiv z) \\
& =\{x, y\} \cup(\text { free }(y \equiv z) \backslash\{y\})=\{x, y, z\} .
\end{aligned}
$$

Definition 1.15. An S-formula is an S-sentence if free $(\varphi)=\emptyset$.
Recall that actual variables we can use are v_{0}, v_{1}, \ldots.
Definition 1.16. Let $n \in \mathbb{N}$. Then

$$
\mathrm{L}_{n}^{S}:=\left\{\varphi \mid \varphi \text { an S-formula with free }(\varphi) \subseteq\left\{v_{0}, \ldots, v_{n-1}\right\}\right\} .
$$

In particular, L_{0}^{S} is the set of S-sentences.

2 The Semantics of First-order Logic

2.1 Structures and interpretations

We fix a symbol set S.
Definition 2.1. An S-structure is a pair $\mathfrak{A}=(A, \mathfrak{a})$ which satisfies the following conditions.

1. $A \neq \emptyset$ is the universe of \mathfrak{A}.
2. \mathfrak{a} is a function defined on S such that:
(a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^{n}$.
(b) Let $\mathrm{f} \in \mathrm{S}$ be an n -ary function symbol. Then $\mathfrak{a}(\mathrm{f}): A^{n} \rightarrow A$.
(c) $\mathfrak{a}(c) \in A$ for every constant $c \in S$.

For better readability, we write $R^{\mathfrak{A}}, f^{\mathfrak{A}}$, and $c^{\mathfrak{A}}$, or even $R^{A}, f^{\mathcal{A}}$, and $c^{\mathcal{A}}$, instead of $\mathfrak{a}(R), \mathfrak{a}(f)$, and $\mathfrak{a}(\mathrm{c})$. Thus for $S=\{R, f, c\}$ we might write an S-structure as

$$
\mathfrak{A}=\left(A, R^{\mathfrak{A}}, f^{\mathfrak{A}}, c^{\mathfrak{A}}\right)=\left(A, R^{\mathcal{A}}, f^{\mathcal{A}}, c^{\mathcal{A}}\right) .
$$

Examples 2.2. 1. For $\mathrm{S}_{\mathrm{Ar}}:=\{+, \cdot, 0,1\}$ the S_{Ar}-structure

$$
\mathfrak{N}=\left(\mathbb{N},+{ }^{\mathbb{N}}, \cdot^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}}\right)
$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and 1.
2. For $\mathrm{S}_{\mathrm{Ar}}^{<}:=\{+, \cdot, 0,1,<\}$ we have an $\mathrm{S}_{\mathrm{Ar}}^{<}$-structure

$$
\mathfrak{N}^{<}=\left(\mathbb{N},+^{\mathbb{N}}, \cdot^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}},<^{\mathbb{N}}\right)
$$

i.e., the standard model of \mathbb{N} with the natural ordering $<$.

Definition 2.3. An assignment in an S-structure \mathfrak{A} is a mapping

$$
\beta:\left\{v_{i} \mid i \in \mathbb{N}\right\} \rightarrow A
$$

Definition 2.4. An S-interpretation \mathfrak{I} is a pair (\mathfrak{A}, β) where \mathfrak{A} is an S-structure and β is an assignment in \mathfrak{A}.

Definition 2.5. Let β be an assignment in $\mathfrak{A}, a \in \mathcal{A}$, and x a variable. Then $\beta \frac{a}{x}$ is the assignment defined by

$$
\beta \frac{a}{x}(y):= \begin{cases}a, & \text { if } y=x \\ \beta(y), & \text { otherwise }\end{cases}
$$

Then, for the S-interpretation $\mathfrak{I}=(\mathfrak{A}, \beta)$ we use $\mathfrak{I} \frac{a}{x}$ to denote the S-interpretation $\left(\mathfrak{A}, \beta \frac{a}{x}\right)$.

2.2 The satisfaction relation $\mathfrak{I} \models \varphi$

We fix an S-interpretation $\mathfrak{I}=(\mathfrak{A}, \beta)$.
Definition 2.6. For every S-term t we define its interpretation $\mathfrak{I}(t)$ by induction on the construction of t.
(a) $\mathfrak{I}(x)=\beta(x)$ for a variable x.
(b) $\mathfrak{I}(\mathrm{c})=\mathfrak{c}^{\mathfrak{a}}$ for a constant $\mathrm{c} \in S$.
(c) Let $\mathrm{f} \in \mathrm{S}$ be an n -ary function symbol and $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}} \mathrm{S}$-terms. Then

$$
\mathfrak{I}\left(\mathrm{ft}_{1} \cdots \mathrm{t}_{n}\right)=\mathrm{f}^{\mathfrak{l}}\left(\mathfrak{I}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}\left(\mathrm{t}_{n}\right)\right) .
$$

Example 2.7. Let $S:=S_{G r}=\{0, e\}$ and $\mathfrak{I}:=(\mathfrak{A}, \beta)$ with $\mathfrak{A}=(\mathbb{R},+, 0), \beta\left(v_{0}\right)=2$, and $\beta\left(v_{2}\right)=6$. Then

$$
\begin{aligned}
\mathfrak{I}\left(v_{0} \circ\left(e \circ v_{2}\right)\right) & =\mathfrak{I}\left(v_{0}\right)+\Im\left(e \circ v_{2}\right) \\
& =2+\left(\Im(e)+\Im\left(v_{2}\right)\right)=2+(0+6)=2+6=8 .
\end{aligned}
$$

Definition 2.8. Let φ be an S-formula. We define $\mathfrak{I} \vDash \varphi$ by induction on the construction of φ.
(a) $\mathfrak{I} \vDash \mathrm{t}_{1} \equiv \mathrm{t}_{2}$ if $\mathfrak{I}\left(\mathrm{t}_{1}\right)=\mathfrak{I}\left(\mathrm{t}_{2}\right)$.
(b) $\mathfrak{I} \models R t_{1} \cdots t_{n}$ if $\left(\mathfrak{I}\left(t_{1}\right), \ldots, \mathfrak{I}\left(t_{n}\right)\right) \in R^{\mathfrak{N}}$.
(c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not \models \varphi$ (i.e., it is not the case that $\mathfrak{I} \models \varphi$).
(d) $\mathfrak{I} \models(\varphi \wedge \psi)$ if $\mathfrak{I} \models \varphi$ and $\mathfrak{I} \vDash \psi$.
(e) $\mathfrak{I} \models(\varphi \vee \psi)$ if $\mathfrak{I} \models \varphi$ or $\mathfrak{I} \models \psi$.
(f) $\mathfrak{I} \vDash(\varphi \rightarrow \psi)$ if $\mathfrak{I} \vDash \varphi$ implies $\mathfrak{I} \models \psi$.
(g) $\mathfrak{I} \models(\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi$ if and only if $\mathfrak{I} \models \psi)$.
(h) $\mathfrak{I} \models \forall x \varphi$ if for all $a \in \mathcal{A}$ we have $\mathfrak{J} \frac{a}{\chi} \models \varphi$.
(i) $\mathfrak{I} \models \exists x \varphi$ if for some $a \in A$ we have $\mathfrak{I} \frac{a}{x} \models \varphi$.

If $\mathfrak{I} \models \varphi$, then \mathfrak{I} is a model of φ, of \mathfrak{I} satisfies φ.
Let Φ be a set of \mathcal{S}-formulas. Then $\mathfrak{I} \models \Phi$ if $\mathfrak{I} \models \varphi$ for all $\varphi \in \Phi$. Similarly as above, we say that \mathfrak{I} is a model of Φ, or \mathfrak{I} satisfies Φ.

Example 2.9. Let $S:=S_{G r}$ and $\mathfrak{I}:=(\mathfrak{A}, \beta)$ with $\mathfrak{A}=(\mathbb{R},+, 0)$ and $\beta(x)=9$ for all variables x. Then

$$
\begin{aligned}
\mathfrak{I} \models \forall v_{0} v_{0} \circ e \equiv v_{0} & \Longleftrightarrow \text { for all } \mathrm{r} \in \mathbb{R} \text { we have } \mathfrak{I} \frac{\mathrm{r}}{v_{0}} \models v_{0} \circ e \equiv v_{0}, \\
& \Longleftrightarrow \text { for all } \mathrm{r} \in \mathbb{R} \text { we have } \mathrm{r}+0=\mathrm{r} .
\end{aligned}
$$

Definition 2.10. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a consequence of Φ, written $\Phi \models \varphi$, if for any interpretation \mathfrak{I} it holds that $\mathfrak{I} \models \Phi$ implies $\mathfrak{I} \models \varphi$.
For simplicity, in case $\Phi=\{\psi\}$ we write $\psi \models \varphi$ instead of $\{\psi\} \models \varphi$.
Example 2.11. Let

$$
\begin{aligned}
\Phi_{\mathrm{Gr}}:=\left\{\forall v_{0} \forall v_{1} \forall v_{2}\right. & \left(v_{0} \circ v_{1}\right) \circ v_{2} \equiv v_{0} \circ\left(v_{1} \circ v_{2}\right), \\
& \left.\forall v_{0} v_{0} \circ e \equiv v_{0}, \forall v_{0} \exists v_{1} v_{0} \circ v_{1} \equiv e\right\} .
\end{aligned}
$$

Then it can be shown that

$$
\Phi_{\mathrm{Gr}} \models \forall v_{0} e \circ v_{0} \equiv v_{0} .
$$

and

$$
\Phi_{\mathrm{Gr}} \models \forall v_{0} \exists v_{1} v_{1} \circ v_{0} \equiv e .
$$

Definition 2.12. An S-formula φ is valid, written $\models \varphi$, if $\emptyset \vDash \varphi$. Or equivalently, $\mathfrak{I} \vDash \varphi$ for any I.

Definition 2.13. An S-formula φ is satisfiable, if there exists an S-interpretation \mathfrak{I} with $\mathfrak{I} \vDash \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation \mathfrak{I} such that $\mathfrak{I} \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of proof by contradiction.
Lemma 2.14. Let Φ be a set of S-formulas and φ an S-formula. Then $\Phi \vDash \varphi$ if and only if $\Phi \cup\{\neg \varphi\}$ is not satisfiable.

Proof:

$$
\begin{aligned}
\Phi \models \varphi & \Longleftrightarrow \text { Every model of } \Phi \text { is a model of } \varphi, \\
& \Longleftrightarrow \text { there is no model } \mathfrak{I} \text { with } \mathfrak{I} \models \Phi \text { and } \mathfrak{I} \not \models \varphi, \\
& \Longleftrightarrow \text { there is no model } \mathfrak{I} \text { with } \mathfrak{I} \models \Phi \cup\{\neg \varphi\}, \\
& \Longleftrightarrow \Phi \cup\{\neg \varphi\} \text { is not satisfiable. }
\end{aligned}
$$

Definition 2.15. Two S-formulas φ and ψ are logic equivalent if $\varphi \models \psi$ and $\psi \models \varphi$.
Example 2.16. Let φ be an S-formula. We define a logic equivalent φ^{*} which does not contain the logic symbols $\wedge, \rightarrow, \leftrightarrow, \forall$.

$$
\begin{aligned}
\varphi^{*} & :=\varphi \quad \text { if } \varphi \text { is atomic, } \\
(\neg \varphi)^{*} & :=\neg \varphi^{*}, \\
(\varphi \wedge \psi)^{*} & :=\neg\left(\neg \varphi^{*} \vee \neg \psi^{*}\right), \\
(\varphi \vee \psi)^{*} & :=\left(\varphi^{*} \vee \psi^{*}\right), \\
(\varphi \rightarrow \psi)^{*} & :=\left(\neg \varphi^{*} \vee \psi^{*}\right), \\
(\varphi \leftrightarrow \psi)^{*} & :=\neg\left(\varphi^{*} \vee \psi^{*}\right) \vee \neg\left(\neg \varphi^{*} \vee \neg \psi^{*}\right), \\
(\forall x \varphi)^{*} & :=\neg \exists \neg \neg \varphi^{*}, \\
(\exists x \varphi)^{*} & :=\exists x \varphi^{*} .
\end{aligned}
$$

Thus, it suffices to consider \neg, \vee, \exists as the only logic symbols in any given φ.

3 Exercises

Exercise 3.1. Using first-order logic to express that

$$
\lim _{n \rightarrow \infty} f(n)=4 .
$$

In particular, please specify the symbol set S and the appropriate S-sentence.
Exercise 3.2. Let A be a finite nonempty set and S a finite symbol set. Show that there are only finitely many S-structures with A as its universe.

Exercise 3.3. Let \mathfrak{A} and \mathfrak{B} be two S-structures. Their direct product $\mathfrak{A} \times \mathfrak{B}$ is the S-structure defined as follows.

- The universe of $\mathfrak{A} \times \mathfrak{B}$ is $\mathcal{A} \times B$.
- For every n-ary relation symbol $R \in S$

$$
\mathbb{R}^{\mathfrak{A} \times \mathfrak{B}}:=\left\{\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \text { and }\left(b_{1}, \ldots, b_{n}\right) \in R^{\mathfrak{B}}\right\} .
$$

- For every n-ary function symbol $f \in S$

$$
f^{\mathfrak{A} \times \mathfrak{B}}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right):=\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathfrak{B}}\left(b_{1}, \ldots, b_{n}\right)\right)
$$

- For every constant $\mathrm{c} \in \mathrm{S}$

$$
c^{\mathfrak{A} \times \mathfrak{B}}:=\left(c^{\mathfrak{A}}, c^{\mathfrak{B}}\right) .
$$

Prove that:
(a) If \mathfrak{A} and \mathfrak{B} are both groups, then so is $\mathfrak{A} \times \mathfrak{B}$.
(b) If \mathfrak{A} and \mathfrak{B} are both equivalence relations, then so is $\mathfrak{A} \times \mathfrak{B}$.

Exercise 3.4. Prove $\Phi_{\mathrm{Gr}} \models \forall v_{0} e \circ v_{0} \equiv v_{0}$ (cf. Example 2.11).
Exercise 3.5. An S-formula is positive if it contains no logic symbols \neg, \rightarrow, and \leftrightarrow. Prove that every positive formula is satisfiable.

