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1 The Semantics of First-order Logic

1.1 Structures and interpretations

We fix a symbol set S.

Definition 1.1. An S-structure is a pair 2 = (A, a) which satisfies the following conditions.
1. A # 0 is the universe of 2L.
2. ais a function defined on S such that:

(a) Let R € S be an n-ary relation symbol. Then a(R) C A™.
(b) Let f € S be an n-ary function symbol. Then a(f) : A™ — A.
(c) a(c) € A for every constant ¢ € S.

For better readability, we write R, f%, and c%, or even R?, f*, and c”, instead of a(R), a(f), and
a(c). Thus for S = {R, f, ¢} we might write an S-structure as

A= (AR, %, c%) = (A, R, A, M), =

Examples 1.2. 1. For Sa; := {—i—, -, 0,1} the Sa;-structure
9 = (N, 45, N, 0%, 1)

is the standard model of natural numbers with addition, multiplication, and constants 0 and
1.

2. For Sy, := {+, -,0,1, <} we have an Sg,-structure
m< = (N: +N7 'NJ ONy 1N: <N) >

i.e., the standard model of N with the natural ordering <. B

Definition 1.3. An assignment in an S-structure 2 is a mapping

B:{vi|ieN} = A. 2
Definition 1.4. An S-interpretation J is a pair (2, 3) where 2 is an S-structure and 3 is an
assignment in 2. B
Definition 1.5. Let 3 be an assignment in 2, a € A, and x a variable. Then (¢ is the assignment
defined by
a a, ify=x,
B-(y) = -
X B(y), otherwise.
Then, for the S-interpretation J = (2, ) we use J< to denote the S-interpretation (2, 32 ). .



1.2 The satisfaction relation J = ¢
We fix an S-interpretation J = (2, ).

Definition 1.6. For every S-term t we define its interpretation J(t) by induction on the construc-
tion of t.

(a) J(x) = B(x) for a variable x.
(b) J(c) = c* for a constant ¢ € S.

(c) Let f € S be an n-ary function symbol and t;,...,t, S-terms. Then

I(ftr - tn) =2 (3(t1), ..., I(tn)). .

Example 1.7. Let S := Sg; = {0, e} and J := (2, ) with 2 = (R, +,0), B(vo) = 2, and B(vy) = 6.
Then

J(voo(eovs)) =T(vo) +I(eovy)
=2+ (J(e)+T(v2)) =2+ (0+6)=2+6=8. -
Definition 1.8. Let ¢ be an S-formula. We define J = ¢ by induction on the construction of ¢.
@ TEtH =t if I(t1) =J(t2).
(b) JE Rty -ty if (3(t1),...,T(tn)) € R%.
(c) TE —o@ if Tt ¢ (i.e., it is not the case that T &= ¢).
(d TE (@A) ifTE @and T ).
@ TE(eVY)ifTE @orJ 1.
) TE (¢ =) if T E @ implies T = 1.
=
=

(S

(@) Tk (¢ & V) if (T ¢ ifand only if T = ).
(h) 7 Vxo if for all a € A we have 3% = o.
(i) J F Ixe if for some a € A we have T3 |= .

If 7 = ¢, then J is a model of ¢, of J satisfies .

Let @ be a set of S-formulas. Then J E @ if J = ¢ for all ¢ € ®. Similarly as above, we say that
J is a model of @, or J satisfies ©. -

Example 1.9. Let S := Sg; and J := (2, ) with 2 = (R, +,0) and B(x) = 9 for all variables x.
Then

TJEYWovoe=vy < forallre]l%wehavefivL Evyoe=vy,
0

<= forallre Rwehaver+0=r. =

Definition 1.10. Let @ be a set of S-formulas and ¢ an S-formula. Then ¢ is a consequence of
@, written @ | ¢, if for any interpretation J it holds that 7 = ® implies J & .

For simplicity, in case ® = {\p} we write 1 = ¢ instead of {{} E o. B



Example 1.11. Let

Dgr ::{V\JOV\quz (voovi)oves =vgo(viovs),
Yo Vo 0 € = Vo, VwoIvy Vo o v = e}.
Then it can be shown that
q)Gr ): V\)o e oVvVgyg = V.

and
(DGr }: VVOE|V1 V10V =e. -

Definition 1.12. An S-formula ¢ is valid, written |= ¢, if ) = ¢. Or equivalently, J & ¢ for any
3. B

Definition 1.13. An S-formula ¢ is satisfiable, if there exists an S-interpretation J with J = .
A set @ of S-formulas is satisfiable if there exists an S-interpretation J such that J = ¢ for every
@ € 0. 4

The next lemma is essentially the method of proof by contradiction.

Lemma 1.14. Let ® be a set of S-formulas and ¢ an S-formula. Then ® [ o if and only if ® U{—¢}
is not satisfiable. o

Proof:

® = ¢ <= Every model of @ is a model of ¢,
<= there is no model J with 7 = ® and J £ o,
<= there is no model J with 7 = ® U{—¢},
<= O U{—@}is not satisfiable. ]

Definition 1.15. Two S-formulas ¢ and 1 are logic equivalent if ¢ =1 and { E o. B

Example 1.16. Let ¢ be an S-formula. We define a logic equivalent ¢* which does not contain
the logic symbols N, —, <>, V.

e =0 if ¢ is atomic,

* *

(—)" =—07,
(@ AP)" i==(—e" V),
(@ V)" = (" V7),
(@ = V)" == (" V),
(@ < V)" =—(0" V™)V —(—e" V"),
(Vx@)" == —3Ix—9",
(Ixep)* := Ixe™.
Thus, it suffices to consider —,\V/, 3 as the only logic symbols in any given . =

Lemma 1.17 (The Coincidence Lemma). For i € {1,2} let J; = (2, i) be an Si-interpretation
such that A1 = Ay and every symbol in S := S1 N Sy has the same interpretation in 24, and 2.

(a) Let t be an S-term (thus also an Sy-term and an Sp-term). Assume further that $1(x) = B2(x)
for every variable x € var(t). Then J1(t) = Ja(t).

(b) Let @ be an S-formula where (31(x) = B2(x) for every x € free(¢). Then

ThFe = DTkEoe.



Proof: (a) We prove by induction on t.
* t=x. Then J;(x) = B1(x) = Ba(x) = TJa(x).
e t =c. Wededuce J;(c) = ¢ =c¥ = Jy(x).
e t=ft;---t,. It holds that

Ji(fty - ty) = 1

(b) The induction proof is on the structure of .
* @ =t; =ty. We have
T Eti =t < Ji(t1) = J1(t2)
Ja

< Ja(t1) = Ja(t2) (by (a))
— Ty k=t = to.

* @ =Rt;---t,. Then
j] IZRtl'-'tn < (jl(tl),...,jl(tn)) ERQH
<= (J1(t1),...,T1(tn)) € R®
<~ (jz(h),...,jz(tn)) € R
<— Jy IZRtl tn

¢ = . We conclude

TEV &= IhFEY = LFEY <= T

* o= Vx).
IEMWMVYX) <= TiEbordiEX
—= JaEYordEx
= Tk (VX))
e = Ix.

J1 E Ixp <= for some a € A; we have 31% Ev
+= for some a € A; we have 32% Ev
(by induction hypothesis on 31%, 32%, and 1|)>
<— Jy E Ix.



Remark 1.18. Let ¢ € L3, i.e., ¢ is an S-formula with free(¢) C {vo,...,vn_1}. By the coinci-
dence lemma whether J = (2, ) &= ¢ is completely determined by 2l and (vo),..., B(Vn_1)- SO
in case J E ¢ we can write

Ql ': (P[a(), cee anfl}

where a; := B(vi) for 0 < i < n. In particular, if ¢ is an S-sentence, i.e., ¢ € Lg, then A | ¢ is
well-defined.

Similarly, we write
t*[ao, ..., an_1]

instead of J(t). -
Definition 1.19. Let 2 and B be two S-structures.

(a) A mapping 7t: A — B is an isomorphism from 2( to B (in short 7t : 2( = B) if the following
conditions are satisfied.

(i) mis a bijection.
(ii) For any n-ary relation symbol R € S and ag,...,an_1 € A
(ao,...,an-1) ER* <<= (m(ao),...,m(an_1)) € R®.
(iii) For any n-ary function symbol f € S and ag,...,an_1 € A
(f*(ag, ..., an-1)) = f2(n(ag), ..., m(an_1))-

(iv) For any constant ¢ € S

(b) 2 and 8 are isomorphic, written 20 = 93, if there is an isomorphism 7t : 2 — B. -
Observe that the above definition is not symmetric. However we can easily show:
Lemma 1.20. = is an equivalence relation. That is, for all S-structures 2, B, €
1. A=
2. A =B implies B = 2A;
3. ifA=Band B = ¢, then A = C. !

Lemma 1.21 (The Isomorphism Lemma). Let 2 and B be two isomorphic S-structures. Then for
every S-sentence @

AEe <= BEo.

_|

Proof: Let 3 be an assignment in 2[. By the coincidence lemma, it suffices to show that there is an
assignment 3’ in 8 such that

LB Ee <= (BB )Fo, ey

where ¢ is an S-sentence.
Let 7t : 2L = B and we define an assignment 3™ in B by



for any variable x. Then we prove for any S-formula ¢

2B Ee <« (B, Eo, (2

which certainly generalizes (1). To simplify notation, let 7 := (2, 3) and J™ := (%, [3”). First, it is
routine to verify that for every S-term t

m(J(t)) = I™(t). 3
Then we prove (2) by induction on the construction of S-formula ¢.
* @ =t; =t,. Then

TEti=t < J(t1) =73(t2)
(

— n(JI(t1)) = 7(T(t2)) (since 7t is an injection)
— J7(t1) =77 (t2) (by (3))
— TTEti=t
. (p:Rtl"'tn~
JERt -t = (J(t1),...,3(tn)) € R®
— (n(ﬁ(tl)),...,nw(tn))) e R®
<= (I"(t1),...,9™(tn)) € R® (by (3))

< J" = Rt; - tn.

e p=—Y. Itfollowsthat T~ <= TH V) < T << T ).
* ¢ =1 Vx. The inductive argument is similar to the above —.
* ¢ = Ix. This is again the most complicated case.
. a a
JE Ixp <= there exists an a € A such that 3; = (Ql, [3;) Ev
<= there exists an a € A such that (TJE)ﬂ = (Ql, [?>E)7t =,
X X
. . . a a\ T
(by induction hypothesis on 3;, (j;) , and lb)
n(a)

that is, there exists an a € A such that <%, [S”X> Ey

b
<= there exists a b € B such that <%, B“X) Ev (since 7t is surjective)

b b
i.e., there exists a b € B with 3”; = (B,p7) " =

— T = Ix.
This finishes the proof. O

Corollary 1.22. Let : 21 = B and ¢ € L3. Then for every qo, ..., an_1

A plag,...,an1] < B ¢[n(ay),...,m(an1)]



