Mathematical Logic (III)

Yijia Chen

1 The Semantics of First-order Logic

1.1 Structures and interpretations

We fix a symbol set S.
Definition 1.1. An S-structure is a pair $\mathfrak{A}=(A, \mathfrak{a})$ which satisfies the following conditions.

1. $A \neq \emptyset$ is the universe of \mathfrak{A}.
2. \mathfrak{a} is a function defined on S such that:
(a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^{n}$.
(b) Let $\mathrm{f} \in \mathrm{S}$ be an n -ary function symbol. Then $\mathfrak{a}(\mathrm{f}): A^{n} \rightarrow A$.
(c) $\mathfrak{a}(c) \in A$ for every constant $c \in S$.

For better readability, we write $R^{\mathfrak{A}}, f^{\mathfrak{A}}$, and $c^{\mathfrak{A}}$, or even $R^{A}, f^{\mathcal{A}}$, and c^{A}, instead of $\mathfrak{a}(R), \mathfrak{a}(f)$, and $\mathfrak{a}(c)$. Thus for $S=\{R, f, c\}$ we might write an S-structure as

$$
\mathfrak{A}=\left(\mathcal{A}, \mathrm{R}^{\mathfrak{A}}, f^{\mathfrak{A}}, c^{\mathfrak{A}}\right)=\left(\mathcal{A}, R^{\mathcal{A}}, f^{\mathcal{A}}, c^{\mathcal{A}}\right)
$$

Examples 1.2. 1. For $\mathrm{S}_{\mathrm{Ar}}:=\{+, \cdot, 0,1\}$ the S_{Ar}-structure

$$
\mathfrak{N}=\left(\mathbb{N},+^{\mathbb{N}}, \cdot^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}}\right)
$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and 1.
2. For $\mathrm{S}_{\mathrm{Ar}}^{<}:=\{+, \cdot, 0,1,<\}$ we have an $\mathrm{S}_{\mathrm{Ar}}^{<}$-structure

$$
\mathfrak{N}^{<}=\left(\mathbb{N},+{ }^{\mathbb{N}}, \cdot{ }^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}},<^{\mathbb{N}}\right)
$$

i.e., the standard model of \mathbb{N} with the natural ordering $<$.

Definition 1.3. An assignment in an S-structure \mathfrak{A} is a mapping

$$
\beta:\left\{v_{i} \mid i \in \mathbb{N}\right\} \rightarrow A
$$

Definition 1.4. An S-interpretation \mathfrak{I} is a pair (\mathfrak{A}, β) where \mathfrak{A} is an S-structure and β is an assignment in \mathfrak{A}.
Definition 1.5. Let β be an assignment in $\mathfrak{A}, a \in \mathcal{A}$, and x a variable. Then $\beta \frac{a}{x}$ is the assignment defined by

$$
\beta \frac{a}{x}(y):= \begin{cases}a, & \text { if } y=x \\ \beta(y), & \text { otherwise }\end{cases}
$$

Then, for the S-interpretation $\mathfrak{I}=(\mathfrak{A}, \beta)$ we use $\mathfrak{I} \frac{\mathfrak{a}}{\mathrm{x}}$ to denote the S-interpretation $\left(\mathfrak{A}, \beta \frac{\mathfrak{a}}{\chi}\right)$.

1.2 The satisfaction relation $\mathfrak{I} \models \varphi$

We fix an S-interpretation $\mathfrak{I}=(\mathfrak{A}, \beta)$.
Definition 1.6. For every S-term t we define its interpretation $\mathfrak{J}(\mathrm{t})$ by induction on the construction of t .
(a) $\mathfrak{I}(x)=\beta(x)$ for a variable x.
(b) $\mathfrak{I}(c)=c^{\mathfrak{a}}$ for a constant $c \in S$.
(c) Let $\mathrm{f} \in \mathrm{S}$ be an n -ary function symbol and $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}} \mathrm{S}$-terms. Then

$$
\mathfrak{I}\left(\mathrm{ft}_{1} \cdots \mathrm{t}_{n}\right)=\mathrm{f}^{\mathfrak{2}}\left(\mathfrak{I}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{J}\left(\mathrm{t}_{n}\right)\right) .
$$

Example 1.7. Let $S:=S_{G r}=\{0, e\}$ and $\mathfrak{I}:=(\mathfrak{A}, \beta)$ with $\mathfrak{A}=(\mathbb{R},+, 0), \beta\left(v_{0}\right)=2$, and $\beta\left(v_{2}\right)=6$. Then

$$
\begin{aligned}
\mathfrak{I}\left(v_{0} \circ\left(e \circ v_{2}\right)\right) & =\mathfrak{I}\left(v_{0}\right)+\mathfrak{I}\left(e \circ v_{2}\right) \\
& =2+\left(\Im(e)+\mathfrak{I}\left(v_{2}\right)\right)=2+(0+6)=2+6=8 .
\end{aligned}
$$

Definition 1.8. Let φ be an S-formula. We define $\mathfrak{I} \models \varphi$ by induction on the construction of φ.
(a) $\mathfrak{I} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2}$ if $\mathfrak{I}\left(\mathrm{t}_{1}\right)=\mathfrak{I}\left(\mathrm{t}_{2}\right)$.
(b) $\mathfrak{I} \models R t_{1} \cdots t_{n}$ if $\left(\mathfrak{I}\left(t_{1}\right), \ldots, \mathfrak{I}\left(t_{n}\right)\right) \in R^{\mathfrak{R}}$.
(c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not \models \varphi$ (i.e., it is not the case that $\mathfrak{I} \models \varphi$).
(d) $\mathfrak{I} \models(\varphi \wedge \psi)$ if $\mathfrak{I} \models \varphi$ and $\mathfrak{I} \models \psi$.
(e) $\mathfrak{I} \models(\varphi \vee \psi)$ if $\mathfrak{I} \models \varphi$ or $\mathfrak{I} \models \psi$.
(f) $\mathfrak{I} \models(\varphi \rightarrow \psi)$ if $\mathfrak{I} \models \varphi$ implies $\mathfrak{I} \models \psi$.
(g) $\mathfrak{I} \models(\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi$ if and only if $\mathfrak{I} \models \psi)$.
(h) $\mathfrak{I} \models \forall x \varphi$ if for all $a \in A$ we have $\mathfrak{I} \frac{a}{x} \models \varphi$.
(i) $\mathfrak{I} \vDash \exists x \varphi$ if for some $a \in A$ we have $\mathfrak{J} \frac{a}{x} \models \varphi$.

If $\mathfrak{I} \models \varphi$, then \mathfrak{I} is a model of φ, of \mathfrak{I} satisfies φ.
Let Φ be a set of S-formulas. Then $\mathfrak{I} \models \Phi$ if $\mathfrak{I} \models \varphi$ for all $\varphi \in \Phi$. Similarly as above, we say that \mathfrak{I} is a model of Φ, or \mathfrak{I} satisfies Φ.
Example 1.9. Let $S:=S_{G r}$ and $\mathfrak{I}:=(\mathfrak{A}, \beta)$ with $\mathfrak{A}=(\mathbb{R},+, 0)$ and $\beta(x)=9$ for all variables x. Then

$$
\begin{aligned}
\mathfrak{I} \models \forall v_{0} v_{0} \circ e \equiv v_{0} & \Longleftrightarrow \text { for all } r \in \mathbb{R} \text { we have } \mathfrak{I} \frac{r}{v_{0}} \models v_{0} \circ e \equiv v_{0}, \\
& \Longleftrightarrow \text { for all } r \in \mathbb{R} \text { we have } r+0=r .
\end{aligned}
$$

Definition 1.10. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a consequence of Φ, written $\Phi \models \varphi$, if for any interpretation \mathfrak{I} it holds that $\mathfrak{I} \models \Phi$ implies $\mathfrak{I} \models \varphi$.
For simplicity, in case $\Phi=\{\psi\}$ we write $\psi \models \varphi$ instead of $\{\psi\} \models \varphi$.

Example 1.11. Let

$$
\begin{aligned}
\Phi_{\mathrm{Gr}}:=\left\{\forall v_{0} \forall v_{1} \forall v_{2}\right. & \left(v_{0} \circ v_{1}\right) \circ v_{2} \equiv v_{0} \circ\left(v_{1} \circ v_{2}\right), \\
& \left.\forall v_{0} v_{0} \circ e \equiv v_{0}, \forall v_{0} \exists v_{1} v_{0} \circ v_{1} \equiv e\right\}
\end{aligned}
$$

Then it can be shown that

$$
\Phi_{\mathrm{Gr}} \models \forall v_{0} \mathrm{e} \circ v_{0} \equiv v_{0}
$$

and

$$
\Phi_{\mathrm{Gr}} \models \forall v_{0} \exists v_{1} v_{1} \circ v_{0} \equiv e
$$

Definition 1.12. An S-formula φ is valid, written $\models \varphi$, if $\emptyset \models \varphi$. Or equivalently, $\mathfrak{I} \models \varphi$ for any I.

Definition 1.13. An S-formula φ is satisfiable, if there exists an S-interpretation \mathfrak{I} with $\mathfrak{I} \models \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation \mathfrak{I} such that $\mathfrak{I} \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of proof by contradiction.
Lemma 1.14. Let Φ be a set of S-formulas and φ an S-formula. Then $\Phi \models \varphi$ if and only if $\Phi \cup\{\neg \varphi\}$ is not satisfiable.

Proof:

$$
\begin{aligned}
\Phi \models \varphi & \Longleftrightarrow \text { Every model of } \Phi \text { is a model of } \varphi, \\
& \Longleftrightarrow \text { there is no model } \mathfrak{I} \text { with } \mathfrak{I} \models \Phi \text { and } \mathfrak{I} \not \models \varphi, \\
& \Longleftrightarrow \text { there is no model } \mathfrak{I} \text { with } \mathfrak{I} \models \Phi \cup\{\neg \varphi\}, \\
& \Longleftrightarrow \Phi \cup\{\neg \varphi\} \text { is not satisfiable. }
\end{aligned}
$$

Definition 1.15. Two S-formulas φ and ψ are logic equivalent if $\varphi \models \psi$ and $\psi \models \varphi$.
Example 1.16. Let φ be an S-formula. We define a logic equivalent φ^{*} which does not contain the logic symbols $\wedge, \rightarrow, \leftrightarrow, \forall$.

$$
\begin{aligned}
\varphi^{*} & :=\varphi \quad \text { if } \varphi \text { is atomic, } \\
(\neg \varphi)^{*} & :=\neg \varphi^{*}, \\
(\varphi \wedge \psi)^{*} & :=\neg\left(\neg \varphi^{*} \vee \neg \psi^{*}\right), \\
(\varphi \vee \psi)^{*} & :=\left(\varphi^{*} \vee \psi^{*}\right), \\
(\varphi \rightarrow \psi)^{*} & :=\left(\neg \varphi^{*} \vee \psi^{*}\right), \\
(\varphi \leftrightarrow \psi)^{*} & :=\neg\left(\varphi^{*} \vee \psi^{*}\right) \vee \neg\left(\neg \varphi^{*} \vee \neg \psi^{*}\right), \\
(\forall x \varphi)^{*} & :=\neg \exists x \neg \varphi^{*}, \\
(\exists x \varphi)^{*} & :=\exists x \varphi^{*} .
\end{aligned}
$$

Thus, it suffices to consider \neg, \vee, \exists as the only logic symbols in any given φ.

Lemma 1.17 (The Coincidence Lemma). For $i \in\{1,2\}$ let $\mathfrak{I}_{i}=\left(\mathfrak{A}_{i}, \beta_{i}\right)$ be an S_{i}-interpretation such that $A_{1}=A_{2}$ and every symbol in $S:=S_{1} \cap S_{2}$ has the same interpretation in \mathfrak{A}_{1} and \mathfrak{A}_{2}.
(a) Let t be an S-term (thus also an S_{1}-term and an S_{2}-term). Assume further that $\beta_{1}(\mathrm{x})=\beta_{2}(\mathrm{x})$ for every variable $x \in \operatorname{var}(\mathrm{t})$. Then $\mathfrak{I}_{1}(\mathrm{t})=\mathfrak{I}_{2}(\mathrm{t})$.
(b) Let φ be an S-formula where $\beta_{1}(x)=\beta_{2}(x)$ for every $x \in \operatorname{free}(\varphi)$. Then

$$
\mathfrak{I}_{1} \models \varphi \quad \Longleftrightarrow \quad \mathfrak{I}_{2} \models \varphi .
$$

Proof: (a) We prove by induction on t .

- $t=x$. Then $\mathfrak{I}_{1}(x)=\beta_{1}(x)=\beta_{2}(x)=\mathfrak{I}_{2}(x)$.
- $\mathrm{t}=\mathrm{c}$. We deduce $\mathfrak{I}_{1}(\mathrm{c})=\mathrm{c}^{\mathfrak{A}_{1}}=\mathrm{c}^{\mathfrak{A}_{2}}=\mathfrak{I}_{2}(\chi)$.
- $t=\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}}$. It holds that

$$
\begin{aligned}
\mathfrak{I}_{1}\left(\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}}\right) & =\mathfrak{f}^{\mathfrak{A}_{1}}\left(\mathfrak{I}_{1}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}_{2}\left(\mathrm{t}_{\mathrm{n}}\right)\right) \\
& =\mathfrak{f}^{\mathfrak{A}_{2}}\left(\mathfrak{I}_{1}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}_{1}\left(\mathrm{t}_{\mathrm{n}}\right)\right) \\
& =\mathfrak{f}^{\mathfrak{A}_{2}}\left(\mathfrak{I}_{2}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}_{2}\left(\mathrm{t}_{\mathrm{n}}\right)\right) \\
& =\mathfrak{I}_{2}\left(\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}}\right) .
\end{aligned}
$$

(b) The induction proof is on the structure of φ.

- $\varphi=\mathrm{t}_{1} \equiv \mathrm{t}_{2}$. We have

$$
\begin{align*}
\mathfrak{I}_{1} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2} & \Longleftrightarrow \mathfrak{I}_{1}\left(\mathrm{t}_{1}\right)=\mathfrak{I}_{1}\left(\mathrm{t}_{2}\right) \\
& \Longleftrightarrow \mathfrak{I}_{2}\left(\mathrm{t}_{1}\right)=\mathfrak{I}_{2}\left(\mathrm{t}_{2}\right) \tag{a}\\
& \Longleftrightarrow \mathfrak{I}_{2} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2} .
\end{align*}
$$

- $\varphi=\mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}}$. Then

$$
\begin{aligned}
\mathfrak{I}_{1} \models \mathrm{Rt}_{1} \cdots \mathrm{t}_{n} & \Longleftrightarrow\left(\mathfrak{I}_{1}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}_{1}\left(\mathrm{t}_{n}\right)\right) \in \mathrm{R}^{\mathfrak{A}_{1}} \\
& \Longleftrightarrow\left(\mathfrak{I}_{1}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}_{1}\left(\mathrm{t}_{n}\right)\right) \in \mathrm{R}^{\mathfrak{A}_{2}} \\
& \Longleftrightarrow\left(\mathfrak{I}_{2}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}_{2}\left(\mathrm{t}_{n}\right)\right) \in \mathrm{R}^{\mathfrak{A}_{2}} \\
& \Longleftrightarrow \mathfrak{I}_{2} \models \mathrm{Rt}_{1} \cdots \mathrm{t}_{n} .
\end{aligned}
$$

- $\varphi=\neg \psi$. We conclude

$$
\mathfrak{I}_{1} \models \neg \psi \Longleftrightarrow \mathfrak{I}_{1} \not \models \psi \Longleftrightarrow \mathfrak{I}_{2} \not \models \psi \Longleftrightarrow \mathfrak{I}_{2} \models \neg \psi .
$$

- $\varphi=(\psi \vee \chi)$.

$$
\begin{aligned}
\mathfrak{I}_{1} \models(\psi \vee \chi) & \Longleftrightarrow \mathfrak{I}_{1} \models \psi \text { or } \mathfrak{I}_{1} \models \chi \\
& \Longleftrightarrow \mathfrak{I}_{2} \models \psi \text { or } \mathfrak{I}_{2} \models \chi \\
& \Longleftrightarrow \mathfrak{I}_{2} \models(\psi \vee \chi) .
\end{aligned}
$$

- $\varphi=\exists x \psi$.

$$
\begin{aligned}
\mathfrak{I}_{1} \models \exists x \psi & \Longleftrightarrow \text { for some } a \in A_{1} \text { we have } \mathfrak{I}_{1} \frac{a}{x} \models \psi \\
& \Longleftrightarrow \text { for some } a \in A_{1} \text { we have } \mathfrak{I}_{2} \frac{a}{x} \models \psi \\
& \quad\left(\text { by induction hypothesis on } \mathfrak{I}_{1} \frac{a}{\chi}, \mathfrak{I}_{2} \frac{a}{x}, \text { and } \psi\right) \\
& \Longleftrightarrow \mathfrak{I}_{2} \models \exists x \psi .
\end{aligned}
$$

Remark 1.18. Let $\varphi \in L_{n}^{S}$, i.e., φ is an S-formula with free $(\varphi) \subseteq\left\{v_{0}, \ldots, v_{n-1}\right\}$. By the coincidence lemma whether $\mathfrak{I}=(\mathfrak{A}, \beta) \models \varphi$ is completely determined by \mathfrak{A} and $\beta\left(v_{0}\right), \ldots, \beta\left(v_{n-1}\right)$. So in case $\mathfrak{I} \models \varphi$ we can write

$$
\mathfrak{A} \models \varphi\left[a_{0}, \ldots, a_{n-1}\right]
$$

where $a_{i}:=\beta\left(v_{i}\right)$ for $0 \leqslant \mathfrak{i}<n$. In particular, if φ is an S-sentence, i.e., $\varphi \in L_{0}^{S}$, then $\mathfrak{A} \models \varphi$ is well-defined.

Similarly, we write

$$
t^{\mathfrak{A}}\left[a_{0}, \ldots, a_{n-1}\right]
$$

instead of $\mathfrak{I}(\mathrm{t})$.
Definition 1.19. Let \mathfrak{A} and \mathfrak{B} be two S-structures.
(a) A mapping $\pi: A \rightarrow B$ is an isomorphism from \mathfrak{A} to \mathfrak{B} (in short $\pi: \mathfrak{A} \cong \mathfrak{B}$) if the following conditions are satisfied.
(i) π is a bijection.
(ii) For any n-ary relation symbol $R \in S$ and $a_{0}, \ldots, a_{n-1} \in A$

$$
\left(a_{0}, \ldots, a_{n-1}\right) \in R^{\mathfrak{A}} \quad \Longleftrightarrow \quad\left(\pi\left(a_{0}\right), \ldots, \pi\left(a_{n-1}\right)\right) \in R^{\mathfrak{B}}
$$

(iii) For any n-ary function symbol $f \in S$ and $a_{0}, \ldots, a_{n-1} \in A$

$$
\pi\left(f^{\mathfrak{A}}\left(a_{0}, \ldots, a_{n-1}\right)\right)=f^{\mathfrak{B}}\left(\pi\left(a_{0}\right), \ldots, \pi\left(a_{n-1}\right)\right)
$$

(iv) For any constant $\mathrm{c} \in \mathrm{S}$

$$
\pi\left(c^{\mathfrak{A}}\right)=c^{\mathfrak{B}}
$$

(b) \mathfrak{A} and \mathfrak{B} are isomorphic, written $\mathfrak{A} \cong \mathfrak{B}$, if there is an isomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{B}$.

Observe that the above definition is not symmetric. However we can easily show:
Lemma 1.20. \cong is an equivalence relation. That is, for all S-structures $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$

1. $\mathfrak{A} \cong \mathfrak{A}$;
2. $\mathfrak{A} \cong \mathfrak{B}$ implies $\mathfrak{B} \cong \mathfrak{A}$;
3. if $\mathfrak{A} \cong \mathfrak{B}$ and $\mathfrak{B} \cong \mathfrak{C}$, then $\mathfrak{A} \cong \mathfrak{C}$.

Lemma 1.21 (The Isomorphism Lemma). Let \mathfrak{A} and \mathfrak{B} be two isomorphic S-structures. Then for every S-sentence φ

$$
\mathfrak{A} \models \varphi \quad \Longleftrightarrow \quad \mathfrak{B} \models \varphi .
$$

Proof: Let β be an assignment in \mathfrak{A}. By the coincidence lemma, it suffices to show that there is an assignment β^{\prime} in \mathfrak{B} such that

$$
\begin{equation*}
(\mathfrak{A}, \beta) \models \varphi \quad \Longleftrightarrow \quad\left(\mathfrak{B}, \beta^{\prime}\right) \models \varphi, \tag{1}
\end{equation*}
$$

where φ is an S-sentence.
Let $\pi: \mathfrak{A} \cong \mathfrak{B}$ and we define an assignment β^{π} in \mathfrak{B} by

$$
\beta^{\pi}(x):=\pi(\beta(x))
$$

for any variable x. Then we prove for any S-formula φ

$$
\begin{equation*}
(\mathfrak{A}, \beta) \models \varphi \quad \Longleftrightarrow \quad\left(\mathfrak{B}, \beta^{\pi}\right) \models \varphi, \tag{2}
\end{equation*}
$$

which certainly generalizes (1). To simplify notation, let $\mathfrak{I}:=(\mathfrak{A}, \beta)$ and $\mathfrak{I}^{\pi}:=\left(\mathfrak{B}, \beta^{\pi}\right)$. First, it is routine to verify that for every S-term t

$$
\begin{equation*}
\pi(\Im(t))=\mathfrak{I}^{\pi}(\mathrm{t}) \tag{3}
\end{equation*}
$$

Then we prove (2) by induction on the construction of S-formula φ.

- $\varphi=\mathrm{t}_{1} \equiv \mathrm{t}_{2}$. Then

$$
\begin{align*}
\mathfrak{I} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2} & \Longleftrightarrow \mathfrak{I}\left(\mathrm{t}_{1}\right)=\mathfrak{I}\left(\mathrm{t}_{2}\right) \\
& \Longleftrightarrow \pi\left(\mathfrak{I}\left(\mathrm{t}_{1}\right)\right)=\pi\left(\mathfrak{I}\left(\mathrm{t}_{2}\right)\right) \quad \text { (since } \pi \text { is an injection) } \\
& \Longleftrightarrow \mathfrak{I}^{\pi}\left(\mathrm{t}_{1}\right)=\mathfrak{I}^{\pi}\left(\mathrm{t}_{2}\right) \tag{3}\\
& \Longleftrightarrow \mathfrak{I}^{\pi} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2} .
\end{align*}
$$

- $\varphi=\mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}}$.

$$
\begin{align*}
\mathfrak{I} \models \mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}} & \Longleftrightarrow\left(\mathfrak{I}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}\left(\mathrm{t}_{n}\right)\right) \in \mathrm{R}^{\mathfrak{A}} \\
& \Longleftrightarrow\left(\pi\left(\mathfrak{I}\left(\mathrm{t}_{1}\right)\right), \ldots, \pi\left(\mathfrak{I}\left(\mathrm{t}_{\mathrm{n}}\right)\right)\right) \in \mathrm{R}^{\mathfrak{B}} \\
& \Longleftrightarrow\left(\mathfrak{I}^{\pi}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}^{\pi}\left(\mathrm{t}_{n}\right)\right) \in \mathrm{R}^{\mathfrak{B}} \tag{3}\\
& \Longleftrightarrow \mathfrak{I}^{\pi} \models \mathrm{Rt}_{1} \cdots \mathrm{t}_{n} .
\end{align*}
$$

- $\varphi=\neg \psi$. It follows that $\mathfrak{I} \models \neg \psi \Longleftrightarrow \mathfrak{I} \not \models \psi \Longleftrightarrow \mathfrak{I}^{\pi} \not \models \Longleftrightarrow \mathfrak{I}^{\pi} \models \neg \psi$.
- $\varphi=\psi \vee \chi$. The inductive argument is similar to the above $\neg \psi$.
- $\varphi=\exists x \psi$. This is again the most complicated case.

$$
\begin{aligned}
& \mathfrak{I} \models \exists x \psi \Longleftrightarrow \text { there exists an } a \in A \text { such that } \mathfrak{I} \frac{a}{x}=\left(\mathfrak{A}, \beta \frac{a}{x}\right) \models \psi \\
& \Longleftrightarrow \text { there exists an } a \in A \text { such that }\left(\mathfrak{I}^{\frac{a}{x}}\right)^{\pi}=\left(\mathfrak{A}, \beta \frac{a}{x}\right)^{\pi} \models \psi, \\
&\text { (by induction hypothesis on } \left.\mathfrak{I} \frac{a}{x},\left(\mathfrak{I} \frac{a}{x}\right)^{\pi}, \text { and } \psi\right) \\
& \text { that is, there exists an } a \in A \text { such that }\left(\mathfrak{B}, \beta^{\pi} \frac{\pi(a)}{x}\right) \models \psi \\
& \Longleftrightarrow \text { there exists a } b \in B \text { such that }\left(\mathfrak{B}, \beta^{\pi} \frac{b}{x}\right) \models \psi \quad \text { (since } \pi \text { is surjective) } \\
& \Longleftrightarrow \mathfrak{I}^{\pi} \models \exists x \psi .
\end{aligned}
$$

This finishes the proof.
Corollary 1.22. Let $\pi: \mathfrak{A} \cong \mathfrak{B}$ and $\varphi \in L_{n}^{S}$. Then for every a_{0}, \ldots, a_{n-1}

$$
\mathfrak{A} \models \varphi\left[a_{0}, \ldots, a_{n-1}\right] \quad \Longleftrightarrow \quad \mathfrak{B} \models \varphi\left[\pi\left(a_{0}\right), \ldots, \pi\left(a_{n-1}\right)\right]
$$

