Mathematical Logic (VII)
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1 Completeness

1.1 Henkin’s Theorem

Recall that we fix a set ® of S-formulas.

Definition 1.1. Let t1,t; € TS. Thent; ~ty if ® F t; = ts.
Lemma 1.2. (i) ~ is an equivalence relation.

(ii) ~ is a congruence relation. That is:

* For every n-ary function symbol R € S and 2 - n S-terms t; ~ t{, ...

fty -ty ~ ft]-- -t

* For every n-ary relation symbol R € S and 2 -n S-terms t; ~ t/, ...

OFRty---t, <= O@®FRt] - t].

Proof: By the equality rule and the substitution rule.

Now for every t € TS we define
t={t' eT*|t'~t},

i.e., the equivalence class of t.

/
, tn ~t], we have

!
, tn ~ t], we have

Definition 1.3. The term structure for @, denoted by T?, is defined as below.

() The universeis T® := {t |t € TS}.
(ii) For every n-ary relation symbol R € S, and t1,...,t, € T?
(t1,...,tn) €ERT if @ FRt;...tn.
(iii) For every n-ary function symbol f € S, and t;,...,t, € T?

f‘zm ({1,...,£n) =ft - tn.

(iv) For every constant ¢ € S
‘I(‘b

This finishes the construction of ¥®.

Using Lemma ??, in particular (ii), it is easy to verify that:

Lemma 1.4. T2 is well-defined.



To complete the definition of an S-interpretation, we still need to provide an assignment of the
variables vg, v1, ... in TP.

Definition 1.5. For every variable v; we let
BY (vi) = s. .
Finally we let
%= (29,89).

Lemma 1.6. (i) Foranyte TS
JPt) =t.

(ii) For every atomic ¢
IPEe = Ot o. 4

Proof: (i) We proceed by induction on t.

e t =v; is a variable. Then
e t = cis a constant. Then

e t="ft;---t,. Then

I(fty o tn) = £ (3% (1), ..., TP (tn))
=T (1,...,1n) (by induction hypothesis)
— f‘tl e tT\.'

(ii) Recall that there are two types of atomic formulas. For the first type, let @ = t; = tp. Then

Pkt =t < 1%(t1) =7%(t)
< {1 = ’_Ez (by (1))
— t1~ 12
— Okt =t
Second, let @ = Rty - - - t,,. We deduce

I® ERt -ty <= (3%(t1),...,3%(tn)) € RT"
= (t1,...,tn) c R (by (1)
<— OFRt;---t,.

Lemma 1.7. Let ¢ be an S-formula and x4, ..., xn, pairwise distinct variables. Then
(i) J® |= 3Ix1...3Ixn @ if and only if there are S-terms ti, ..., t, such that
tn

~ t1...
3P gl tn
X1...Xn



(ii) J® = VX1 ...Vxn@ if and only if for all S-terms tq, ..., t, we have

t1...t
e e
X1..-Xn
Proof: We prove (i), then (ii) follows immediately.
3P E3x ... Ixne
a...a
e ®L T o for some ag, ..., an € TO,
X1...Xn
. ot tn s
ie., ¥ —— E ¢ for some t1,...,t, € T>,
X1...Xn
J%(t1)...3%(t .
— 3 (;) - (tn) = ¢ for some ty,...,t, € T, (by Lemma ?? (i))
1..-Xn
o t1...th s .
— I E (pﬁ for some t1,...,t, € T>, (by the Substitution Lemma).
1.+-Xn

O

Definition 1.8. (i) ® is negation complete if for every S-formula ¢
OF@ or OF—e.
(ii) @ contains witnesses if for every S-formula ¢ and every variable x there is a term t € TS
with
t
O} (Elxcp — cpx) . b

Lemma 1.9. Assume that ® is consistent, negation complete, and contains witnesses. Then for all
S-formulas @ and :

(i) ®F ¢ ifand only if ® t/ —e.
(i) OF (V) ifandonlyif ® - @ or ® F .
(iti) @ F Ix¢ if and only if there is a term t € T® such that ® - @ <.

Proof: (i) Assume that ® F ¢. Since @ is consistent, we conclude that ® t/ —¢. Conversely, if
® t/ —@, then ® F @ by the negation completeness.

(ii) The direction from right to left is trivial by VV-introduction in succedent. For the other direction,
assume that @ + (¢ V) and @ t/ ¢. By the negation completeness, ® - —¢. Then for some
finite ' € ® we have the following sequent proof.

m Nn (eVi)

n. I -
(n+1. n L e —@ (antecedent by n)
(n+2). n e © (assumption)
(n+3). n L e 1  (modified contradiction by n +1 and n + 2)
n+4). n P i) (assumption)
m+5). Ih I (VYY) i) (V-introduction in antecedent)
(n+6). n o ) (chain rule by m and n + 5)



(iii) Let @ + 3x¢ and @ contain witnesses. Thus there is a term t € TS such that
t
O} (EIX(p — (p) .
X

By Modus ponens', we conclude @ + @<X. The converse is by the rule of the 3-introduction in
succedent. a

Theorem 1.10 (Henkin’s Theorem). Let ® C LS be consistent, negation complete, and contain
witnesses. Then for every S-formula ¢

P — OF .
Proof: We proceed by induction on ¢.
* ( is atomic. This is Lemma ?? (ii).

* ¢ =—. Then

e = % EY
— O (by induction hypothesis)
— OF—p (by Lemma ?? (i)).

* @ = (P71 Vo). We deduce

IPE Wi V) <= TP Epior 3% E s

<~ OF1YP;ord®k-y (by induction hypothesis)
— O (P1Vy) (by Lemma ?? (ii)).
e @ = Ix.
I EIxp —= % & 11)% for some t € TS (by Lemma ??)
— Ok 1|)£ for some t € TS (by induction hypothesis)
— OF IxP (by Lemma ?? (iii)).

Here, note that the length of 1])% could be well larger than that 3x1. Thus, our induction is
on the so-called connective rank of 1\, denoted by rk(¢), which is defined as follows:

0 if @ is atomic,

k() = 1+ k() if @ =,
1+1k(P1) +rk(P2) if @ = (Y1 V2),
1+ rk(y) if @ = Ixp.

Corollary 1.11. Let ® C L° be consistent, negation complete, and contain witnesses. Then
7% | 0.

In particular, @ is satisfiable.

IThatis, if ® - ¢ and ® - ¢ — P, then O + ).



2 Exercises

Exercise 2.1. Assume that @ is inconsistent. Please describe the structure T¢.
Exercise 2.2. Again let S := {R} with unary relation symbol R, and
@ :={Rx V Ry}.
Prove that:
* O is consistent.
* @t/ Rxand @ t/Ry.
e J% £ .

Exercise 2.3. Let
D = {VO =t ’ te TS} U {3\)03\11_‘\)0 = Vl}.

Prove that @ is consistent, but there is no consistent ¥ with ® C ¥ C LS which contains witnesses.
_|

Exercise 2.4. Let 2 and 9B be two S-structures. A mapping h: A — B is a homomorphism from
2 to B if the following properties hold.

1. For every n-ary relation symbol R € S and a,,...,a, € A we have

(ai,...,an) € R%* implies (h(ai),...,h(an)) € R®.

2. For every n-ary function symbol f € S and ay,...,a, € A we have

h(f*(ay,...,an)) =2 (h(ai),..., h(aw)).

3. For every constant ¢ € S
h(c®) =c®.

Now let ® C LS and 2 be an S-structure with 2 = ®. Prove that there is a homomorphism
from the term model T® to 2. 4



