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1 The Semantics of First-order Logic

1.1 Structures and interpretations

We fix a symbol set S.

Definition 1.1. An S-structure is a pair A = (A, a) which satisfies the following conditions.

1. A 6= ∅ is the universe of A.

2. a is a function defined on S such that:

(a) Let R ∈ S be an n-ary relation symbol. Then a(R) ⊆ An.

(b) Let f ∈ S be an n-ary function symbol. Then a(f) : An → A.

(c) a(c) ∈ A for every constant c ∈ S.

For better readability, we write RA, fA, and cA, or even RA, fA, and cA, instead of a(R), a(f), and
a(c). Thus for S = {R, f, c} we might write an S-structure as

A =
(
A,RA, fA, cA

)
=

(
A,RA, fA, cA

)
. a

Examples 1.2. 1. For SAr :=
{
+, ·, 0, 1} the SAr-structure

N =
(
N,+N, ·N, 0N, 1N)

is the standard model of natural numbers with addition, multiplication, and constants 0 and
1.

2. For S<Ar :=
{
+, ·, 0, 1,<} we have an S<Ar-structure

N< =
(
N,+N, ·N, 0N, 1N,<N) ,

i.e., the standard model of N with the natural ordering <. a

Definition 1.3. An assignment in an S-structure A is a mapping

β :
{
vi

∣∣ i ∈ N
}
→ A. a

Definition 1.4. An S-interpretation I is a pair (A,β) where A is an S-structure and β is an
assignment in A. a

Definition 1.5. Let β be an assignment in A, a ∈ A, and x a variable. Then βa
x

is the assignment
defined by

β
a

x
(y) :=

{
a, if y = x,
β(y), otherwise.

Then, for the S-interpretation I = (A,β) we use Ia
x

to denote the S-interpretation
(
A,βa

x

)
. a
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1.2 The satisfaction relation I |= ϕ

We fix an S-interpretation I = (A,β).

Definition 1.6. For every S-term t we define its interpretation I(t) by induction on the construc-
tion of t.

(a) I(x) = β(x) for a variable x.

(b) I(c) = cA for a constant c ∈ S.

(c) Let f ∈ S be an n-ary function symbol and t1, . . . , tn S-terms. Then

I
(
ft1 · · · tn

)
= fA

(
I(t1), . . . ,I(tn)

)
. a

Example 1.7. Let S := SGr = {◦, e} and I := (A,β) with A = (R,+, 0), β(v0) = 2, and β(v2) = 6.
Then

I
(
v0 ◦ (e ◦ v2)

)
= I(v0) + I(e ◦ v2)

= 2 +
(
I(e) + I(v2)

)
= 2 + (0 + 6) = 2 + 6 = 8. a

Definition 1.8. Let ϕ be an S-formula. We define I |= ϕ by induction on the construction of ϕ.

(a) I |= t1 ≡ t2 if I(t1) = I(t2).

(b) I |= Rt1 · · · tn if
(
I(t1), . . . ,I(tn)

)
∈ RA.

(c) I |= ¬ϕ if I 6|= ϕ (i.e., it is not the case that I |= ϕ).

(d) I |= (ϕ∧ψ) if I |= ϕ and I |= ψ.

(e) I |= (ϕ∨ψ) if I |= ϕ or I |= ψ.

(f) I |= (ϕ→ ψ) if I |= ϕ implies I |= ψ.

(g) I |= (ϕ↔ ψ) if
(
I |= ϕ if and only if I |= ψ

)
.

(h) I |= ∀xϕ if for all a ∈ A we have Ia
x
|= ϕ.

(i) I |= ∃xϕ if for some a ∈ A we have Ia
x
|= ϕ.

If I |= ϕ, then I is a model of ϕ, of I satisfies ϕ.

Let Φ be a set of S-formulas. Then I |= Φ if I |= ϕ for all ϕ ∈ Φ. Similarly as above, we say that
I is a model of Φ, or I satisfies Φ. a

Example 1.9. Let S := SGr and I := (A,β) with A = (R,+, 0) and β(x) = 9 for all variables x.
Then

I |= ∀v0 v0 ◦ e ≡ v0 ⇐⇒ for all r ∈ R we have I
r

v0
|= v0 ◦ e ≡ v0,

⇐⇒ for all r ∈ R we have r+ 0 = r. a

Definition 1.10. Let Φ be a set of S-formulas and ϕ an S-formula. Then ϕ is a consequence of
Φ, written Φ |= ϕ, if for any interpretation I it holds that I |= Φ implies I |= ϕ.

For simplicity, in case Φ = {ψ} we write ψ |= ϕ instead of {ψ} |= ϕ. a
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Example 1.11. Let

ΦGr :=
{
∀v0∀v1∀v2 (v0 ◦ v1) ◦ v2 ≡ v0 ◦ (v1 ◦ v2),

∀v0 v0 ◦ e ≡ v0,∀v0∃v1 v0 ◦ v1 ≡ e
}

.

Then it can be shown that
ΦGr |= ∀v0 e ◦ v0 ≡ v0.

and
ΦGr |= ∀v0∃v1 v1 ◦ v0 ≡ e. a

Definition 1.12. An S-formula ϕ is valid, written |= ϕ, if ∅ |= ϕ. Or equivalently, I |= ϕ for any
I. a

Definition 1.13. An S-formula ϕ is satisfiable, if there exists an S-interpretation I with I |= ϕ.
A set Φ of S-formulas is satisfiable if there exists an S-interpretation I such that I |= ϕ for every
ϕ ∈ Φ. a

The next lemma is essentially the method of proof by contradiction.

Lemma 1.14. Let Φ be a set of S-formulas and ϕ an S-formula. Then Φ |= ϕ if and only if Φ∪ {¬ϕ}
is not satisfiable. a

Proof:

Φ |= ϕ ⇐⇒ Every model of Φ is a model of ϕ,

⇐⇒ there is no model I with I |= Φ and I 6|= ϕ,

⇐⇒ there is no model I with I |= Φ ∪ {¬ϕ},

⇐⇒ Φ ∪ {¬ϕ} is not satisfiable. 2

Definition 1.15. Two S-formulas ϕ and ψ are logic equivalent if ϕ |= ψ and ψ |= ϕ. a

Example 1.16. Let ϕ be an S-formula. We define a logic equivalent ϕ∗ which does not contain
the logic symbols ∧,→,↔,∀.

ϕ∗ := ϕ if ϕ is atomic,

(¬ϕ)∗ := ¬ϕ∗,

(ϕ∧ψ)∗ := ¬(¬ϕ∗ ∨ ¬ψ∗),

(ϕ∨ψ)∗ := (ϕ∗ ∨ψ∗),

(ϕ→ ψ)∗ := (¬ϕ∗ ∨ψ∗),

(ϕ↔ ψ)∗ := ¬(ϕ∗ ∨ψ∗)∨ ¬(¬ϕ∗ ∨ ¬ψ∗),

(∀xϕ)∗ := ¬∃x¬ϕ∗,
(∃xϕ)∗ := ∃xϕ∗.

Thus, it suffices to consider ¬,∨,∃ as the only logic symbols in any given ϕ. a

Lemma 1.17 (The Coincidence Lemma). For i ∈ {1, 2} let Ii = (Ai,βi) be an Si-interpretation
such that A1 = A2 and every symbol in S := S1 ∩ S2 has the same interpretation in A1 and A2.

(a) Let t be an S-term (thus also an S1-term and an S2-term). Assume further that β1(x) = β2(x)
for every variable x ∈ var(t). Then I1(t) = I2(t).

(b) Let ϕ be an S-formula where β1(x) = β2(x) for every x ∈ free(ϕ). Then

I1 |= ϕ ⇐⇒ I2 |= ϕ.

a
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Proof: (a) We prove by induction on t.

• t = x. Then I1(x) = β1(x) = β2(x) = I2(x).

• t = c. We deduce I1(c) = c
A1 = cA2 = I2(x).

• t = ft1 · · · tn. It holds that

I1(ft1 · · · tn) = fA1
(
I1(t1), . . . ,I2(tn)

)
= fA2

(
I1(t1), . . . ,I1(tn)

)
= fA2

(
I2(t1), . . . ,I2(tn)

)
= I2(ft1 · · · tn).

(b) The induction proof is on the structure of ϕ.

• ϕ = t1 ≡ t2. We have

I1 |= t1 ≡ t2 ⇐⇒ I1(t1) = I1(t2)

⇐⇒ I2(t1) = I2(t2) (by (a))

⇐⇒ I2 |= t1 ≡ t2.

• ϕ = Rt1 · · · tn. Then

I1 |= Rt1 · · · tn ⇐⇒
(
I1(t1), . . . ,I1(tn)

)
∈ RA1

⇐⇒
(
I1(t1), . . . ,I1(tn)

)
∈ RA2

⇐⇒
(
I2(t1), . . . , I2(tn)

)
∈ RA2

⇐⇒ I2 |= Rt1 · · · tn.

• ϕ = ¬ψ. We conclude

I1 |= ¬ψ ⇐⇒ I1 6|= ψ ⇐⇒ I2 6|= ψ ⇐⇒ I2 |= ¬ψ.

• ϕ = (ψ∨ χ).

I1 |= (ψ∨ χ) ⇐⇒ I1 |= ψ or I1 |= χ

⇐⇒ I2 |= ψ or I2 |= χ

⇐⇒ I2 |= (ψ∨ χ).

• ϕ = ∃xψ.

I1 |= ∃xψ ⇐⇒ for some a ∈ A1 we have I1
a

x
|= ψ

⇐⇒ for some a ∈ A1 we have I2
a

x
|= ψ(

by induction hypothesis on I1
a

x
, I2

a

x
, and ψ

)
⇐⇒ I2 |= ∃xψ.

2
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Remark 1.18. Let ϕ ∈ LSn, i.e., ϕ is an S-formula with free(ϕ) ⊆ {v0, . . . , vn−1}. By the coinci-
dence lemma whether I = (A,β) |= ϕ is completely determined by A and β(v0), . . . ,β(vn−1). So
in case I |= ϕ we can write

A |= ϕ[a0, . . . ,an−1]

where ai := β(vi) for 0 6 i < n. In particular, if ϕ is an S-sentence, i.e., ϕ ∈ LS0 , then A |= ϕ is
well-defined.

Similarly, we write
tA[a0, . . . ,an−1]

instead of I(t). a

Definition 1.19. Let A and B be two S-structures.

(a) A mapping π : A→ B is an isomorphism from A to B (in short π : A ∼= B) if the following
conditions are satisfied.

(i) π is a bijection.

(ii) For any n-ary relation symbol R ∈ S and a0, . . . ,an−1 ∈ A

(a0, . . . ,an−1) ∈ RA ⇐⇒
(
π(a0), . . . ,π(an−1)

)
∈ RB.

(iii) For any n-ary function symbol f ∈ S and a0, . . . ,an−1 ∈ A

π(fA(a0, . . . ,an−1)) = f
B(π(a0), . . . ,π(an−1)).

(iv) For any constant c ∈ S
π(cA) = cB.

(b) A and B are isomorphic, written A ∼= B, if there is an isomorphism π : A→ B. a

Observe that the above definition is not symmetric. However we can easily show:

Lemma 1.20. ∼= is an equivalence relation. That is, for all S-structures A, B, C

1. A ∼= A;

2. A ∼= B implies B ∼= A;

3. if A ∼= B and B ∼= C, then A ∼= C. a

Lemma 1.21 (The Isomorphism Lemma). Let A and B be two isomorphic S-structures. Then for
every S-sentence ϕ

A |= ϕ ⇐⇒ B |= ϕ.

a

Proof: Let β be an assignment in A. By the coincidence lemma, it suffices to show that there is an
assignment β ′ in B such that

(A,β) |= ϕ ⇐⇒ (B,β ′) |= ϕ, (1)

where ϕ is an S-sentence.
Let π : A ∼= B and we define an assignment βπ in B by

βπ(x) := π(β(x))
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for any variable x. Then we prove for any S-formula ϕ

(A,β) |= ϕ ⇐⇒ (B,βπ) |= ϕ, (2)

which certainly generalizes (1). To simplify notation, let I := (A,β) and Iπ :=
(
B,βπ

)
. First, it is

routine to verify that for every S-term t

π(I(t)) = Iπ(t). (3)

Then we prove (2) by induction on the construction of S-formula ϕ.

• ϕ = t1 ≡ t2. Then

I |= t1 ≡ t2 ⇐⇒ I(t1) = I(t2)

⇐⇒ π(I(t1)) = π(I(t2)) (since π is an injection)

⇐⇒ Iπ(t1) = Iπ(t2) (by (3))

⇐⇒ Iπ |= t1 ≡ t2.

• ϕ = Rt1 · · · tn.

I |= Rt1 · · · tn ⇐⇒
(
I(t1), . . . ,I(tn)

)
∈ RA

⇐⇒
(
π(I(t1)), . . . ,π(I(tn))

)
∈ RB

⇐⇒
(
Iπ(t1), . . . , Iπ(tn)

)
∈ RB (by (3))

⇐⇒ Iπ |= Rt1 · · · tn.

• ϕ = ¬ψ. It follows that I |= ¬ψ ⇐⇒ I 6|= ψ ⇐⇒ Iπ 6|=⇐⇒ Iπ |= ¬ψ.

• ϕ = ψ∨ χ. The inductive argument is similar to the above ¬ψ.

• ϕ = ∃xψ. This is again the most complicated case.

I |= ∃xψ ⇐⇒ there exists an a ∈ A such that I
a

x
=

(
A,β

a

x

)
|= ψ

⇐⇒ there exists an a ∈ A such that
(
I
a

x

)π
=

(
A,β

a

x

)π
|= ψ,(

by induction hypothesis on I
a

x
,
(
I
a

x

)π
, and ψ

)
that is, there exists an a ∈ A such that

(
B,βπ

π(a)

x

)
|= ψ

⇐⇒ there exists a b ∈ B such that
(
B,βπ

b

x

)
|= ψ (since π is surjective)

i.e., there exists a b ∈ B with Iπ
b

x
=

(
B,βπ

)b
x
|= ψ

⇐⇒ Iπ |= ∃xψ.

This finishes the proof. 2

Corollary 1.22. Let π : A ∼= B and ϕ ∈ LSn. Then for every a0, . . . ,an−1

A |= ϕ[a0, . . . ,an−1] ⇐⇒ B |= ϕ
[
π(a0), . . . ,π(an−1)

]
a
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