Mathematical Logic (VI)

Yijia Chen

1 Sequent Calculus

1.1 Basic Rules

Antecedent

$$
\frac{\Gamma}{\Gamma^{\prime} \varphi \varphi} \Gamma \subseteq \Gamma^{\prime}
$$

The correctness is straightforward. Assume that $\Gamma \models \varphi$ and $\mathfrak{I} \vDash \Gamma^{\prime}$. Since $\Gamma \subseteq \Gamma^{\prime}$, we conclude $\mathfrak{I} \models \Gamma$ and thus $\mathfrak{I} \models \varphi$.

Assumption

$$
\overline{\Gamma \quad \varphi} \varphi \in \Gamma
$$

Case Analysis

$$
\begin{array}{ccc}
\Gamma & \psi & \varphi \\
\Gamma \neg \psi & \varphi \\
\hline \Gamma & \varphi
\end{array}
$$

Contradiction

$$
\begin{array}{ccc}
\Gamma & \neg \varphi & \psi \\
\Gamma & \neg \varphi & \neg \psi \\
\hline \Gamma & & \varphi
\end{array}
$$

\checkmark-introduction in antecedent

$$
\begin{array}{rrr}
& \Gamma & \varphi \\
& \Gamma & \psi \\
\hline
\end{array}
$$

\checkmark-introduction in succedent
(a) $\frac{\Gamma \quad \varphi}{\Gamma \quad(\varphi \vee \psi)}$
(b) $\frac{\Gamma \quad \varphi}{\Gamma \quad(\psi \vee \varphi)}$
\exists-introduction in succedent

$$
\begin{aligned}
& \Gamma \quad \varphi \frac{t}{x} \\
& \hline \Gamma \quad \exists x \varphi
\end{aligned}
$$

\exists-introduction in antecedent

$$
\frac{\Gamma \quad \varphi \frac{y}{x}}{\Gamma} \begin{aligned}
& \psi \\
& \Gamma x \varphi
\end{aligned} \psi \text { if } y \notin \operatorname{free}(\Gamma \cup\{\exists x \varphi, \psi\})
$$

Equality

$$
\overline{t \equiv t}
$$

Substitution

$$
\begin{aligned}
& \Gamma \frac{\mathrm{t}}{\mathrm{x}} \\
\hline \Gamma \equiv \mathrm{t}^{\prime} & \varphi \frac{\mathrm{t}^{\prime}}{\mathrm{x}}
\end{aligned}
$$

1.2 Some Derived Rules

Example 1.1 (The law of excluded middle).

1.	φ	φ	(assumption)
2.	φ	$(\varphi \vee \neg \varphi)$	(V-introduction in succedent by 1)
3.	$\neg \varphi$	$\neg \varphi$	(assumption)
4.	$\neg \varphi$	$(\varphi \vee \neg \varphi)$	(V-introduction in succedent by 3)
5.		$(\varphi \vee \neg \varphi)$	(case analysis by 2 and 4).

Therefore $\vdash(\varphi \vee \neg \varphi)$.

Example 1.2 (The modified contradiction).

$$
\begin{array}{cc}
\Gamma & \psi \\
\Gamma & \neg \psi \\
\hline \Gamma & \varphi
\end{array}
$$

We argue as follows.

1.		Γ	ψ	(premise)
2.		Γ	$\neg \psi$	(premise)
3.	Γ	$\neg \varphi$	ψ	(antecedent by 1)
4.	Γ	$\neg \varphi$	$\neg \psi$	(antecedent by 2)
5.		Γ	φ	(contradiction by 3 and 4).

Example 1.3 (The chain deduction).

$$
\begin{array}{ccc}
& \Gamma & \varphi \\
\Gamma & \varphi & \psi \\
\hline & \Gamma & \psi
\end{array}
$$

We have the following deduction.

1.		Γ	φ	(premise)
2.	Γ	φ	ψ	(premise)
3.	Γ	$\neg \varphi$	φ	(antecedent by 1)
4.	Γ	$\neg \varphi$	$\neg \varphi$	(assumption)
5.	Γ	$\neg \varphi$	ψ	(modified contradiction by 3 and 4)
6.	Γ	ψ	(case analysis by 2 and 5).	

Definition 1.4. Let Φ be a set of S-formulas and φ an S-formula. Then φ is derivable from Φ, denoted by $\Phi \vdash \varphi$, if there exists an $n \in \mathbb{N}$ and $\varphi_{1}, \ldots, \varphi_{n} \in \Phi$ such that

$$
\vdash \varphi_{1} \ldots \varphi_{\mathrm{n}} \varphi
$$

Let Φ be a set of S-sentences and φ an S-formula.
Lemma 1.5. $\Phi \vdash \varphi$ if and only if there exists a finite $\Phi_{0} \subseteq \Phi$ such that $\Phi_{0} \vdash \varphi$.

Theorem 1.6 (Soundness). If $\Phi \vdash \varphi$, then $\Phi \models \varphi$.

2 Consistency

Definition 2.1. Φ is consistent, written cons (Φ), if there is no φ such that both $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. Otherwise, Φ is inconsistent.

Lemma 2.2. Φ is inconsistent if and only if $\Phi \vdash \varphi$ for any formula φ.
Proof: The direction from right to left is by Definition ??. For the converse direction, assume that there is a ψ such that $\Phi \vdash \psi$ and $\Phi \vdash \neg \psi$. Then there exist two finite sequences of formulas, Γ_{1} and Γ_{2}, such that we have derivation

Then for every φ we can obtain the derivation of $\Gamma_{1} \Gamma_{2} \varphi$ as below.

Corollary 2.3. Φ is consistent if and only if there is $a \varphi$ such that $\Phi \nvdash \varphi$.
Lemma 2.4. Φ is consistent if and only if every finite $\Phi_{0} \subseteq \Phi$ is consistent.
Lemma 2.5. Every satisfiable Φ is consistent.
Proof: Assume that Φ is inconsistent. Then there is a φ such that $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. By the Soundness Theorem, i.e., Theorem ??, we conclude $\Phi \models \varphi$ and $\Phi \models \neg \varphi$. Thus, Φ cannot be satisfiable.

Lemma 2.6. (a) $\Phi \vdash \varphi$ if and only if $\Phi \cup\{\neg \varphi\}$ is inconsistent.
(b) $\Phi \vdash \neg \varphi$ if and only if $\Phi \cup\{\varphi\}$ is inconsistent.
(c) If $\operatorname{cons}(\Phi)$, then either $\operatorname{cons}(\Phi \cup\{\varphi\})$ or $\operatorname{cons}(\Phi \cup\{\neg \varphi\})$.

3 Completeness

The goal of this section is to show:
Theorem 3.1 (Completeness). If $\Phi \models \varphi$, then $\Phi \vdash \varphi$.
We observe that the contrapositive of Theorem ?? is:

$$
\Phi \nvdash \varphi \text { implies } \Phi \not \models \varphi
$$

\Longleftrightarrow if $\Phi \cup\{\neg \varphi\}$ is consistent, then $\Phi \cup\{\neg \varphi\}$ is satisfiable.
As a matter of fact, we actually will prove the following general statement.
Theorem 3.2. cons (Φ) implies that Φ is satisfiable.

3.1 Henkin's Theorem

We fix a set Φ of S-formulas and will construct an S-interpretation out of Φ. To that end, we first define a binary relation over the set T^{S} of S -terms.

Definition 3.3. Let $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{~T}^{S}$. Then $\mathrm{t}_{1} \sim \mathrm{t}_{2}$ if $\Phi \vdash \mathrm{t}_{1} \equiv \mathrm{t}_{2}$.
Lemma 3.4. (i) \sim is an equivalence relation.
(ii) ~ is a congruence relation. That is:

- For every n -ary function symbol $\mathrm{f} \in \mathrm{S}$ and $2 \cdot \mathrm{nS}$-terms $\mathrm{t}_{1} \sim \mathrm{t}_{1}^{\prime}, \ldots, \mathrm{t}_{\mathrm{n}} \sim \mathrm{t}_{n}^{\prime}$, we have

$$
\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}} \sim \mathrm{ft}_{1}^{\prime} \cdots \mathrm{t}_{\mathrm{n}}^{\prime} .
$$

- For every n-ary relation symbol $R \in S$ and $2 \cdot n S$-terms $t_{1} \sim t_{1}^{\prime}, \ldots, t_{n} \sim t_{n}^{\prime}$, we have

$$
\Phi \vdash \mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}} \quad \Longleftrightarrow \quad \Phi \vdash \mathrm{Rt}_{1}^{\prime} \cdots \mathrm{t}_{n}^{\prime} .
$$

Proof: By the equality rule and the substitution rule.
Now for every $t \in T^{S}$ we define

$$
\overline{\mathrm{t}}:=\left\{\mathrm{t}^{\prime} \in \mathrm{T}^{\mathrm{S}} \mid \mathrm{t}^{\prime} \sim \mathrm{t}\right\},
$$

i.e., the equivalence class of t.

Definition 3.5. The term structure for Φ, denoted by \mathfrak{T}^{Φ}, is defined as follows.
(i) The universe is $T^{\Phi}:=\left\{\bar{t} \mid t \in T^{S}\right\}$.
(ii) For every n-ary relation symbol $R \in S$, and $\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{n} \in T^{\Phi}$

$$
\left(\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{n}\right) \in \mathrm{R}^{\mathfrak{T}^{\Phi}} \quad \text { if } \quad \Phi \vdash \mathrm{Rt}_{1} \ldots \mathrm{t}_{\mathrm{n}} .
$$

(iii) For every n-ary function symbol $f \in S$, and $\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{\mathrm{n}} \in \mathrm{T}^{\Phi}$

$$
\mathrm{f}^{\mathfrak{F}^{\mathscr{1}}}\left(\overline{\mathfrak{t}}_{1}, \ldots, \overline{\mathfrak{t}}_{\mathrm{n}}\right):=\overline{\mathrm{ft}_{1} \cdots \mathrm{t}_{n}} .
$$

(iv) For every constant $\mathrm{c} \in \mathrm{S}$

$$
c^{\mathfrak{T}^{\mathscr{D}}}:=\bar{c}
$$

This finishes the construction of \mathfrak{T}^{Φ}.
Using Lemma ??, in particular (ii), it is easy to verify that:
Lemma 3.6. \mathfrak{T}^{Φ} is well-defined.
To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_{0}, v_{1}, \ldots in \mathfrak{T}^{Φ}.

Definition 3.7. For every variable v_{i} we let

$$
\beta^{\Phi}\left(v_{i}\right):=\bar{v}_{i}
$$

Finally we let

$$
\mathfrak{I}^{\Phi}:=\left(\mathfrak{T}^{\Phi}, \beta^{\Phi}\right) .
$$

Lemma 3.8. (i) For any $t \in T^{S}$

$$
\mathfrak{I}^{\Phi}(\mathrm{t})=\overline{\mathrm{t}}
$$

(ii) For every atomic φ

$$
\mathfrak{I}^{\Phi} \models \varphi \quad \Longleftrightarrow \quad \Phi \vdash \varphi .
$$

Proof: (i) We proceed by induction on t.

- $t=v_{i}$ is a variable. Then

$$
\mathfrak{I}^{\Phi}\left(v_{i}\right)=\beta^{\Phi}\left(v_{i}\right)=\bar{v}_{i}
$$

- $\mathrm{t}=\mathrm{c}$ is a constant. Then

$$
\mathfrak{I}^{\Phi}(c)=c^{\mathfrak{T}^{\Phi}}=\bar{c}
$$

- $t=\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}}$. Then

$$
\begin{aligned}
\mathfrak{I}^{\Phi}\left(\mathrm{ft}_{1} \cdots \mathrm{t}_{n}\right) & =\mathfrak{f}^{\mathfrak{T}^{\Phi}}\left(\mathfrak{I}^{\Phi}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}^{\Phi}\left(\mathrm{t}_{n}\right)\right) \quad \text { (by induction hypothesis) } \\
& =\mathfrak{f}^{\mathfrak{T}^{\Phi}}\left(\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{n}\right) \\
& =\overline{\mathrm{ft}_{1} \cdots \mathrm{t}_{n}} .
\end{aligned}
$$

(ii) Recall that there are two types of atomic formulas. For the first type, let $\varphi=\mathrm{t}_{1} \equiv \mathrm{t}_{2}$. Then

$$
\begin{align*}
\mathfrak{I}^{\Phi} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2} & \Longleftrightarrow \mathfrak{I}^{\Phi}\left(\mathrm{t}_{1}\right)=\mathfrak{I}^{\Phi}\left(\mathrm{t}_{2}\right) \\
& \Longleftrightarrow \overline{\mathrm{t}}_{1}=\overline{\mathrm{t}}_{2} \tag{i}\\
& \Longleftrightarrow \mathrm{t}_{1} \sim \mathrm{t}_{2} \\
& \Longleftrightarrow \Phi \vdash \mathrm{t}_{1} \equiv \mathrm{t}_{2} .
\end{align*}
$$

Second, let $\varphi=\operatorname{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}}$. We deduce

$$
\begin{aligned}
\mathfrak{I}^{\Phi} \models \mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}} & \Longleftrightarrow\left(\mathfrak{I}^{\Phi}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}^{\Phi}\left(\mathrm{t}_{\mathrm{n}}\right)\right) \in \mathrm{R}^{\mathfrak{T}^{\Phi}} \\
& \Longleftrightarrow\left(\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{\mathrm{n}}\right) \in \mathrm{R}^{\mathfrak{T}^{\Phi}} \\
& \Longleftrightarrow \Phi \vdash \mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}} .
\end{aligned}
$$

4 Exercises

Exercise 4.1. Prove Lemma ??
Exercise 4.2. Let

$$
\Phi:=\{\forall x \neg R x x, \forall x \forall y \forall z(R x y \wedge R y z) \rightarrow R x z), \forall x \forall y(x \equiv y \vee R x y \vee R y x), \forall x \exists y R x y\}
$$

Prove that Φ is consistent.
Exercise 4.3. Let $S:=\{R\}$ with unary relation symbol R. Moreover we define

$$
\Phi:=\{\exists x R x\} \cup\{\neg R y \mid \text { for every variable } y\}
$$

Prove that:

- Φ is consistent.
- There is no term $t \in T^{S}$ with $\Phi \vdash R t$.

