Mathematical Logic (VII)

Yijia Chen

1 Completeness

1.1 Henkin's Theorem

Recall that we fix a set Φ of S-formulas.

Definition 1.1. Let
$$t_1, t_2 \in T^s$$
. Then $t_1 \sim t_2$ if $\Phi \vdash t_1 \equiv t_2$.

Lemma 1.2. (i) ~ is an equivalence relation.

(ii) \sim is a **congruence** relation. That is:

- For every n-ary function symbol $R\in S$ and $2\cdot n$ S-terms $t_1\sim t'_1,\,\ldots,\,t_n\sim t'_n,$ we have

$$ft_1 \cdots t_n \sim ft'_1 \cdots t'_n$$

- For every n-ary relation symbol $R\in S$ and $2\cdot n$ S-terms $t_1\sim t_1',\,\ldots,\,t_n\sim t_n'$, we have

$$\Phi \vdash \mathsf{Rt}_1 \cdots t_n \quad \Longleftrightarrow \quad \Phi \vdash \mathsf{Rt}'_1 \cdots t'_n. \qquad \qquad \dashv$$

Proof: By the equality rule and the substitution rule.

Now for every $t\in\mathsf{T}^S$ we define

$$\overline{t} := \left\{ t' \in T^S \mid t' \sim t \right\},$$

i.e., the equivalence class of t.

Definition 1.3. The **term structure for** Φ , denoted by \mathfrak{T}^{Φ} , is defined as below.

- (i) The universe is $T^{\Phi} := \{ \overline{t} \mid t \in T^{S} \}.$
- (ii) For every n-ary relation symbol $R\in S,$ and $\bar{t}_1,\ldots,\bar{t}_n\in T^\Phi$

$$(\overline{t}_1,\ldots,\overline{t}_n)\in R^{\mathfrak{T}^{\Phi}}$$
 if $\Phi\vdash Rt_1\ldots t_n$.

(iii) For every n-ary function symbol $f\in S,$ and $\overline{t}_1,\ldots,\overline{t}_n\in T^\Phi$

$$f^{\mathfrak{T}^{\Phi}}(\overline{t}_1,\ldots,\overline{t}_n):=\overline{ft_1\cdots t_n}.$$

(iv) For every constant $c\in S$

$$c^{\mathfrak{T}^{\Phi}} := \overline{c}$$

This finishes the construction of \mathfrak{T}^{Φ} .

Using Lemma ??, in particular (ii), it is easy to verify that:

Lemma 1.4. \mathfrak{T}^{Φ} is well-defined.

 \dashv

 \dashv

 \dashv

To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_0, v_1, \ldots in \mathfrak{T}^{Φ} .

Definition 1.5. For every variable ν_i we let

$$\beta^{\Phi}(\nu_{i}) := \bar{\nu}_{i}. \qquad \qquad \dashv$$

Finally we let

$$\mathfrak{I}^{\Phi} := \left(\mathfrak{T}^{\Phi}, \beta^{\Phi}\right).$$

 $\mathfrak{I}^{\Phi}(t) = \overline{t}.$

Lemma 1.6. (i) For any $t \in T^S$

(ii) For every **atomic** ϕ

$$\mathfrak{I}^{\Phi}\models \varphi \iff \Phi\vdash \varphi.$$

Proof: (i) We proceed by induction on t.

• $t = v_i$ is a variable. Then

$$\mathfrak{I}^{\Phi}(\nu_{\mathfrak{i}}) = \beta^{\Phi}(\nu_{\mathfrak{i}}) = \bar{\nu}_{\mathfrak{i}}.$$

• t = c is a constant. Then

$$\mathfrak{I}^{\Phi}(\mathbf{c}) = \mathbf{c}^{\mathfrak{T}^{\Phi}} =$$

ō

•
$$t = ft_1 \cdots t_n$$
. Then

$$\begin{split} \mathfrak{I}^{\Phi}(ft_1 \cdots t_n) &= f^{\mathfrak{T}^{\Phi}}(\mathfrak{I}^{\Phi}(t_1), \dots, \mathfrak{I}^{\Phi}(t_n)) \\ &= f^{\mathfrak{T}^{\Phi}}(\overline{t}_1, \dots, \overline{t}_n) \\ &= \overline{ft_1 \cdots t_n}. \end{split}$$
(by induction hypothesis)

(ii) Recall that there are two types of atomic formulas. For the first type, let $\phi = t_1 \equiv t_2$. Then

$$\begin{split} \mathfrak{I}^{\Phi} &\models \mathfrak{t}_{1} \equiv \mathfrak{t}_{2} \iff \mathfrak{I}^{\Phi}(\mathfrak{t}_{1}) = \mathfrak{I}^{\Phi}(\mathfrak{t}_{2}) \\ & \Longleftrightarrow \quad \tilde{\mathfrak{t}}_{1} = \tilde{\mathfrak{t}}_{2} \\ & \Leftrightarrow \quad \mathfrak{t}_{1} \sim \mathfrak{t}_{2} \\ & \Leftrightarrow \quad \Phi \vdash \mathfrak{t}_{1} \equiv \mathfrak{t}_{2}. \end{split} \tag{by (i)}$$

Second, let $\phi = Rt_1 \cdots t_n$. We deduce

$$\begin{split} \mathfrak{I}^{\Phi} &\models \mathsf{R} t_1 \cdots t_n \iff \left(\mathfrak{I}^{\Phi}(t_1), \dots, \mathfrak{I}^{\Phi}(t_n) \right) \in \mathsf{R}^{\mathfrak{T}^{\Phi}} \\ \iff \left(\bar{t}_1, \dots, \bar{t}_n \right) \in \mathsf{R}^{\mathfrak{T}^{\Phi}} \\ \iff \Phi \vdash \mathsf{R} t_1 \cdots t_n. \end{split} \tag{by (i)}$$

Lemma 1.7. Let ϕ be an S-formula and x_1, \ldots, x_n pairwise distinct variables. Then

(i) $\mathfrak{I}^{\Phi} \models \exists x_1 \dots \exists x_n \phi$ if and only if there are S-terms t_1, \dots, t_n such that

$$\mathfrak{I}^{\Phi} \models \varphi \frac{\mathfrak{t}_1 \dots \mathfrak{t}_n}{\mathfrak{x}_1 \dots \mathfrak{x}_n}.$$

(ii) $\mathfrak{I}^{\Phi} \models \forall x_1 \dots \forall x_n \phi$ if and only if for all S-terms t_1, \dots, t_n we have

$$\mathfrak{I}^{\Phi} \models \varphi \frac{\mathfrak{t}_1 \dots \mathfrak{t}_n}{\mathfrak{x}_1 \dots \mathfrak{x}_n}.$$

Proof: We prove (i), then (ii) follows immediately.

$$\begin{split} \mathfrak{I}^{\Phi} &\models \exists x_{1} \dots \exists x_{n} \varphi \\ & \iff \mathfrak{I}^{\Phi} \frac{a_{1} \dots a_{n}}{x_{1} \dots x_{n}} \models \varphi \text{ for some } a_{1}, \dots, a_{n} \in \mathsf{T}^{\Phi}, \\ & \text{ i.e., } \mathfrak{I}^{\Phi} \frac{\tilde{t}_{1} \dots \tilde{t}_{n}}{x_{1} \dots x_{n}} \models \varphi \text{ for some } t_{1}, \dots, t_{n} \in \mathsf{T}^{S}, \\ & \iff \mathfrak{I}^{\Phi} \frac{\mathfrak{I}^{\Phi}(t_{1}) \dots \mathfrak{I}^{\Phi}(t_{n})}{x_{1} \dots x_{n}} \models \varphi \text{ for some } t_{1}, \dots, t_{n} \in \mathsf{T}^{S}, \\ & \iff \mathfrak{I}^{\Phi} \models \varphi \frac{t_{1} \dots t_{n}}{x_{1} \dots x_{n}} \text{ for some } t_{1}, \dots, t_{n} \in \mathsf{T}^{S}, \end{split}$$
 (by Lemma $\ref{eq: by Lemma}$).

Definition 1.8. (i) Φ is **negation complete** if for every S-formula φ

$$\Phi \vdash \phi$$
 or $\Phi \vdash \neg \phi$.

(ii) Φ contains witnesses if for every S-formula ϕ and every variable x there is a term $t\in T^S$ with

$$\Phi \vdash \left(\exists x \phi \to \phi \frac{t}{x}\right). \qquad \qquad \exists$$

Lemma 1.9. Assume that Φ is consistent, negation complete, and contains witnesses. Then for all S-formulas φ and ψ :

- (i) $\Phi \vdash \varphi$ if and only if $\Phi \not\vdash \neg \varphi$.
- (ii) $\Phi \vdash (\phi \lor \psi)$ if and only if $\Phi \vdash \phi$ or $\Phi \vdash \psi$.
- (iii) $\Phi \vdash \exists x \varphi$ if and only if there is a term $t \in T^s$ such that $\Phi \vdash \varphi \frac{t}{x}$.

Proof: (i) Assume that $\Phi \vdash \varphi$. Since Φ is consistent, we conclude that $\Phi \not\vdash \neg \varphi$. Conversely, if $\Phi \not\vdash \neg \varphi$, then $\Phi \vdash \varphi$ by the negation completeness.

(ii) The direction from right to left is trivial by \lor -introduction in succedent. For the other direction, assume that $\Phi \vdash (\phi \lor \psi)$ and $\Phi \not\vdash \phi$. By the negation completeness, $\Phi \vdash \neg \phi$. Then for some finite $\Gamma \subseteq \Phi$ we have the following sequent proof.

m.				: Г1	$(\phi \lor \psi)$	
n.				: Г2	$\neg \phi$	
(n + 1).		Γ_1	Γ_2	φ	¬φ	(antecedent by n)
(n + 2).		Γ_1	Γ_2	φ	φ	(assumption)
(n + 3).		Γ_1	Γ_2	φ	ψ	(modified contradiction by $n + 1$ and $n + 2$)
(n + 4).		Γ_1	Γ_2	ψ	ψ	(assumption)
(n + 5).	Γ_1	Γ_2	$(\phi \lor$	ψ)	ψ	(V-introduction in antecedent)
(n+6).			Γ_1	Γ_2	ψ	(chain rule by m and $n + 5$)

(iii) Let $\Phi \vdash \exists x \phi$ and Φ contain witnesses. Thus there is a term $t \in T^S$ such that

$$\Phi \vdash \left(\exists x \phi \to \phi \frac{t}{x}\right).$$

By Modus ponens¹, we conclude $\Phi \vdash \varphi \frac{t}{x}$. The converse is by the rule of the \exists -introduction in succedent. \Box

Theorem 1.10 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then for every S-formula φ

$$\mathfrak{I}^{\Phi}\models \phi \quad \Longleftrightarrow \quad \Phi\vdash \phi.$$

Proof: We proceed by induction on φ .

- φ is atomic. This is Lemma **??** (ii).
- $\phi = \neg \psi$. Then

$\mathfrak{I}^{\Phi}\models \neg\psi\iff\mathfrak{I}^{\Phi} ot\models\psi$	
$\iff \Phi \not\vdash \psi$	(by induction hypothesis)
$\iff \Phi \vdash \neg \psi$	(by Lemma ?? (i)).

• $\varphi = (\psi_1 \lor \psi_2)$. We deduce

$$\begin{split} \mathfrak{I}^{\Phi} &\models (\psi_1 \lor \psi_2) \iff \mathfrak{I}^{\Phi} \models \psi_1 \text{ or } \mathfrak{I}^{\Phi} \models \psi_2 \\ \iff \Phi \vdash \psi_1 \text{ or } \Phi \vdash \psi_2 \qquad \text{(by induction hypothesis)} \\ \iff \Phi \vdash (\psi_1 \lor \psi_2) \qquad \text{(by Lemma ?? (ii)).} \end{split}$$

• $\varphi = \exists x \psi$.

$$\begin{split} \mathfrak{I}^{\Phi} &\models \exists x \psi \iff \mathfrak{I}^{\Phi} \models \psi \frac{t}{x} \text{ for some } t \in \mathsf{T}^{\mathsf{S}} \\ &\iff \Phi \vdash \psi \frac{t}{x} \text{ for some } t \in \mathsf{T}^{\mathsf{S}} \\ &\iff \Phi \vdash \exists x \psi \end{split} \tag{by Lemma ?? (iii)).}$$

Here, note that the length of $\psi \frac{t}{\chi}$ could be well larger than that $\exists x\psi$. Thus, our induction is on the so-called **connective rank** of ψ , denoted by $rk(\phi)$, which is defined as follows:

$$\label{eq:rk} rk(\phi) := \begin{cases} 0 & \text{if ϕ is atomic,} \\ 1 + rk(\psi) & \text{if $\phi = \neg \psi$,} \\ 1 + rk(\psi_1) + rk(\psi_2) & \text{if $\phi = (\psi_1 \lor \psi_2)$,} \\ 1 + rk(\psi) & \text{if $\phi = \exists x \psi$.} \end{cases}$$

Corollary 1.11. Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then

$$\mathfrak{I}^{\Phi}\models\Phi.$$

In particular, Φ is satisfiable.

¹That is, if $\Phi \vdash \varphi$ and $\Phi \vdash \varphi \rightarrow \psi$, then $\Phi \vdash \psi$.

2 Exercises

Exercise 2.1. Assume that Φ is inconsistent. Please describe the structure \mathfrak{T}^{Φ} .

Exercise 2.2. Again let $S := \{R\}$ with unary relation symbol R, and

$$\Phi := \{ \mathsf{R} \mathsf{x} \lor \mathsf{R} \mathsf{y} \}.$$

Prove that:

- Φ is consistent.
- $\Phi \not\vdash Rx$ and $\Phi \not\vdash Ry$.
- $\mathfrak{I}^{\Phi} \not\models \Phi$.

Exercise 2.3. Let

$$\Phi := \big\{ \nu_0 \equiv t \mid t \in \mathsf{T}^{\mathsf{S}} \big\} \cup \big\{ \exists \nu_0 \exists \nu_1 \neg \nu_0 \equiv \nu_1 \big\}.$$

Prove that Φ is consistent, but there is no consistent Ψ with $\Phi\subseteq\Psi\subseteq L^S$ which contains witnesses. \dashv

Exercise 2.4. Let \mathfrak{A} and \mathfrak{B} be two S-structures. A mapping $h : A \to B$ is a **homomorphism** from \mathfrak{A} to \mathfrak{B} if the following properties hold.

1. For every n-ary relation symbol $R\in S$ and $\mathfrak{a}_1,\ldots,\mathfrak{a}_n\in A$ we have

$$(a_1,\ldots,a_n) \in \mathbb{R}^{\mathfrak{A}}$$
 implies $(\mathfrak{h}(a_1),\ldots,\mathfrak{h}(a_n)) \in \mathbb{R}^{\mathfrak{B}}$.

2. For every n-ary function symbol $f\in S$ and $a_1,\ldots,a_n\in A$ we have

$$h(f^{\mathfrak{A}}(\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n}))=f^{\mathfrak{B}}(h(\mathfrak{a}_{1}),\ldots,h(\mathfrak{a}_{n})).$$

3. For every constant $c \in S$

$$h(c^{\mathfrak{A}})=c^{\mathfrak{B}}.$$

Now let $\Phi \subseteq L^S$ and \mathfrak{A} be an S-structure with $\mathfrak{A} \models \Phi$. Prove that there is a homomorphism from the term model \mathfrak{T}^{Φ} to \mathfrak{A} .