Mathematical Logic (III)

Yijia Chen

1 The Semantics of First-order Logic

1.1 Structures and interpretations

We fix a symbol set S.

Definition 1.1. An S-structure is a pair $\mathfrak{A} = (A, \mathfrak{a})$ which satisfies the following conditions.

- 1. $A \neq \emptyset$ is the **universe** of \mathfrak{A} .
- 2. a is a function defined on S such that:
 - (a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^n$.
 - (b) Let $f \in S$ be an n-ary function symbol. Then $\mathfrak{a}(f) : A^n \to A$.
 - (c) $\mathfrak{a}(c) \in A$ for every constant $c \in S$.

For better readability, we write $R^{\mathfrak{A}}$, $f^{\mathfrak{A}}$, and $c^{\mathfrak{A}}$, or even R^{A} , f^{A} , and c^{A} , instead of $\mathfrak{a}(R)$, $\mathfrak{a}(f)$, and $\mathfrak{a}(c)$. Thus for $S = \{R, f, c\}$ we might write an S-structure as

$$\mathfrak{A} = (\mathsf{A}, \mathsf{R}^{\mathfrak{A}}, \mathsf{f}^{\mathfrak{A}}, \mathsf{c}^{\mathfrak{A}}) = (\mathsf{A}, \mathsf{R}^{\mathsf{A}}, \mathsf{f}^{\mathsf{A}}, \mathsf{c}^{\mathsf{A}}) \,. \qquad \qquad \dashv$$

Examples 1.2. 1. For $S_{Ar} := \{+, \cdot, 0, 1\}$ the S_{Ar} -structure

$$\mathfrak{N}=(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and 1.

2. For $S_{Ar}^{<} := \{+, \cdot, 0, 1, <\}$ we have an $S_{Ar}^{<}$ -structure

$$\mathfrak{N}^<=(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}},<^{\mathbb{N}})$$
 .

i.e., the standard model of $\mathbb N$ with the natural ordering <.

Definition 1.3. An **assignment** in an S-structure \mathfrak{A} is a mapping

$$\beta: \{ v_i \mid i \in \mathbb{N} \} \to A. \qquad \exists$$

 \neg

Definition 1.4. An S-interpretation \mathfrak{I} is a pair (\mathfrak{A}, β) where \mathfrak{A} is an S-structure and β is an assignment in \mathfrak{A} .

Definition 1.5. Let β be an assignment in \mathfrak{A} , $a \in A$, and x a variable. Then $\beta \frac{a}{x}$ is the assignment defined by

$$\beta \frac{a}{x}(y) := \begin{cases} a, & \text{if } y = x, \\ \beta(y), & \text{otherwise.} \end{cases}$$

Then, for the S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ we use $\mathfrak{I}_{\frac{\alpha}{\lambda}}^{\underline{\alpha}}$ to denote the S-interpretation $(\mathfrak{A}, \beta_{\frac{\alpha}{\lambda}})$. \dashv

1.2 The satisfaction relation $\Im \models \varphi$

We fix an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$.

Definition 1.6. For every S-term t we define its **interpretation** $\Im(t)$ by induction on the construction of t.

- (a) $\Im(x) = \beta(x)$ for a variable x.
- (b) $\mathfrak{I}(c) = c^{\mathfrak{A}}$ for a constant $c \in S$.
- (c) Let $f \in S$ be an n-ary function symbol and t_1, \ldots, t_n S-terms. Then

$$\Im\big(\mathsf{f} \mathsf{t}_1 \cdots \mathsf{t}_n\big) = \mathsf{f}^{\mathfrak{A}}\big(\Im(\mathsf{t}_1), \dots, \Im(\mathsf{t}_n)\big). \qquad \quad \dashv$$

Example 1.7. Let $S := S_{Gr} = \{\circ, e\}$ and $\mathfrak{I} := (\mathfrak{A}, \beta)$ with $\mathfrak{A} = (\mathbb{R}, +, 0)$, $\beta(\nu_0) = 2$, and $\beta(\nu_2) = 6$. Then

$$\begin{split} \mathfrak{I}\big(\mathfrak{v}_0\circ(e\circ\mathfrak{v}_2)\big) &= \mathfrak{I}(\mathfrak{v}_0) + \mathfrak{I}(e\circ\mathfrak{v}_2) \\ &= 2 + \big(\mathfrak{I}(e) + \mathfrak{I}(\mathfrak{v}_2)\big) = 2 + (0+6) = 2 + 6 = 8. \end{split} \quad \quad \dashv \quad \end{split}$$

Definition 1.8. Let φ be an S-formula. We define $\mathfrak{I} \models \varphi$ by induction on the construction of φ .

- (a) $\mathfrak{I} \models \mathfrak{t}_1 \equiv \mathfrak{t}_2$ if $\mathfrak{I}(\mathfrak{t}_1) = \mathfrak{I}(\mathfrak{t}_2)$.
- (b) $\mathfrak{I} \models \mathsf{Rt}_1 \cdots t_n$ if $(\mathfrak{I}(t_1), \ldots, \mathfrak{I}(t_n)) \in \mathsf{R}^{\mathfrak{A}}$.
- (c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not\models \varphi$ (i.e., it is **not** the case that $\mathfrak{I} \models \varphi$).
- (d) $\mathfrak{I} \models (\phi \land \psi)$ if $\mathfrak{I} \models \phi$ and $\mathfrak{I} \models \psi$.
- (e) $\mathfrak{I} \models (\phi \lor \psi)$ if $\mathfrak{I} \models \phi$ or $\mathfrak{I} \models \psi$.
- (f) $\mathfrak{I} \models (\phi \rightarrow \psi)$ if $\mathfrak{I} \models \phi$ implies $\mathfrak{I} \models \psi$.
- (g) $\mathfrak{I} \models (\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi \text{ if and only if } \mathfrak{I} \models \psi)$.
- (h) $\mathfrak{I} \models \forall x \varphi$ if for all $\mathfrak{a} \in A$ we have $\mathfrak{I}_{\overline{x}}^{\underline{\mathfrak{a}}} \models \varphi$.
- (i) $\mathfrak{I} \models \exists x \varphi$ if for some $\mathfrak{a} \in A$ we have $\mathfrak{I}_{\overline{x}}^{\underline{\mathfrak{a}}} \models \varphi$.

If $\mathfrak{I} \models \varphi$, then \mathfrak{I} is a **model** of φ , of \mathfrak{I} **satisfies** φ .

Let Φ be a set of S-formulas. Then $\mathfrak{I} \models \Phi$ if $\mathfrak{I} \models \phi$ for all $\phi \in \Phi$. Similarly as above, we say that \mathfrak{I} is a model of Φ , or \mathfrak{I} satisfies Φ .

Example 1.9. Let $S := S_{Gr}$ and $\mathfrak{I} := (\mathfrak{A}, \beta)$ with $\mathfrak{A} = (\mathbb{R}, +, 0)$ and $\beta(x) = 9$ for all variables x. Then

$$\mathfrak{I} \models \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0 \iff \text{for all } r \in \mathbb{R} \text{ we have } \mathfrak{I} \frac{r}{\nu_0} \models \nu_0 \circ e \equiv \nu_0, \\ \iff \text{for all } r \in \mathbb{R} \text{ we have } r + 0 = r.$$

Definition 1.10. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a **consequence of** Φ , written $\Phi \models \varphi$, if for any interpretation \Im it holds that $\Im \models \Phi$ implies $\Im \models \varphi$.

For simplicity, in case $\Phi = \{\psi\}$ we write $\psi \models \varphi$ instead of $\{\psi\} \models \varphi$. \dashv

Example 1.11. Let

$$\begin{split} \Phi_{\mathrm{Gr}} := & \{ \forall \nu_0 \forall \nu_1 \forall \nu_2 \ (\nu_0 \circ \nu_1) \circ \nu_2 \equiv \nu_0 \circ (\nu_1 \circ \nu_2), \\ & \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0, \forall \nu_0 \exists \nu_1 \ \nu_0 \circ \nu_1 \equiv e \}. \end{split}$$

Then it can be shown that

$$\Phi_{\rm Gr} \models \forall v_0 \ e \circ v_0 \equiv v_0.$$

and

$$\Phi_{\rm Gr} \models \forall \nu_0 \exists \nu_1 \ \nu_1 \circ \nu_0 \equiv e. \qquad \qquad \dashv$$

Definition 1.12. An S-formula φ is **valid**, written $\models \varphi$, if $\emptyset \models \varphi$. Or equivalently, $\mathfrak{I} \models \varphi$ for any \mathfrak{I} .

Definition 1.13. An S-formula φ is **satisfiable**, if there exists an S-interpretation \Im with $\Im \models \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation \Im such that $\Im \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of **proof by contradiction**.

Lemma 1.14. Let Φ be a set of S-formulas and φ an S-formula. Then $\Phi \models \varphi$ if and only if $\Phi \cup \{\neg \varphi\}$ is not satisfiable.

Proof:

$$\Phi \models \varphi \iff \text{Every model of } \Phi \text{ is a model of } \varphi,$$

$$\iff \text{ there is no model } \Im \text{ with } \Im \models \Phi \text{ and } \Im \not\models \varphi,$$

$$\iff \text{ there is no model } \Im \text{ with } \Im \models \Phi \cup \{\neg \varphi\},$$

$$\iff \Phi \cup \{\neg \varphi\} \text{ is not satisfiable.}$$

Definition 1.15. Two S-formulas φ and ψ are **logic equivalent** if $\varphi \models \psi$ and $\psi \models \varphi$.

Example 1.16. Let ϕ be an S-formula. We define a logic equivalent ϕ^* which does not contain the logic symbols $\land, \rightarrow, \leftrightarrow, \forall$.

$$\begin{split} \varphi^* &:= \varphi & \text{if } \varphi \text{ is atomic,} \\ (\neg \varphi)^* &:= \neg \varphi^*, \\ (\varphi \land \psi)^* &:= \neg (\neg \varphi^* \lor \neg \psi^*), \\ (\varphi \lor \psi)^* &:= (\varphi^* \lor \psi^*), \\ (\varphi \leftrightarrow \psi)^* &:= (\neg \varphi^* \lor \psi^*), \\ (\varphi \leftrightarrow \psi)^* &:= \neg (\varphi^* \lor \psi^*) \lor \neg (\neg \varphi^* \lor \neg \psi^*), \\ (\forall x \varphi)^* &:= \neg \exists x \neg \varphi^*, \\ (\exists x \varphi)^* &:= \exists x \varphi^*. \end{split}$$

Thus, it suffices to consider \neg , \lor , \exists as the only logic symbols in any given φ .

Lemma 1.17 (The Coincidence Lemma). For $i \in \{1, 2\}$ let $\mathfrak{I}_i = (\mathfrak{A}_i, \beta_i)$ be an S_i -interpretation such that $A_1 = A_2$ and every symbol in $S := S_1 \cap S_2$ has the same interpretation in \mathfrak{A}_1 and \mathfrak{A}_2 .

- (a) Let t be an S-term (thus also an S₁-term and an S₂-term). Assume further that $\beta_1(x) = \beta_2(x)$ for every variable $x \in var(t)$. Then $\mathfrak{I}_1(t) = \mathfrak{I}_2(t)$.
- (b) Let φ be an S-formula where $\beta_1(x) = \beta_2(x)$ for every $x \in \text{free}(\varphi)$. Then

$$\mathfrak{I}_1\models \varphi \iff \mathfrak{I}_2\models \varphi.$$

 \dashv

 \dashv

Proof: (a) We prove by induction on t.

- t = x. Then $\mathfrak{I}_1(x) = \beta_1(x) = \beta_2(x) = \mathfrak{I}_2(x)$.
- t = c. We deduce $\mathfrak{I}_1(c) = c^{\mathfrak{A}_1} = c^{\mathfrak{A}_2} = \mathfrak{I}_2(x)$.
- $t = ft_1 \cdots t_n$. It holds that

$$\begin{split} \mathfrak{I}_1(\mathsf{f} \mathsf{t}_1 \cdots \mathsf{t}_n) &= \mathsf{f}^{\mathfrak{A}_1}\big(\mathfrak{I}_1(\mathsf{t}_1), \dots, \mathfrak{I}_2(\mathsf{t}_n)\big) \\ &= \mathsf{f}^{\mathfrak{A}_2}\big(\mathfrak{I}_1(\mathsf{t}_1), \dots, \mathfrak{I}_1(\mathsf{t}_n)\big) \\ &= \mathsf{f}^{\mathfrak{A}_2}\big(\mathfrak{I}_2(\mathsf{t}_1), \dots, \mathfrak{I}_2(\mathsf{t}_n)\big) \\ &= \mathfrak{I}_2(\mathsf{f} \mathsf{t}_1 \cdots \mathsf{t}_n). \end{split}$$

(b) The induction proof is on the structure of φ .

• $\phi = t_1 \equiv t_2$. We have

$$\begin{split} \mathfrak{I}_1 &\models t_1 \equiv t_2 \iff \mathfrak{I}_1(t_1) = \mathfrak{I}_1(t_2) \\ \iff \mathfrak{I}_2(t_1) = \mathfrak{I}_2(t_2) \\ \iff \mathfrak{I}_2 \models t_1 \equiv t_2. \end{split}$$
 (by (a))

• $\phi = Rt_1 \cdots t_n$. Then

$$\begin{split} \mathfrak{I}_1 &\models \mathsf{Rt}_1 \cdots \mathfrak{t}_n \iff \big(\mathfrak{I}_1(\mathfrak{t}_1), \dots, \mathfrak{I}_1(\mathfrak{t}_n)\big) \in \mathsf{R}^{\mathfrak{A}_1} \\ \iff \big(\mathfrak{I}_1(\mathfrak{t}_1), \dots, \mathfrak{I}_1(\mathfrak{t}_n)\big) \in \mathsf{R}^{\mathfrak{A}_2} \\ \iff \big(\mathfrak{I}_2(\mathfrak{t}_1), \dots, \mathfrak{I}_2(\mathfrak{t}_n)\big) \in \mathsf{R}^{\mathfrak{A}_2} \\ \iff \mathfrak{I}_2 \models \mathsf{Rt}_1 \cdots \mathfrak{t}_n. \end{split}$$

• $\phi = \neg \psi$. We conclude

$$\mathfrak{I}_1\models\neg\psi\iff\mathfrak{I}_1\not\models\psi\iff\mathfrak{I}_2\not\models\psi\iff\mathfrak{I}_2\models\neg\psi.$$

•
$$\varphi = (\psi \lor \chi).$$

$$\begin{array}{l} \mathfrak{I}_1 \models (\psi \lor \chi) \iff \mathfrak{I}_1 \models \psi \text{ or } \mathfrak{I}_1 \models \chi \\ \iff \mathfrak{I}_2 \models \psi \text{ or } \mathfrak{I}_2 \models \chi \\ \iff \mathfrak{I}_2 \models (\psi \lor \chi). \end{array}$$

• $\phi = \exists x \psi$.

$$\begin{split} \mathfrak{I}_1 &\models \exists x \psi \iff \text{ for some } a \in A_1 \text{ we have } \mathfrak{I}_1 \frac{a}{\chi} \models \psi \\ \iff \text{ for some } a \in A_1 \text{ we have } \mathfrak{I}_2 \frac{a}{\chi} \models \psi \\ & \left(\text{by induction hypothesis on } \mathfrak{I}_1 \frac{a}{\chi}, \mathfrak{I}_2 \frac{a}{\chi}, \text{ and } \psi \right) \\ \iff \mathfrak{I}_2 \models \exists x \psi. \end{split}$$

Remark 1.18. Let $\varphi \in L_n^S$, i.e., φ is an S-formula with free $(\varphi) \subseteq \{\nu_0, \dots, \nu_{n-1}\}$. By the coincidence lemma whether $\mathfrak{I} = (\mathfrak{A}, \beta) \models \varphi$ is completely determined by \mathfrak{A} and $\beta(\nu_0), \dots, \beta(\nu_{n-1})$. So in case $\mathfrak{I} \models \varphi$ we can write

$$\mathfrak{A} \models \varphi[\mathfrak{a}_0, \dots, \mathfrak{a}_{n-1}]$$

where $a_i := \beta(v_i)$ for $0 \le i < n$. In particular, if ϕ is an S-sentence, i.e., $\phi \in L_0^S$, then $\mathfrak{A} \models \phi$ is well-defined.

Similarly, we write

$$t^{\mathfrak{A}}[\mathfrak{a}_0,\ldots,\mathfrak{a}_{n-1}]$$

instead of $\mathfrak{I}(t)$.

Definition 1.19. Let \mathfrak{A} and \mathfrak{B} be two S-structures.

- (a) A mapping $\pi : A \to B$ is an **isomorphism from** \mathfrak{A} to \mathfrak{B} (in short $\pi : \mathfrak{A} \cong \mathfrak{B}$) if the following conditions are satisfied.
 - (i) π is a bijection.
 - (ii) For any n-ary relation symbol $R \in S$ and $a_0, \ldots, a_{n-1} \in A$

$$(\mathfrak{a}_0,\ldots,\mathfrak{a}_{n-1})\in \mathbb{R}^{\mathfrak{A}} \iff (\pi(\mathfrak{a}_0),\ldots,\pi(\mathfrak{a}_{n-1}))\in \mathbb{R}^{\mathfrak{B}}.$$

(iii) For any n-ary function symbol $f \in S$ and $a_0, \ldots, a_{n-1} \in A$

$$\pi(\mathbf{f}^{\mathfrak{A}}(\mathfrak{a}_0,\ldots,\mathfrak{a}_{n-1}))=\mathbf{f}^{\mathfrak{B}}(\pi(\mathfrak{a}_0),\ldots,\pi(\mathfrak{a}_{n-1})).$$

(iv) For any constant $c \in S$

$$\pi(\mathbf{c}^{\mathfrak{A}}) = \mathbf{c}^{\mathfrak{B}}.$$

(b) \mathfrak{A} and \mathfrak{B} are isomorphic, written $\mathfrak{A} \cong \mathfrak{B}$, if there is an isomorphism $\pi : \mathfrak{A} \to \mathfrak{B}$. \dashv

Observe that the above definition is not symmetric. However we can easily show:

Lemma 1.20. \cong is an equivalence relation. That is, for all S-structures $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$

- 1. $\mathfrak{A} \cong \mathfrak{A}$;
- 2. $\mathfrak{A} \cong \mathfrak{B}$ implies $\mathfrak{B} \cong \mathfrak{A}$;
- 3. *if* $\mathfrak{A} \cong \mathfrak{B}$ *and* $\mathfrak{B} \cong \mathfrak{C}$ *, then* $\mathfrak{A} \cong \mathfrak{C}$ *.*

Lemma 1.21 (The Isomorphism Lemma). Let \mathfrak{A} and \mathfrak{B} be two isomorphic S-structures. Then for every S-sentence φ

$$\mathfrak{A}\models \phi \quad \Longleftrightarrow \quad \mathfrak{B}\models \phi.$$

+

 \dashv

+

Proof: Let β be an assignment in \mathfrak{A} . By the coincidence lemma, it suffices to show that there is an assignment β' in \mathfrak{B} such that

$$(\mathfrak{A}, \beta) \models \varphi \quad \Longleftrightarrow \quad (\mathfrak{B}, \beta') \models \varphi, \tag{1}$$

where φ is an S-sentence.

Let $\pi : \mathfrak{A} \cong \mathfrak{B}$ and we define an assignment β^{π} in \mathfrak{B} by

$$\beta^{\pi}(\mathbf{x}) := \pi(\beta(\mathbf{x}))$$

for any variable x. Then we prove for any S-formula ϕ

$$(\mathfrak{A}, \beta) \models \varphi \iff (\mathfrak{B}, \beta^{\pi}) \models \varphi,$$
 (2)

which certainly generalizes (1). To simplify notation, let $\mathfrak{I} := (\mathfrak{A}, \beta)$ and $\mathfrak{I}^{\pi} := (\mathfrak{B}, \beta^{\pi})$. First, it is routine to verify that for every S-term t

$$\pi(\mathfrak{I}(\mathfrak{t})) = \mathfrak{I}^{\pi}(\mathfrak{t}). \tag{3}$$

Then we prove (2) by induction on the construction of S-formula φ .

• $\phi = t_1 \equiv t_2$. Then

$$\begin{split} \mathfrak{I} &\models \mathfrak{t}_1 \equiv \mathfrak{t}_2 \iff \mathfrak{I}(\mathfrak{t}_1) = \mathfrak{I}(\mathfrak{t}_2) \\ \iff \pi(\mathfrak{I}(\mathfrak{t}_1)) = \pi(\mathfrak{I}(\mathfrak{t}_2)) & \text{(since } \pi \text{ is an injection)} \\ \iff \mathfrak{I}^{\pi}(\mathfrak{t}_1) = \mathfrak{I}^{\pi}(\mathfrak{t}_2) & \text{(by (3))} \\ \iff \mathfrak{I}^{\pi} \models \mathfrak{t}_1 \equiv \mathfrak{t}_2. \end{split}$$

• $\phi = Rt_1 \cdots t_n$.

$$\begin{split} \mathfrak{I} &\models \mathsf{R} t_1 \cdots t_n \iff \big(\mathfrak{I}(t_1), \dots, \mathfrak{I}(t_n) \big) \in \mathsf{R}^{\mathfrak{A}} \\ \iff \big(\pi(\mathfrak{I}(t_1)), \dots, \pi(\mathfrak{I}(t_n)) \big) \in \mathsf{R}^{\mathfrak{B}} \\ \iff \big(\mathfrak{I}^{\pi}(t_1), \dots, \mathfrak{I}^{\pi}(t_n) \big) \in \mathsf{R}^{\mathfrak{B}} \\ \iff \mathfrak{I}^{\pi} \models \mathsf{R} t_1 \cdots t_n. \end{split}$$
 (by (3))

• $\phi = \neg \psi$. It follows that $\mathfrak{I} \models \neg \psi \iff \mathfrak{I} \not\models \psi \iff \mathfrak{I}^{\pi} \not\models \neg \psi$.

- $\phi=\psi \lor \chi.$ The inductive argument is similar to the above $\neg \psi.$
- $\phi = \exists x \psi$. This is again the most complicated case.

$$\mathfrak{I} \models \exists x \psi \iff \text{ there exists an } a \in A \text{ such that } \mathfrak{I} \frac{a}{x} = \left(\mathfrak{A}, \beta \frac{a}{x}\right) \models \psi \\ \iff \text{ there exists an } a \in A \text{ such that } \left(\mathfrak{I} \frac{a}{x}\right)^{\pi} = \left(\mathfrak{A}, \beta \frac{a}{x}\right)^{\pi} \models \psi, \\ \left(\text{by induction hypothesis on } \mathfrak{I} \frac{a}{x}, \left(\mathfrak{I} \frac{a}{x}\right)^{\pi}, \text{ and } \psi\right) \\ \text{ that is, there exists an } a \in A \text{ such that } \left(\mathfrak{B}, \beta^{\pi} \frac{\pi(a)}{x}\right) \models \psi \\ \iff \text{ there exists a } b \in B \text{ such that } \left(\mathfrak{B}, \beta^{\pi} \frac{b}{x}\right) \models \psi \qquad \text{ (since } \pi \text{ is surjective)} \\ \text{ i.e., there exists a } b \in B \text{ with } \mathfrak{I}^{\pi} \frac{b}{x} = (\mathfrak{B}, \beta^{\pi}) \frac{b}{x} \models \psi \\ \iff \mathfrak{I}^{\pi} \models \exists x \psi.$$

This finishes the proof.

Corollary 1.22. Let
$$\pi : \mathfrak{A} \cong \mathfrak{B}$$
 and $\varphi \in L_n^S$. Then for every a_0, \ldots, a_{n-1}
 $\mathfrak{A} \models \varphi[a_0, \ldots, a_{n-1}] \iff \mathfrak{B} \models \varphi[\pi(a_0), \ldots, \pi(a_{n-1})]$

4		
		•