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1 The Semantics of First-order Logic

1.1 Substitution

Definition 1.1. Let t be an S-term, x, ..., X, variables, and to, ..., t, S-terms. Then the term

tto,...,tT
X0y ooy Xy

is defined inductively as follows.

(a) Let t = x be a variable. Then

tto,...,tr . {ti ifx =x; forsome0<i<r

X0,.-+,Xr  |x otherwise.

(b) For a constant t = ¢

to,..., t
c =c
XO)” :XT
(¢) For a function term
! ¢ to, ..., tr ‘—ft'to"”’tr ¢ to, ..., tr
1--- ni P 1 ... n .
X0y ooy Xy X0y ooy Xt X0y oo Xy

Definition 1.2. Let ¢ be an S-formula, xo, ..., x, variables, and to, ..., t, S-terms. We define

to, ..., tr
(’pi
X0y ooy Xt
inductively as follow.
(a) Assume ¢ =t; =t5. Then
(ptO,---,tr ::t{to,...,tr Etéto,u.’tr.
X0y oo Xy X0y oo Xy X0y oo Xy
(b) Let @ =Rt]...t},. We set
to,..., 1t to,..., 1T to,..., 1T
g2 Ry LA T
X0y ooy Xy XQy oo Xy XQOy o ooy Xy
(c) For ¢ =—¢
(ptOJ 5tT :_|1th; 7tT
X0, s Xr X0, » X



(d) For ¢ = (P71 Vs)

to,...,t to,...,t to,...,t
P = (11)1 AT - ).
X0y oo Xy X0y ooy Xy X0y oo Xy

(e) Assume @ = Ixp. Let xi,,...,xi, (i1 < ... < i) be the variables x; in xo,..., X, with
x; € free(Ixe) and x; # t;. In particular, x # xi,,...,x # xi_. Then

to,...,t ti,.e, i,
(PO T:—E|1,L|:‘l,b i ig :|’

X0y ooy Xy Xigseoes Xig, X

where u = x if x does not occur in ty,, . . ., t¢, ; otherwise u is the first variable in {vy, v1, va, .. .}
which does not occur in Y, ti,, ..., ti,. B

Definition 1.3. Let 3 be an assignment in 2 and ag, ..., a, € A. Then

ap,..., ar

B

XQs o eos Xy
is an assignment in 2( defined by

p

ao,...,ar(y)__ ai ify=x;for0<igr
X0y oo Xy

B(y) otherwise.

For an S-interpretation J = (2, 3) we let

ag,...,a ag,...,a
Jo T (QL,BXO > .

X0y ooy Xy 0y« o5 Xy

Lemma 1.4 (The Substitution Lemma). (a) For every S-term t

5 (tto,...,tr> _ jj(to),...,j(tr) ().

X0y oo Xy X0y oo Xy

(b) For every S-formula ¢

t05"'9t‘r' j(to))""j(t‘l‘)
e et L s
J':(pX(),...XT 3 X0y .- Xy lZ(P

Therefore,

to,...,t I(to), ..., [t (to), ..., 3t
j(t 0> ) T)-j(x) 3 (0) > (T)(X):J (0)) > (T)(t)
X0y oo Xy X0y ooy Xy X0y oo Xy

Otherwise, x = x; for some 0 < i < r. Then tigif( = t;. It follows that

to,...,t - _J(to),...,3(t _J(to), ..., J(t
,J(to r>_J(m_J (to)- -, 3(t) lto), 3k
X0y oo Xy X0y oo Xy

X0y oo Xy

The other cases of t can be shown similarly.



. <jﬁ(to),-- I (t;)) ERY  (by @)
XO: 7X‘l‘ XO’ ,Xr
X0, - > AT

. J(to), ..., J(t,
ie., 3—( o) (tr) E .
X0y ooy Xt
For another case, let ¢ = Ix. Again, let x;,,...,x;, be the variables x; with x; € free(Ix)
and x; # t;. Choose u according to Definition 1.2 (e). In particular, u does not occur in t;,, ..., ti,.
Then

tg9,...,t i, ,u
A R LARE A ﬁjﬁgu{wll”ls’}
X0y -+ e Xy XipyeoesXigr X

. a i, .., ,u

< there exists an a € A such that J— £ (222 2 =

u Xigseeos Xigy X

L(ty,), ..., T8 (1), T4 (u)
u '\t Y \Ms LYy
Xip---;XiS;X ':lb

(by induction hypothesis)
til,...,ﬁtis,a
) (ti,) =

Xil,...,Xis,X
(by the coincidence lemma and that u does not occur in t;,, ... tis)
j(til)ﬂ L] j(tis )7 a |: ll)

Xil, .. -,Xi5>x
(by (either u = x or u does not occur in 1) and the coincidence lemma)

!

. a1 J
there exists an a € A such that [3 —}
u

. a1 J
+= there exists an a € A such that [3 —} (
u

+= there exists an a € A such that J

J(ti, ), ..., JI(t
< there exists an a € A such that {3‘“ i), 3 15)} 2 Ev
Kigs e oo Xig X
(since x # Xiy, ..., X #Xi,)
J(ti, ), ..., JI(t
<:> jJ( 11): :J( 15) }:HXII)
Xigs e oo Xig
J(to),...,J(t
e )3l o
X0y ooy Xy
(by x; ¢ free(Ixp) or x; = t; for i #1iy,...,1#1s). O

2 Sequent Calculus

The goal of this section is to provide a formal definition of proofs, i.e., proofs are made into
mathematical objects. To that end, we divide any proof into stages. In each stage, we establish
a fact that under the antecedent ¢1,..., ¢! the succedent ¢ holds. In a succinct form, this is
written as a sequent

P1... Pn.

So our goal is to design a calculus & operating on sequents, i.e., sequent calculus. & contains
a number of rules, which enable us to derive one sequent from another.

In the sequel, we tacitly assume a fixed symbol set S.



Definition 2.1. If in the calculus & there is a derivation of the sequent I' ¢, then we write
FT o

and say that I" ¢ is derivable. -

Definition 2.2. A formula ¢ is formally provable or derivable from a set ® of formulas, written
® + ¢, if there are finite many formulas ¢1,..., @, in ® such that

Foi...0n . B

Definition 2.3. A sequent I" ¢ is correct if

{1 | ¥ is a member of T} |= o.
in short, I' = . B

2.1 Basic Rules

Antecedent

I ¢ rcr/
r ¢ =
The correctness is straightforward. Assume that ' = ¢ and J = T’. Since I' C T/, we conclude
J kT and thus J & o.

Assumption
r pel
Case Analysis
v o
N ¢
r 0
Contradiction
r —e ¥
r —e —
r ®
V-introduction in antecedent
N ¢ x
v x
r (eVi) x
V-introduction in succedent
r r
(@ —2—— cb) —2— -
r (eVi) r WwVve)



J-introduction in succedent

r et
' dxeo

J-introduction in antecedent

reid v .
ST if y ¢ free(I" U {3xe, P})

Equality

ﬁ
If
-

Substitution

2.2 Some Derived Rules
Example 2.4 (The law of excluded middle).

1. [0 © (assumption)
2. ¢ (@V—@) (V-introduction in succedent by 1)
3. —o —@ (assumption)
4. —¢ (V=) (V-introduction in succedent by 3)
5. (@ V—p) (case analysis by 2 and 4).

Therefore - (@ V —@).

Example 2.5 (The modified contradiction).

r

r—

r e

We argue as follows.

1. r P (premise)
2. r —v (premise)
3. T —o v (antecedent by 1)
4. T —@ — (antecedent by 2)
5. r ¢ (contradiction by 3 and 4).

Example 2.6 (The chain deduction).

__J
|6 =
=& 6

We have the following deduction.



1. r © (premise)
2. I o VP (premise)
3. T —o © (antecedent by 1)
4. T - —o (assumption)
5. T —o VP (modified contradiction by 3 and 4)
6. I ) (case analysis by 2 and 5).

Let @ be a set of sentences and ¢ an formula.

Lemma 2.7. ® + @ if and only if there exists a finite @y C @ such that ®g - .
Theorem 2.8 (Soundness). If ® - ¢, then ® = o.

3 Exercises

Exercise 3.1. Can you derive the rule of contradiction from the modified contradiction?

Exercise 3.2. Prove:
@12 (b) -—2¢

Exercise 3.3. Is the following derivable?

' dxe Vx@



