Mathematical Logic (VI)

Yijia Chen

1 Sequent Calculus

1.1 Basic Rules

Antecedent

$$\frac{\Gamma \quad \varphi}{\Gamma' \quad \varphi} \Gamma \subseteq \Gamma'$$

The correctness is straightforward. Assume that $\Gamma \models \phi$ and $\mathfrak{I} \models \Gamma'$. Since $\Gamma \subseteq \Gamma'$, we conclude $\mathfrak{I} \models \Gamma$ and thus $\mathfrak{I} \models \phi$.

Assumption

$$\boxed{\Gamma \quad \varphi} \quad \varphi \in \Gamma$$

Case Analysis

Contradiction

$$\begin{array}{ccc}
 \Gamma & \neg \phi & \psi \\
 \hline
 \Gamma & \neg \phi & \neg \psi \\
 \hline
 \Gamma & \phi
 \end{array}$$

 \lor -introduction in antecedent

$$\begin{array}{ccc} & \Gamma & \phi & \chi \\ & \Gamma & \psi & \chi \\ \hline \Gamma & (\phi \lor \psi) & \chi \end{array}$$

 \lor -introduction in succedent

(a)
$$\frac{\Gamma - \phi}{\Gamma - (\phi \lor \psi)}$$
 (b) $\frac{\Gamma - \phi}{\Gamma - (\psi \lor \phi)}$

∃-introduction in succedent

$$\frac{\Gamma \quad \varphi \frac{t}{x}}{\Gamma \quad \exists x \varphi}$$

∃-introduction in antecedent

$$\frac{\Gamma \quad \phi \frac{\Psi}{x} \quad \psi}{\Gamma \quad \exists x \phi \quad \psi} \text{ if } y \notin \text{free}\big(\Gamma \cup \{\exists x \phi, \psi\}\big)$$

Equality

$$t \equiv t$$

Substitution

$$\frac{\Gamma \quad \phi \frac{t}{x}}{\Gamma \quad t \equiv t' \quad \phi \frac{t'}{x}}$$

1.2 Some Derived Rules

Example 1.1 (The law of excluded middle).

1.	φ	φ	(assumption)
2.	φ	$(\phi \lor \neg \phi)$	(\lor -introduction in succedent by 1)
3.	$\neg \phi$	$\neg \phi$	(assumption)
4.	$\neg \phi$	$(\phi \lor \neg \phi)$	(\lor -introduction in succedent by 3)
5.		$(\phi \lor \neg \phi)$	(case analysis by 2 and 4).

Therefore $\vdash (\phi \lor \neg \phi)$.

Example 1.2 (The modified contradiction).

We argue as follows.

1.		Г	ψ	(premise)
2.		Г	$\neg \psi$	(premise)
3.	Г	$\neg \phi$	ψ	(antecedent by 1)
4.	Γ	$\neg \phi$	$\neg \psi$	(antecedent by 2)
5.		Г	φ	(contradiction by 3 and 4).

Example 1.3 (The chain deduction).

We have the following deduction.

(premise)	φ	Г	1.
(premise)	ψ	Γφ	2.
(antecedent by 1)	φ	Γ ¬φ	3.
(assumption)	$\neg \phi$	Γ ¬φ	4.
(modified contradiction by 3 and 4)	ψ	Γ ¬φ	5.
(case analysis by 2 and 5).	ψ	Г	6.

Н

 \dashv

 \dashv

Definition 1.4. Let Φ be a set of S-formulas and φ an S-formula. Then φ is **derivable from** Φ , denoted by $\Phi \vdash \varphi$, if there exists an $n \in \mathbb{N}$ and $\varphi_1, \ldots, \varphi_n \in \Phi$ such that

$$\vdash \varphi_1 \dots \varphi_n \varphi.$$
 \dashv

Let Φ be a set of S-sentences and φ an S-formula.

Lemma 1.5. $\Phi \vdash \varphi$ if and only if there exists a *finite* $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \vdash \varphi$. \dashv

Theorem 1.6 (Soundness). *If* $\Phi \vdash \varphi$ *, then* $\Phi \models \varphi$ *.*

2 Consistency

Definition 2.1. Φ is **consistent**, written $cons(\Phi)$, if there is no φ such that both $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. Otherwise, Φ is **inconsistent**.

Lemma 2.2. Φ is inconsistent if and only if $\Phi \vdash \varphi$ for any formula φ .

Proof: The direction from right to left is by Definition **??**. For the converse direction, assume that there is a ψ such that $\Phi \vdash \psi$ and $\Phi \vdash \neg \psi$. Then there exist two finite sequences of formulas, Γ_1 and Γ_2 , such that we have derivation

$$\begin{array}{ccc} \vdots & \text{and} & \vdots \\ \Gamma_1 & \psi & \Gamma_2 & \neg \psi. \end{array}$$

Then for every φ we can obtain the derivation of $\Gamma_1 \Gamma_2 \varphi$ as below.

Corollary 2.3. Φ is consistent if and only if there is a φ such that $\Phi \not\vdash \varphi$.

Lemma 2.4. Φ is consistent if and only if every finite $\Phi_0 \subseteq \Phi$ is consistent.

Lemma 2.5. Every satisfiable Φ is consistent.

Proof: Assume that Φ is inconsistent. Then there is a φ such that $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. By the Soundness Theorem, i.e., Theorem **??**, we conclude $\Phi \models \varphi$ and $\Phi \models \neg \varphi$. Thus, Φ cannot be satisfiable.

Lemma 2.6. (a) $\Phi \vdash \varphi$ if and only if $\Phi \cup \{\neg \varphi\}$ is inconsistent.

- (b) $\Phi \vdash \neg \varphi$ if and only if $\Phi \cup \{\varphi\}$ is inconsistent.
- (c) If $cons(\Phi)$, then either $cons(\Phi \cup \{\varphi\})$ or $cons(\Phi \cup \{\neg \varphi\})$.

3 Completeness

The goal of this section is to show:

Theorem 3.1 (Completeness). *If* $\Phi \models \varphi$ *, then* $\Phi \vdash \varphi$ *.*

We observe that the contrapositive of Theorem ?? is:

 $\Phi \not\vdash \varphi$ implies $\Phi \not\models \varphi$ \iff if $\Phi \cup \{\neg \varphi\}$ is consistent, then $\Phi \cup \{\neg \varphi\}$ is satisfiable.

As a matter of fact, we actually will prove the following general statement.

Theorem 3.2. $cons(\Phi)$ *implies that* Φ *is satisfiable.*

3.1 Henkin's Theorem

We fix a set Φ of S-formulas and will construct an S-interpretation out of Φ . To that end, we first define a binary relation over the set T^S of S-terms.

Definition 3.3. Let
$$t_1, t_2 \in T^s$$
. Then $t_1 \sim t_2$ if $\Phi \vdash t_1 \equiv t_2$.

Lemma 3.4. (i) ~ is an equivalence relation.

(ii) \sim is a **congruence** relation. That is:

• For every n-ary function symbol $f \in S$ and $2 \cdot n$ S-terms $t_1 \sim t'_1, \ldots, t_n \sim t'_n$, we have

$$ft_1 \cdots t_n \sim ft'_1 \cdots t'_n$$
.

• For every n-ary relation symbol $R \in S$ and $2 \cdot n$ S-terms $t_1 \sim t'_1, \ldots, t_n \sim t'_n$, we have

$$\Phi \vdash \mathsf{Rt}_1 \cdots t_n \quad \Longleftrightarrow \quad \Phi \vdash \mathsf{Rt}'_1 \cdots t'_n.$$

Proof: By the equality rule and the substitution rule.

Now for every $t \in T^S$ we define

$$\bar{t} := \big\{ t' \in T^S \ \big| \ t' \sim t \big\},$$

i.e., the equivalence class of t.

Definition 3.5. The **term structure for** Φ , denoted by \mathfrak{T}^{Φ} , is defined as follows.

- (i) The universe is $T^{\Phi} := \{\overline{t} \mid t \in T^{S}\}.$
- (ii) For every n-ary relation symbol $R\in S,$ and $\bar{t}_1,\ldots,\bar{t}_n\in T^\Phi$

$$(\overline{t}_1,\ldots,\overline{t}_n)\in R^{\mathfrak{T}^{\Phi}}$$
 if $\Phi\vdash Rt_1\ldots t_n$.

(iii) For every n-ary function symbol $f\in S,$ and $\bar{t}_1,\ldots,\bar{t}_n\in \mathsf{T}^\Phi$

$$f^{\mathfrak{T}^{\Phi}}(\overline{t}_1,\ldots,\overline{t}_n):=\overline{ft_1\cdots t_n}.$$

(iv) For every constant $c \in S$

$$c^{\mathfrak{T}^{\Psi}} := \overline{c}.$$

 \dashv

-

This finishes the construction of \mathfrak{T}^{Φ} .

Using Lemma ??, in particular (ii), it is easy to verify that:

Lemma 3.6. \mathfrak{T}^{Φ} is well-defined.

To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_0, v_1, \ldots in \mathfrak{T}^{Φ} .

Definition 3.7. For every variable v_i we let

$$\beta^{\Phi}(\mathbf{v}_{i}) \coloneqq \bar{\mathbf{v}}_{i}. \qquad \qquad \dashv$$

Finally we let

$$\mathfrak{I}^{\Phi} \coloneqq (\mathfrak{T}^{\Phi}, \beta^{\Phi}).$$

Lemma 3.8. (i) For any $t \in T^S$

(ii) For every **atomic** φ

$$\mathfrak{I}^{\Phi}\models \varphi \iff \Phi\vdash \varphi.$$

 $\mathfrak{I}^{\Phi}(t) = \overline{t}.$

Proof: (i) We proceed by induction on t.

•
$$t = v_i$$
 is a variable. Then

$$\mathfrak{I}^{\Phi}(\nu_{i}) = \beta^{\Phi}(\nu_{i}) = \bar{\nu}_{i}.$$

•
$$t = c$$
 is a constant. Then

$$\mathfrak{I}^{\Phi}(c) = c^{\mathfrak{T}^{\Phi}} = \bar{c}$$

• $t = ft_1 \cdots t_n$. Then

$$\begin{split} \mathfrak{I}^{\Phi}(\mathsf{f} \mathsf{t}_1 \cdots \mathsf{t}_n) &= \mathsf{f}^{\mathfrak{T}^{\Phi}}(\mathfrak{I}^{\Phi}(\mathsf{t}_1), \dots, \mathfrak{I}^{\Phi}(\mathsf{t}_n)) \\ &= \mathsf{f}^{\mathfrak{T}^{\Phi}}(\bar{\mathfrak{t}}_1, \dots, \bar{\mathfrak{t}}_n) \\ &= \overline{\mathsf{f} \mathsf{t}_1 \cdots \mathsf{t}_n}. \end{split} \text{ (by induction hypothesis)}$$

(ii) Recall that there are two types of atomic formulas. For the first type, let $\phi=t_1\equiv t_2.$ Then

$$\begin{split} \mathfrak{I}^{\Phi} &\models t_1 \equiv t_2 \iff \mathfrak{I}^{\Phi}(t_1) = \mathfrak{I}^{\Phi}(t_2) \\ \iff \overline{t}_1 = \overline{t}_2 \qquad \qquad (by \ (i)) \\ \iff t_1 \sim t_2 \\ \iff \Phi \vdash t_1 \equiv t_2. \end{split}$$

Second, let $\phi = Rt_1 \cdots t_n$. We deduce

$$\begin{split} \mathfrak{I}^{\Phi} &\models \mathsf{R} \mathsf{t}_{1} \cdots \mathsf{t}_{n} \iff \left(\mathfrak{I}^{\Phi}(\mathsf{t}_{1}), \dots, \mathfrak{I}^{\Phi}(\mathsf{t}_{n}) \right) \in \mathsf{R}^{\mathfrak{T}^{\Phi}} \\ & \Longleftrightarrow \quad \left(\tilde{\mathsf{t}}_{1}, \dots, \tilde{\mathsf{t}}_{n} \right) \in \mathsf{R}^{\mathfrak{T}^{\Phi}} \\ & \Longleftrightarrow \quad \Phi \vdash \mathsf{R} \mathsf{t}_{1} \cdots \mathsf{t}_{n}. \end{split} \tag{by (i)}$$

-		
г		
н		
	_	

Η

4 Exercises

Exercise 4.1. Prove Lemma ??

Exercise 4.2. Let

$$\Phi := \{ \forall x \neg Rxx, \forall x \forall y \forall z (Rxy \land Ryz) \rightarrow Rxz), \forall x \forall y (x \equiv y \lor Rxy \lor Ryx), \forall x \exists y Rxy \}.$$

Prove that Φ is consistent.

Exercise 4.3. Let $S := \{R\}$ with unary relation symbol R. Moreover we define

 $\Phi := \{ \exists x R x \} \cup \{ \neg R y \ \big| \text{ for every variable } y \}.$

Prove that:

- Φ is consistent.
- There is no term $t \in T^S$ with $\Phi \vdash Rt$.