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1 Sequent Calculus
1.1 Basic Rules
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1.2 Some Derived Rules
Example 1.1 (The law of excluded middle).

1. [0) © (assumption)
2. ¢ (pV—@) (V-introduction in succedent by 1)
3. —o —@ (assumption)
4. —¢ (@V—@) (V-introduction in succedent by 3)
5. (@ V—0) (case analysis by 2 and 4).

Therefore - (@ V —@).

Example 1.2 (The modified contradiction).
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We argue as follows.

1. r P (premise)
2. r —y (premise)
3. T —o i) (antecedent by 1)
4. T =@ — (antecedent by 2)
5. r ¢ (contradiction by 3 and 4).

Example 1.3 (The chain deduction).
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We have the following deduction.

1. r © (premise)
2. I o P (premise)
3. T —o © (antecedent by 1)
4. T —¢p —@ (assumption)
5. T —o 1 (modified contradiction by 3 and 4)
6. r (case analysis by 2 and 5).
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Definition 1.4. Let ® be a set of S-formulas and ¢ an S-formula. Then ¢ is derivable from @,
denoted by @ F ¢, if there exists an n € N and ¢, ..., ¢, € ® such that

For...0n . -

Let @ be a set of S-sentences and ¢ an S-formula.

Lemma 1.5. ® F @ if and only if there exists a finite ®y C ® such that ®q + . =

Theorem 1.6 (Soundness). If ® - ¢, then ® = o. B

2 Consistency

Definition 2.1. @ is consistent, written cons(®), if there is no ¢ such that both ® + ¢ and
® - —@. Otherwise, @ is inconsistent.

Lemma 2.2. @ is inconsistent if and only if ® + ¢ for any formula .

Proof: The direction from right to left is by Definition ??. For the converse direction, assume that
there is a ¢ such that ® 1y and ® + —). Then there exist two finite sequences of formulas, I
and I, such that we have derivation

: and :
n v i —.

Then for every ¢ we can obtain the derivation of I'; T, ¢ as below.

m. F1 ll)

n. rg ﬁll)
m+1D. 17 Iy U (antecedent by m)
m+2). IT Iy —p (antecedent by n)

m+3). IT Iy ¢ (modified contradiction by n + 1 and n + 2).

Corollary 2.3. ® is consistent if and only if there is a @ such that @ t/ .
Lemma 2.4. @ is consistent if and only if every finite ®y C O is consistent.

Lemma 2.5. Every satisfiable @ is consistent.

Proof: Assume that @ is inconsistent. Then there is a ¢ such that ® - ¢ and ® + —¢. By the
Soundness Theorem, i.e., Theorem ??, we conclude ® = ¢ and ® & —¢. Thus, ® cannot be
satisfiable. O
Lemma 2.6. (a) @+ ¢ if and only if ® U {—¢} is inconsistent.

(b) ®+ —¢ ifand only if ® U{e} is inconsistent.

(c) If cons(®), then either cons(@ U{@}) or cons(® U{—@}).



3 Completeness

The goal of this section is to show:
Theorem 3.1 (Completeness). If @ = ¢, then @ + .

We observe that the contrapositive of Theorem ?? is:

® t/ @ implies @ £~ ¢

< if ® U{—} is consistent, then ® U {—¢} is satisfiable.

As a matter of fact, we actually will prove the following general statement.

Theorem 3.2. cons(®) implies that O is satisfiable.

3.1 Henkin’s Theorem

We fix a set ® of S-formulas and will construct an S-interpretation out of ®. To that end, we first

define a binary relation over the set TS of S-terms.
Definition 3.3. Let t;,ty € TS. Thent; ~ty if ® F t; = ts.
Lemma 3.4. (i) ~ is an equivalence relation.

(ii) ~ is a congruence relation. That is:

* For every n-ary function symbol f € S and 2 - n S-terms t; ~ t3, ..

ftg -ty ~fty- -t

* For every n-ary relation symbol R € S and 2 - n S-terms t; ~ ty, ..

OFRt;---t, <= O@®FRt] - t,.

Proof: By the equality rule and the substitution rule.

Now for every t € TS we define
t={t'eT® |t ~t},

i.e., the equivalence class of t.

/
., tn ~ 1], we have

/
., th ~ 1/, we have

Definition 3.5. The term structure for @, denoted by T?, is defined as follows.

() The universeis T® := {t |t € T5}.
(ii) For every n-ary relation symbol R € S, and ty,...,t, € T®

(t1,...,tn) €RT if ®FRt;...tn.

(iii) For every n-ary function symbol f € S, and t1,...,t, € T?

f‘I(p (t1,... ,{n) = ﬁ

(iv) For every constant ¢ € S
zZ(D



This finishes the construction of ¥®. -

Using Lemma ??, in particular (ii), it is easy to verify that:

Lemma 3.6. T? is well-defined. .

To complete the definition of an S-interpretation, we still need to provide an assignment of the
variables vg, v, ... in TP.

Definition 3.7. For every variable v; we let

Finally we let

Lemma 3.8. (i) Foranyte TS

(ii) For every atomic ¢
IPEe = Ot o.

Proof: (i) We proceed by induction on t.

e t =vj; is a variable. Then
e t = cis a constant. Then

e t=ft;---t,. Then

IP(fty - tn) = £ (3% (t1),...,3%(tn))

= (1,...,tn) (by induction hypothesis)

(ii) Recall that there are two types of atomic formulas. For the first type, let ¢ = t; = tp. Then
Pt =ty <« I%(t1) =3%(ty)
<~ t1 = J_[z (by 1)
— 1~ 1y
<— OFt; =ty

Second, let @ = Rt; - - - t,,. We deduce

I ERY -ty <= (3%(t),...,T%(tn)) €RT"
— (t1,...,tn) €RT" (by ()
< OFRt; - tn.



4 Exercises
Exercise 4.1. Prove Lemma ??
Exercise 4.2. Let
@ := {Vx—Rxx, VxVyVvz(Rxy /A Ryz) — Rxz), VxVy(x =y V Rxy V Ryx), VxTFyRxy }.
Prove that @ is consistent.
Exercise 4.3. Let S := {R} with unary relation symbol R. Moreover we define
@ := {IxRx} U {—Ry | for every variable y}.
Prove that:
* O is consistent.

* There is no term t € TS with @ I Rt.



