Mathematical Logic (V)

Yijia Chen

1 The Semantics of First-order Logic

1.1 Substitution

Definition 1.1. Let t be an S-term, x_0, \dots, x_r variables, and t_0, \dots, t_r S-terms. Then the term

$$t \frac{t_0, \ldots, t_r}{x_0, \ldots, x_r}$$

is defined inductively as follows.

(a) Let t = x be a variable. Then

$$t\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r} := \begin{cases} t_i & \text{if } x=x_i \text{ for some } 0 \leqslant i \leqslant r \\ x & \text{otherwise.} \end{cases}$$

(b) For a constant t = c

$$c\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}:=c.$$

(c) For a function term

$$ft'_1 \dots t'_n \frac{t_0, \dots, t_r}{x_0, \dots, x_r} := ft'_1 \frac{t_0, \dots, t_r}{x_0, \dots, x_r} \dots t'_n \frac{t_0, \dots, t_r}{x_0, \dots, x_r}.$$

Definition 1.2. Let φ be an S-formula, x_0, \ldots, x_r variables, and t_0, \ldots, t_r S-terms. We define

$$\phi \frac{t_0, \dots, t_r}{x_0, \dots, x_r}$$

inductively as follow.

(a) Assume $\phi=t_1'\equiv t_2'.$ Then

$$\phi\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}:=t_1'\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}\equiv t_2'\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}.$$

(b) Let $\phi = Rt'_1 \dots t'_n$. We set

$$\varphi \frac{t_0, \dots, t_r}{x_0, \dots, x_r} := Rt_1' \frac{t_0, \dots, t_r}{x_0, \dots, x_r} \dots t_n' \frac{t_0, \dots, t_r}{x_0, \dots, x_r}.$$

(c) For $\varphi = \neg \psi$

$$\varphi \frac{t_0, \dots, t_r}{x_0, \dots, x_r} := \neg \psi \frac{t_0, \dots, t_r}{x_0, \dots, x_r}.$$

(d) For $\varphi = (\psi_1 \vee \psi_2)$

$$\varphi \frac{\mathsf{t}_0,\ldots,\mathsf{t}_r}{\mathsf{x}_0,\ldots,\mathsf{x}_r} := \left(\psi_1 \frac{\mathsf{t}_0,\ldots,\mathsf{t}_r}{\mathsf{x}_0,\ldots,\mathsf{x}_r} \vee \psi_2 \frac{\mathsf{t}_0,\ldots,\mathsf{t}_r}{\mathsf{x}_0,\ldots,\mathsf{x}_r} \right).$$

(e) Assume $\phi = \exists x \psi$. Let x_{i_1}, \ldots, x_{i_s} ($i_1 < \ldots < i_s$) be the variables x_i in x_0, \ldots, x_r with $x_i \in \text{free}(\exists x \phi)$ and $x_i \neq t_i$. In particular, $x \neq x_{i_1}, \ldots, x \neq x_{i_s}$. Then

$$\varphi \frac{t_0,\ldots,t_r}{x_0,\ldots,x_r} := \exists u \left[\psi \frac{t_{i_1},\ldots,t_{i_s},u}{x_{i_1},\ldots,x_{i_s},x} \right],$$

where $\mathfrak{u}=x$ if x does not occur in t_{i_1},\ldots,t_{t_s} ; otherwise \mathfrak{u} is the first variable in $\{\nu_0,\nu_1,\nu_2,\ldots\}$ which does not occur in $\psi,t_{i_1},\ldots,t_{i_s}$.

Definition 1.3. Let β be an assignment in $\mathfrak A$ and $\mathfrak a_0, \ldots, \mathfrak a_r \in A$. Then

$$\beta \frac{\alpha_0, \ldots, \alpha_r}{x_0, \ldots, x_r}$$

is an assignment in A defined by

$$\beta \frac{\alpha_0, \dots, \alpha_r}{x_0, \dots, x_r}(y) := \begin{cases} \alpha_{\mathfrak{i}} & \text{if } y = x_{\mathfrak{i}} \text{ for } 0 \leqslant \mathfrak{i} \leqslant r \\ \beta(y) & \text{otherwise.} \end{cases}$$

For an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ we let

$$\mathfrak{I}\frac{a_0,\ldots,a_r}{x_0,\ldots,x_r} := \left(\mathfrak{A},\beta\frac{a_0,\ldots,a_r}{x_0,\ldots,x_r}\right).$$

Lemma 1.4 (The Substitution Lemma). (a) For every S-term t

$$\mathfrak{I}\left(\mathsf{t}\frac{\mathsf{t}_0,\ldots,\mathsf{t}_r}{\mathsf{x}_0,\ldots\mathsf{x}_r}\right)=\mathfrak{I}\frac{\mathfrak{I}(\mathsf{t}_0),\ldots,\mathfrak{I}(\mathsf{t}_r)}{\mathsf{x}_0,\ldots\mathsf{x}_r}(\mathsf{t}).$$

(b) For every S-formula ϕ

$$\mathfrak{I} \models \varphi \frac{\mathsf{t}_0, \dots, \mathsf{t}_r}{\mathsf{x}_0, \dots \mathsf{x}_r} \iff \mathfrak{I} \frac{\mathfrak{I}(\mathsf{t}_0), \dots, \mathfrak{I}(\mathsf{t}_r)}{\mathsf{x}_0, \dots \mathsf{x}_r} \models \varphi.$$

Proof: (a) Assume t = x. If $x \neq x_i$ for all $0 \le i \le r$, then

$$t\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}=x.$$

Therefore,

$$\mathfrak{I}\left(t\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}\right)=\mathfrak{I}(x)=\mathfrak{I}\frac{\mathfrak{I}(t_0),\ldots,\mathfrak{I}(t_r)}{x_0,\ldots,x_r}(x)=\mathfrak{I}\frac{\mathfrak{I}(t_0),\ldots,\mathfrak{I}(t_r)}{x_0,\ldots,x_r}(t).$$

Otherwise, $x=x_i$ for some $0\leqslant i\leqslant r$. Then $t\frac{t_0,...,t_r}{x_0,...,x_r}=t_i$. It follows that

$$\mathfrak{I}\left(t\frac{t_0,\ldots,t_r}{x_0,\ldots,x_r}\right)=\mathfrak{I}(t_i)=\mathfrak{I}\frac{\mathfrak{I}(t_0),\ldots,\mathfrak{I}(t_r)}{x_0,\ldots,x_r}(x_i)=\mathfrak{I}\frac{\mathfrak{I}(t_0),\ldots,\mathfrak{I}(t_r)}{x_0,\ldots,x_r}(t).$$

The other cases of t can be shown similarly.

(b) Assume that $\varphi = Rt'_1 \dots t'_n$. Then

$$\begin{split} \mathfrak{I} &\models \phi \frac{t_0, \dots, t_r}{x_0, \dots, x_r} \iff \left(\mathfrak{I} \Big(t_1' \frac{t_0, \dots, t_r}{x_0, \dots, x_r} \Big), \dots, \mathfrak{I} \Big(t_n' \frac{t_0, \dots, t_r}{x_0, \dots, x_r} \Big) \right) \in R^{\mathfrak{A}} \\ &\iff \left(\mathfrak{I} \frac{\mathfrak{I}(t_0), \dots, \mathfrak{I}(t_r)}{x_0, \dots, x_r} (t_1'), \dots, \mathfrak{I} \frac{\mathfrak{I}(t_0), \dots, \mathfrak{I}(t_r)}{x_0, \dots, x_r} (t_n') \right) \in R^{\mathfrak{A}} \\ &\iff \mathfrak{I} \frac{\mathfrak{I}(t_0), \dots, \mathfrak{I}(t_r)}{x_0, \dots, x_r} \models Rt_1' \dots t_n' \\ &\qquad \qquad \text{i.e., } \mathfrak{I} \frac{\mathfrak{I}(t_0), \dots, \mathfrak{I}(t_r)}{x_0, \dots, x_r} \models \phi. \end{split}$$

For another case, let $\phi = \exists x \psi$. Again, let x_{i_1}, \dots, x_{i_s} be the variables x_i with $x_i \in \text{free}(\exists x \psi)$ and $x_i \neq t_i$. Choose u according to Definition 1.2 (e). In particular, u does not occur in t_{i_1}, \dots, t_{i_s} . Then

$$\exists \vdash \varphi \frac{t_0, \dots, t_r}{x_0, \dots, x_r} \iff \exists \vdash \exists u \left[\psi \frac{t_{i_1}, \dots, t_{i_s}, u}{x_{i_1}, \dots, x_{i_s}, x} \right]$$

$$\iff \text{there exists an } a \in A \text{ such that } \exists \frac{a}{u} \vdash \psi \frac{t_{i_1}, \dots, t_{i_s}, u}{x_{i_1}, \dots, x_{i_s}, x}$$

$$\iff \text{there exists an } a \in A \text{ such that } \left[\exists \frac{a}{u} \right] \frac{\Im \frac{a}{u}(t_{i_1}), \dots, \Im \frac{a}{u}(t_{i_s}), \Im \frac{a}{u}(u)}{x_{i_1}, \dots, x_{i_s}, x} \models \psi$$

$$(by \text{ induction hypothesis})$$

$$\iff \text{there exists an } a \in A \text{ such that } \left[\exists \frac{a}{u} \right] \frac{\Im(t_{i_1}), \dots, \Im(t_{i_s}), a}{x_{i_1}, \dots, x_{i_s}, x} \models \psi$$

$$(by \text{ the coincidence lemma and that } u \text{ does not occur in } t_{i_1}, \dots, t_{i_s})$$

$$\iff \text{there exists an } a \in A \text{ such that } \Im \frac{\Im(t_{i_1}), \dots, \Im(t_{i_s}), a}{x_{i_1}, \dots, x_{i_s}, x} \models \psi$$

$$(by \text{ (either } u = x \text{ or } u \text{ does not occur in } \psi) \text{ and the coincidence lemma})$$

$$\iff \text{there exists an } a \in A \text{ such that } \left[\Im \frac{\Im(t_{i_1}), \dots, \Im(t_{i_s})}{x_{i_1}, \dots, x_{i_s}} \right] \frac{a}{x} \models \psi$$

$$(\text{since } x \neq x_{i_1}, \dots, x \neq x_{i_s})$$

$$\iff \Im \frac{\Im(t_{i_1}), \dots, \Im(t_{i_s})}{x_{i_1}, \dots, x_{i_s}} \models \exists x \psi$$

$$\iff \Im \frac{\Im(t_{i_1}), \dots, \Im(t_{i_s})}{x_{i_1}, \dots, x_{i_s}} \models \exists x \psi$$

$$(\text{by } x_i \notin \text{free}(\exists x \psi) \text{ or } x_i = t_i \text{ for } i \neq i_1, \dots, i \neq i_s).$$

2 Sequent Calculus

The goal of this section is to provide a formal definition of proofs, i.e., proofs are made into mathematical objects. To that end, we divide any proof into stages. In each stage, we establish a fact that under the **antecedent** $\varphi_1, \ldots, \varphi_n^1$ the **succedent** φ holds. In a succinct form, this is written as a sequent

$$\varphi_1 \dots \varphi_n \varphi$$
.

So our goal is to design a calculus \mathfrak{S} operating on sequents, i.e., **sequent calculus**. \mathfrak{S} contains a number of rules, which enable us to derive one sequent from another.

¹In the sequel, we tacitly assume a fixed symbol set S.

Definition 2.1. If in the calculus \mathfrak{S} there is a derivation of the sequent Γ φ , then we write

$$\vdash \Gamma \varphi$$

and say that $\Gamma \varphi$ is **derivable**.

Definition 2.2. A formula φ is **formally provable** or **derivable** from a set Φ of formulas, written $\Phi \vdash \varphi$, if there are finite many formulas $\varphi_1, \ldots, \varphi_n$ in Φ such that

$$\vdash \varphi_1 \dots \varphi_n \varphi.$$

 \dashv

Definition 2.3. A sequent $\Gamma \varphi$ is **correct** if

$$\{\psi \mid \psi \text{ is a member of } \Gamma\} \models \varphi.$$

in short, $\Gamma \models \varphi$.

2.1 Basic Rules

Antecedent

$$\frac{\Gamma \quad \phi}{\Gamma' \quad \phi} \ \Gamma \subseteq \Gamma'$$

The correctness is straightforward. Assume that $\Gamma \models \varphi$ and $\mathfrak{I} \models \Gamma'$. Since $\Gamma \subseteq \Gamma'$, we conclude $\mathfrak{I} \models \Gamma$ and thus $\mathfrak{I} \models \varphi$.

Assumption

$$\overline{\ \Gamma \ \phi} \ \phi \in \Gamma$$

Case Analysis

$$\begin{array}{ccc} \Gamma & \psi & \phi \\ \hline \Gamma \neg \psi & \phi \\ \hline \Gamma & \phi \end{array}$$

Contradiction

$$\begin{array}{ccc}
\Gamma & \neg \varphi & \psi \\
\Gamma & \neg \varphi & \neg \psi
\end{array}$$

∨-introduction in antecedent

$$\begin{array}{cccc} & \Gamma & \phi & \chi \\ & \Gamma & \psi & \chi \\ \hline \Gamma & (\phi \vee \psi) & \chi \end{array}$$

∨-introduction in succedent

$$\text{(a)} \ \frac{\Gamma \quad \phi}{\Gamma \quad (\phi \vee \psi)} \qquad \qquad \text{c (b)} \ \frac{\Gamma \quad \phi}{\Gamma \quad (\psi \vee \phi)}$$

∃-introduction in succedent

$$\frac{\Gamma \quad \varphi \frac{t}{x}}{\Gamma \quad \exists x \varphi}$$

∃-introduction in antecedent

$$\frac{\Gamma \quad \varphi \frac{y}{x} \quad \psi}{\Gamma \quad \exists x \varphi \quad \psi} \text{ if } y \notin \text{free} \left(\Gamma \cup \{\exists x \varphi, \psi\}\right)$$

Equality

$$t \equiv t$$

Substitution

$$\frac{\Gamma \quad \phi \frac{t}{x}}{\Gamma \quad t \equiv t' \quad \phi \frac{t'}{x}}$$

2.2 Some Derived Rules

Example 2.4 (The law of excluded middle).

 \dashv

Therefore $\vdash (\phi \lor \neg \phi)$.

Example 2.5 (The modified contradiction).

$$\begin{array}{ccc}
\Gamma & \psi \\
\Gamma & \neg \psi \\
\hline
\Gamma & \omega
\end{array}$$

We argue as follows.

Example 2.6 (The chain deduction).

$$\begin{array}{ccc} & \Gamma & \phi \\ \hline \Gamma & \phi & \psi \\ \hline & \Gamma & \psi \end{array}$$

We have the following deduction.

 \dashv

Let Φ be a set of sentences and φ an formula.

Lemma 2.7. $\Phi \vdash \phi$ if and only if there exists a **finite** $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \vdash \phi$.

Theorem 2.8 (Soundness). If $\Phi \vdash \varphi$, then $\Phi \models \varphi$.

 \dashv

3 **Exercises**

Exercise 3.1. Can you derive the rule of contradiction from the modified contradiction?

Exercise 3.2. Prove:

(a)
$$\frac{\Gamma \quad \varphi}{\Gamma \quad \neg \neg \varphi}$$
 (b) $\frac{\Gamma \quad \neg \neg \varphi}{\Gamma \quad \varphi}$

(b)
$$\frac{\Gamma}{\Gamma} \frac{\neg \neg \varphi}{\varphi}$$

Exercise 3.3. Is the following derivable?

$$\Gamma = \exists x \phi \qquad \forall x \phi$$