Mathematical Logic (VII)

Yijia Chen

1 Completeness

1.1 Henkin's Theorem

Recall that we fix a set Φ of S-formulas.
Definition 1.1. Let $t_{1}, \mathrm{t}_{2} \in \mathrm{~T}^{\mathrm{S}}$. Then $\mathrm{t}_{1} \sim \mathrm{t}_{2}$ if $\Phi \vdash \mathrm{t}_{1} \equiv \mathrm{t}_{2}$.
Lemma 1.2. (i) \sim is an equivalence relation.
(ii) \sim is a congruence relation. That is:

- For every n-ary function symbol $R \in S$ and $2 \cdot n S$-terms $t_{1} \sim t_{1}^{\prime}, \ldots, t_{n} \sim t_{n}^{\prime}$, we have

$$
\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}} \sim \mathrm{ft}_{1}^{\prime} \cdots \mathrm{t}_{\mathrm{n}}^{\prime}
$$

- For every n-ary relation symbol $R \in S$ and $2 \cdot n S$-terms $t_{1} \sim t_{1}^{\prime}, \ldots, t_{n} \sim t_{n}^{\prime}$, we have

$$
\Phi \vdash R t_{1} \cdots t_{n} \quad \Longleftrightarrow \quad \Phi \vdash R t_{1}^{\prime} \cdots t_{n}^{\prime}
$$

Proof: By the equality rule and the substitution rule.
Now for every $t \in T^{S}$ we define

$$
\overline{\mathrm{t}}:=\left\{\mathrm{t}^{\prime} \in \mathrm{T}^{\mathrm{S}} \mid \mathrm{t}^{\prime} \sim \mathrm{t}\right\}
$$

i.e., the equivalence class of t.

Definition 1.3. The term structure for Φ, denoted by \mathfrak{T}^{Φ}, is defined as below.
(i) The universe is $T^{\Phi}:=\left\{\bar{t} \mid t \in T^{S}\right\}$.
(ii) For every n-ary relation symbol $R \in S$, and $\bar{t}_{1}, \ldots, \bar{t}_{n} \in T^{\Phi}$

$$
\left(\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{n}\right) \in \mathrm{R}^{\mathfrak{T}^{\Phi}} \quad \text { if } \quad \Phi \vdash \mathrm{Rt}_{1} \ldots \mathrm{t}_{n}
$$

(iii) For every n-ary function symbol $f \in S$, and $\bar{t}_{1}, \ldots, \bar{t}_{n} \in T^{\Phi}$

$$
f^{\mathfrak{T}^{\Phi}}\left(\bar{t}_{1}, \ldots, \bar{t}_{n}\right):=\overline{\mathrm{ft}_{1} \cdots \mathrm{t}_{n}}
$$

(iv) For every constant $\mathrm{c} \in \mathrm{S}$

$$
c^{\mathfrak{T}^{\Phi}}:=\overline{\mathbf{c}}
$$

This finishes the construction of \mathfrak{T}^{Φ}.

Using Lemma ??, in particular (ii), it is easy to verify that:
Lemma 1.4. \mathfrak{T}^{Φ} is well-defined.

To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_{0}, v_{1}, \ldots in \mathfrak{T}^{Φ}.

Definition 1.5. For every variable v_{i} we let

$$
\beta^{\Phi}\left(v_{i}\right):=\bar{v}_{i} .
$$

Finally we let

$$
\mathfrak{I}^{\Phi}:=\left(\mathfrak{T}^{\Phi}, \beta^{\Phi}\right)
$$

Lemma 1.6. (i) For any $t \in T^{S}$

$$
\mathfrak{I}^{\Phi}(\mathrm{t})=\overline{\mathrm{t}}
$$

(ii) For every atomic φ

$$
\mathfrak{I}^{\Phi} \models \varphi \quad \Longleftrightarrow \quad \Phi \vdash \varphi .
$$

Proof: (i) We proceed by induction on t.

- $t=v_{i}$ is a variable. Then

$$
\Im^{\Phi}\left(v_{i}\right)=\beta^{\Phi}\left(v_{i}\right)=\bar{v}_{i}
$$

- $\mathrm{t}=\mathrm{c}$ is a constant. Then

$$
\mathfrak{I}^{\Phi}(\mathrm{c})=\mathrm{c}^{\mathfrak{T}^{\Phi}}=\overline{\mathrm{c}}
$$

- $t=\mathrm{ft}_{1} \cdots \mathrm{t}_{\mathrm{n}}$. Then

$$
\begin{aligned}
\mathfrak{I}^{\Phi}\left(\mathrm{ft}_{1} \cdots \mathrm{t}_{n}\right) & =\mathfrak{f}^{\mathfrak{T}^{\Phi}}\left(\mathfrak{I}^{\Phi}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}^{\Phi}\left(\mathrm{t}_{n}\right)\right) \quad \text { (by induction hypothesis) } \\
& =\mathfrak{f}^{\mathfrak{T}^{\Phi}}\left(\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{\mathrm{n}}\right) \\
& =\overline{\mathrm{ft}_{1} \cdots \mathrm{t}_{n}} .
\end{aligned}
$$

(ii) Recall that there are two types of atomic formulas. For the first type, let $\varphi=\mathrm{t}_{1} \equiv \mathrm{t}_{2}$. Then

$$
\begin{align*}
\mathfrak{I}^{\Phi} \models \mathrm{t}_{1} \equiv \mathrm{t}_{2} & \Longleftrightarrow \mathfrak{I}^{\Phi}\left(\mathrm{t}_{1}\right)=\mathfrak{I}^{\Phi}\left(\mathrm{t}_{2}\right) \\
& \Longleftrightarrow \overline{\mathrm{t}}_{1}=\overline{\mathrm{t}}_{2} \tag{i}\\
& \Longleftrightarrow \mathrm{t}_{1} \sim \mathrm{t}_{2} \\
& \Longleftrightarrow \Phi \vdash \mathrm{t}_{1} \equiv \mathrm{t}_{2} .
\end{align*}
$$

Second, let $\varphi=R t_{1} \cdots t_{n}$. We deduce

$$
\begin{aligned}
\mathfrak{I}^{\Phi} \models \mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}} & \Longleftrightarrow\left(\mathfrak{I}^{\Phi}\left(\mathrm{t}_{1}\right), \ldots, \mathfrak{I}^{\Phi}\left(\mathrm{t}_{\mathrm{n}}\right)\right) \in \mathrm{R}^{\mathfrak{T}^{\Phi}} \\
& \Longleftrightarrow\left(\overline{\mathrm{t}}_{1}, \ldots, \overline{\mathrm{t}}_{\mathrm{n}}\right) \in \mathrm{R}^{\mathfrak{T}^{\Phi}} \\
& \Longleftrightarrow \Phi \vdash \mathrm{Rt}_{1} \cdots \mathrm{t}_{\mathrm{n}} .
\end{aligned}
$$

(by (i))

Lemma 1.7. Let φ be an S-formula and x_{1}, \ldots, x_{n} pairwise distinct variables. Then
(i) $\Im^{\Phi} \models \exists x_{1} \ldots \exists x_{n} \varphi$ if and only if there are S-terms $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ such that

$$
\mathfrak{I}^{\Phi} \models \varphi \frac{t_{1} \ldots \mathrm{t}_{\mathrm{n}}}{\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}} .
$$

(ii) $\mathfrak{I}^{\Phi} \models \forall x_{1} \ldots \forall x_{n} \varphi$ if and only if for all S-terms t_{1}, \ldots, t_{n} we have

$$
\mathfrak{I}^{\Phi} \models \varphi \frac{\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}}{x_{1} \ldots \mathrm{x}_{\mathrm{n}}} .
$$

Proof: We prove (i), then (ii) follows immediately.

$$
\begin{aligned}
& \mathfrak{I}^{\Phi} \models \exists x_{1} \ldots \exists x_{n} \varphi \\
& \Longleftrightarrow \mathfrak{I}^{\Phi} \frac{a_{1} \ldots a_{n}}{x_{1} \ldots x_{n}} \models \varphi \text { for some } a_{1}, \ldots, a_{n} \in T^{\Phi}, \\
& \text { i.e., } \mathfrak{I}^{\Phi} \frac{\bar{t}_{1} \ldots \bar{t}_{n}}{x_{1} \ldots x_{n}} \models \varphi \text { for some } t_{1}, \ldots, t_{n} \in T^{S}, \\
& \Longleftrightarrow \mathfrak{I}^{\Phi} \frac{\mathfrak{I}^{\Phi}\left(t_{1}\right) \ldots \mathfrak{I}^{\Phi}\left(t_{n}\right)}{x_{1} \ldots x_{n}} \models \varphi \text { for some } t_{1}, \ldots, t_{n} \in T^{S}, \\
& \Longleftrightarrow \mathfrak{I}^{\Phi} \models \varphi \frac{t_{1} \ldots t_{n}}{x_{1} \ldots x_{n}} \text { for some } t_{1}, \ldots, t_{n} \in T^{S}, \quad \quad \text { (by Lemma ?? (i)) } \quad \text { (by the Substitution Lemma). }
\end{aligned}
$$

Definition 1.8. (i) Φ is negation complete if for every S-formula φ

$$
\Phi \vdash \varphi \quad \text { or } \quad \Phi \vdash \neg \varphi .
$$

(ii) Φ contains witnesses if for every S-formula φ and every variable x there is a term $t \in T^{S}$ with

$$
\Phi \vdash\left(\exists x \varphi \rightarrow \varphi \frac{t}{x}\right) .
$$

Lemma 1.9. Assume that Φ is consistent, negation complete, and contains witnesses. Then for all S-formulas φ and ψ :
(i) $\Phi \vdash \varphi$ if and only if $\Phi \nvdash \neg \varphi$.
(ii) $\Phi \vdash(\varphi \vee \psi)$ if and only if $\Phi \vdash \varphi$ or $\Phi \vdash \psi$.
(iii) $\Phi \vdash \exists x \varphi$ if and only if there is a term $t \in T^{s}$ such that $\Phi \vdash \varphi \frac{t}{x}$.

Proof: (i) Assume that $\Phi \vdash \varphi$. Since Φ is consistent, we conclude that $\Phi \nvdash \neg \varphi$. Conversely, if $\Phi \nvdash \neg \varphi$, then $\Phi \vdash \varphi$ by the negation completeness.
(ii) The direction from right to left is trivial by \vee-introduction in succedent. For the other direction, assume that $\Phi \vdash(\varphi \vee \psi)$ and $\Phi \nvdash \varphi$. By the negation completeness, $\Phi \vdash \neg \varphi$. Then for some finite $\Gamma \subseteq \Phi$ we have the following sequent proof.

(iii) Let $\Phi \vdash \exists x \varphi$ and Φ contain witnesses. Thus there is a term $t \in T^{S}$ such that

$$
\Phi \vdash\left(\exists x \varphi \rightarrow \varphi \frac{t}{x}\right) .
$$

By Modus ponens ${ }^{1}$, we conclude $\Phi \vdash \varphi \frac{t}{x}$. The converse is by the rule of the \exists-introduction in succedent.

Theorem 1.10 (Henkin's Theorem). Let $\Phi \subseteq \mathrm{L}^{\text {S }}$ be consistent, negation complete, and contain witnesses. Then for every S-formula φ

$$
\mathfrak{I}^{\Phi} \models \varphi \quad \Longleftrightarrow \quad \Phi \vdash \varphi
$$

Proof: We proceed by induction on φ.

- φ is atomic. This is Lemma ?? (ii).
- $\varphi=\neg \psi$. Then

$$
\begin{aligned}
\mathfrak{I}^{\Phi} \models \neg \psi & \Longleftrightarrow \mathfrak{I}^{\Phi} \not \models \psi & \\
& \Longleftrightarrow \Phi \vdash \psi & \text { (by induction hypothesis) } \\
& \Longleftrightarrow \Phi \vdash \neg \psi & \text { (by Lemma ?? (i)). }
\end{aligned}
$$

- $\varphi=\left(\psi_{1} \vee \psi_{2}\right)$. We deduce

$$
\begin{array}{rlr}
\mathfrak{I}^{\Phi} \models\left(\psi_{1} \vee \psi_{2}\right) & \Longleftrightarrow \mathfrak{I}^{\Phi} \models \psi_{1} \text { or } \mathfrak{I}^{\Phi} \models \psi_{2} & \\
& \Longleftrightarrow \Phi \vdash \psi_{1} \text { or } \Phi \vdash \psi_{2} & \text { (by induction hypothesis) } \\
& \Longleftrightarrow \Phi \vdash\left(\psi_{1} \vee \psi_{2}\right) & \text { (by Lemma ?? (ii)). }
\end{array}
$$

- $\varphi=\exists x \psi$.

$$
\begin{array}{rlr}
\mathfrak{I}^{\Phi} \models \exists \mathrm{x} \psi & \Longleftrightarrow \mathfrak{I}^{\Phi} \models \psi \frac{\mathrm{t}}{\mathrm{x}} \text { for some } \mathrm{t} \in \mathrm{~T}^{\mathrm{S}} & \text { (by Lemma ??) } \tag{byLemma??}\\
& \Longleftrightarrow \Phi \vdash \psi \frac{\mathrm{t}}{\mathrm{x}} \text { for some } \mathrm{t} \in \mathrm{~T}^{\mathrm{S}} & \text { (by induction hypothesis) } \\
& \Longleftrightarrow \Phi \vdash \exists \mathrm{x} \psi & \text { (by Lemma ?? (iii)). }
\end{array}
$$

Here, note that the length of $\psi \frac{t}{x}$ could be well larger than that $\exists x \psi$. Thus, our induction is on the so-called connective rank of ψ, denoted by $\operatorname{rk}(\varphi)$, which is defined as follows:

$$
\operatorname{rk}(\varphi):= \begin{cases}0 & \text { if } \varphi \text { is atomic } \\ 1+\operatorname{rk}(\psi) & \text { if } \varphi=\neg \psi \\ 1+\operatorname{rk}\left(\psi_{1}\right)+\operatorname{rk}\left(\psi_{2}\right) & \text { if } \varphi=\left(\psi_{1} \vee \psi_{2}\right) \\ 1+\operatorname{rk}(\psi) & \text { if } \varphi=\exists x \psi\end{cases}
$$

Corollary 1.11. Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ be consistent, negation complete, and contain witnesses. Then

$$
\mathfrak{I}^{\Phi} \models \Phi .
$$

In particular, Φ is satisfiable.

[^0]
2 Exercises

Exercise 2.1. Assume that Φ is inconsistent. Please describe the structure \mathfrak{T}^{Φ}.
Exercise 2.2. Again let $S:=\{R\}$ with unary relation symbol R, and

$$
\Phi:=\{R x \vee R y\} .
$$

Prove that:

- Φ is consistent.
- $\Phi \nvdash R x$ and $\Phi \nvdash R y$.
- $\mathfrak{I}^{\Phi} \not \models \Phi$.

Exercise 2.3. Let

$$
\Phi:=\left\{v_{0} \equiv \mathrm{t} \mid \mathrm{t} \in \mathrm{~T}^{\mathrm{S}}\right\} \cup\left\{\exists v_{0} \exists v_{1} \neg v_{0} \equiv v_{1}\right\}
$$

Prove that Φ is consistent, but there is no consistent Ψ with $\Phi \subseteq \Psi \subseteq \mathrm{L}^{\mathrm{S}}$ which contains witnesses. \dashv

Exercise 2.4. Let \mathfrak{A} and \mathfrak{B} be two S-structures. A mapping $h: A \rightarrow B$ is a homomorphism from \mathfrak{A} to \mathfrak{B} if the following properties hold.

1. For every n-ary relation symbol $R \in S$ and $a_{1}, \ldots, a_{n} \in A$ we have

$$
\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \text { implies }\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in R^{\mathfrak{B}} .
$$

2. For every n-ary function symbol $f \in S$ and $a_{1}, \ldots, a_{n} \in A$ we have

$$
h\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathfrak{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)
$$

3. For every constant $c \in S$

$$
h\left(c^{\mathfrak{A}}\right)=c^{\mathfrak{B}} .
$$

Now let $\Phi \subseteq L^{S}$ and \mathfrak{A} be an S-structure with $\mathfrak{A} \models \Phi$. Prove that there is a homomorphism from the term model \mathfrak{T}^{Φ} to \mathfrak{A}.

[^0]: ${ }^{1}$ That is, if $\Phi \vdash \varphi$ and $\Phi \vdash \varphi \rightarrow \psi$, then $\Phi \vdash \psi$.

