Mathematical Logic (VIII)

Yijia Chen

1 Completeness

1.1 Henkin's Theorem

Recall that we fix a set Φ of S-formulas.
Definition 1.1. (i) Φ is negation complete if for every S-formula φ

$$
\Phi \vdash \varphi \text { or } \Phi \vdash \neg \varphi \text {. }
$$

(ii) Φ contains witnesses if for every S-formula φ and every variable x there is a term $\mathrm{t} \in \mathrm{T}^{S}$ with

$$
\Phi \vdash\left(\exists x \varphi \rightarrow \varphi \frac{\mathrm{t}}{\mathrm{x}}\right) .
$$

Theorem 1.2 (Henkin's Theorem). Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ be consistent, negation complete, and contain witnesses. Then for every S-formula φ

$$
\mathfrak{I}^{\Phi} \models \varphi \quad \Longleftrightarrow \quad \Phi \vdash \varphi .
$$

Corollary 1.3. Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ be consistent, negation complete, and contain witnesses. Then

$$
\mathfrak{I}^{\Phi} \models \Phi .
$$

In particular, Φ is satisfiable.

1.2 The countable case

We fix a symbol set S which is at most countable. As a consequence, both T^{S} and L^{S} are countable. Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ we define

$$
\text { free }(\Phi):=\bigcup_{\varphi \in \Phi} \text { free }(\varphi) .
$$

We will prove the following two lemmas.
Lemma 1.4. Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ be consistent with finite free(Φ). Then there is a consistent Ψ with $\Phi \subseteq \Psi \subseteq \mathrm{L}^{\mathrm{S}}$ such that Ψ contains witnesses.

Lemma 1.5. Let $\Psi \subseteq \mathrm{L}^{\mathrm{S}}$ be consistent. Then there is a consistent Θ with $\Psi \subseteq \Theta \subseteq \mathrm{L}^{\mathrm{S}}$ such that Θ is negation complete.

Corollary 1.6. Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ be consistent with finite free (Φ). Then there is a Θ such that

- $\Phi \subseteq \Theta \subseteq L^{S} ;$
- Θ is consistent, negation complete, and contains witnesses.

Corollary 1.7. Let $\Phi \subseteq L^{s}$ be consistent with finite free (Φ). Then Φ is satisfiable.
Proof: By Corollary 1.6 and Corollary 1.3.
Proof of Lemma 1.4: Recall L ${ }^{\text {S }}$ is countable, thus we can enumerate all S-formulas

$$
\exists x_{0} \varphi_{0}, \exists x_{1} \varphi_{1}, \ldots,
$$

which start with an existential quantifier. Then we define inductively for every $\mathfrak{n} \in \mathbb{N}$ an S-formula ψ_{n} as follows. Assume that ψ_{m} has been defined for all $m<n$. Let

$$
i_{n}:=\min \left\{i \in \mathbb{N} \mid v_{i} \notin \operatorname{free}\left(\Phi \cup\left\{\psi_{m} \mid m<n\right\} \cup\left\{\exists x_{n} \varphi_{n}\right\}\right)\right\} .
$$

That is, \mathfrak{i}_{n} is the smallest index i such that v_{i} is not free in $\Phi \cup\left\{\psi_{m} \mid m<n\right\} \cup\left\{\exists x_{n} \varphi_{n}\right\}$. Then we set

$$
\psi_{n}:=\left(\exists x_{n} \varphi_{n} \rightarrow \varphi_{n} \frac{v_{i_{n}}}{x_{n}}\right)
$$

Next, let

$$
\Phi_{n}:=\Phi \cup\left\{\psi_{\mathrm{m}} \mid \mathrm{m}<\mathrm{n}\right\}
$$

and $\Psi:=\bigcup_{n \in \mathbb{N}} \Phi_{n}$. It should be clear that Φ contains witness. So what remains is to show that Ψ is consistent, or equivalently every Φ_{n} is consistent.

Recall that $\Phi_{0}=\Phi$ is consistent by our assumption. Towards a contradiction, assume that Φ_{n} is consistent, but Φ_{n+1} is not. Therefore, for every χ with $v_{i_{n}} \notin$ free (χ) there is a finite $\Gamma \subseteq \Phi_{n}$ with the following deduction.

$$
\begin{aligned}
& \text { ! } \\
& \text { m. } \Gamma \quad\left(\neg \exists x_{n} \varphi_{n} \vee \varphi_{n} \frac{v_{i_{n}}}{x_{n}}\right) \quad \chi \\
& \text { (m+1). } \Gamma \neg \exists x_{n} \varphi_{n} \quad \neg \exists x_{n} \varphi_{n} \quad \text { (assumption) } \\
& (m+2) . \quad\left\ulcorner\neg \exists x_{n} \varphi_{n} \quad\left(\neg \exists x_{n} \varphi_{n} \vee \varphi_{n} \frac{v_{i_{n}}}{x_{n}}\right) \quad\right. \text { (V-introduction in the } \\
& \text { succedent) } \\
& (m+3) . \quad \Gamma \neg \exists x_{n} \varphi_{n} \quad \chi \quad \text { (chain rule) } \\
& \vdots \\
& \text { (). } \Gamma \varphi_{n} \frac{v_{i_{n}}}{x_{n}} \quad \chi \quad \text { (similarly) } \\
& (\ell+1) . \Gamma \exists x_{n} \varphi_{n} \quad \chi \quad \text { (} \exists \text {-introduction in the } \\
& \text { antecedent) } \\
& (\ell+2) . \quad \chi \quad \text { (case analysis). }
\end{aligned}
$$

Now by taking $\chi:=\exists v_{0} v_{0} \equiv v_{0}$ and $\chi:=\neg \exists v_{0} v_{0} \equiv v_{0}$ we conclude that Φ_{n} is inconsistent, which contradicts our assumption.

Proof of Lemma 1.5: Let $\varphi_{0}, \varphi_{1}, \ldots$ be an enumeration of L^{s}. For every $n \in \mathbb{N}$ we define Θ_{n} by induction. First $\Theta_{0}:=\Psi$. Then,

$$
\Theta_{n+1}:= \begin{cases}\Theta_{n} \cup\left\{\varphi_{n}\right\} & \text { if } \Theta_{n} \cup\left\{\varphi_{n}\right\} \text { is consistent } \\ \Theta_{n} & \text { otherwise }\end{cases}
$$

It is immediate that every Θ_{n} is consistent, and the consistency of

$$
\Theta:=\bigcup_{n \in \mathbb{N}} \Theta_{n}
$$

follows. To see that Θ is negation complete, let $\varphi \in \mathrm{L}^{\mathrm{S}}$, in particular $\varphi=\varphi_{\mathrm{n}}$ for some $\mathrm{n} \in \mathbb{N}$. Assuming $\Theta \nvdash \neg \varphi_{n}$, we conclude $\Theta_{n} \nvdash \neg \varphi_{n}$ by $\Theta_{n} \subseteq \Theta$. Therefore, $\Theta_{n} \cup\{\varphi\}$ is consistent. It follows that $\varphi \in \Theta_{\mathrm{n}+1} \subseteq \Theta$, and thus $\Theta \vdash \varphi$.

In the next step we eliminate the condition free (Φ) being finite.
Corollary 1.8. Let S be countable and $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ consistent. Then Φ is satisfiable.
Proof: First, we let

$$
S^{\prime}:=S \cup\left\{c_{0}, c_{1}, \ldots\right\} .
$$

For every $\varphi \in L^{S}$ we define

$$
n(\varphi):=\min \left\{n \mid \text { free }(\varphi) \subseteq\left\{v_{0}, \ldots, v_{n-1}\right\} \text {, i.e., } \varphi \in L_{n}^{S}\right\}
$$

and let

$$
\varphi^{\prime}:=\varphi \frac{c_{0} \ldots c_{n(\varphi)-1}}{v_{0} \ldots v_{n}(\varphi)-1} .
$$

Then we set

$$
\Phi^{\prime}:=\left\{\varphi^{\prime} \mid \varphi \in \Phi\right\} \subseteq \mathrm{L}^{\mathrm{S}^{\prime}}
$$

Note free $\left(\Phi^{\prime}\right)=\emptyset$.
Claim. Φ^{\prime} is consistent.
Once we establish the claim, together with free $\left(\Phi^{\prime}\right)=\emptyset$, Corollary 1.6 implies that there is an S^{\prime} interpretation $\mathfrak{I}^{\prime}=\left(\mathfrak{A}^{\prime}, \beta^{\prime}\right)$ such that $\mathfrak{I}^{\prime} \models \Phi^{\prime}$. Applying the Coincidence Lemma with free $\left(\Phi^{\prime}\right)=$ \emptyset, we can assume without loss of generality that

$$
\begin{equation*}
\beta^{\prime}\left(v_{i}\right)=c_{i}^{\mathfrak{R}}=\mathfrak{I}^{\prime}\left(c_{i}\right) . \tag{1}
\end{equation*}
$$

It follows that for every $\varphi \in \Phi$

$$
\begin{align*}
\mathfrak{I}^{\prime} \models \varphi^{\prime} & \Longleftrightarrow \mathfrak{I}^{\prime} \models \varphi \frac{c_{0} \ldots c_{n(\varphi)-1}}{v_{0} \ldots v_{n(\varphi)-1}} \\
& \Longleftrightarrow \mathfrak{I}^{\prime} \frac{\mathfrak{I}^{\prime}\left(c_{0}\right) \ldots \mathfrak{I}^{\prime}\left(c_{n}(\varphi)-1\right)}{v_{0} \ldots v_{n(\varphi)-1}} \models \varphi \quad \quad \text { (by the Substitution Lemma) } \\
& \Longleftrightarrow \mathfrak{I}^{\prime} \frac{\beta^{\prime}\left(v_{0}\right) \ldots \beta^{\prime}\left(v_{n}(\varphi)-1\right)}{v_{0} \ldots v_{n(\varphi)-1}} \models \varphi \tag{1}\\
& \text { i.e., } \mathfrak{I}^{\prime} \models \varphi .
\end{align*}
$$

That is, \mathfrak{I}^{\prime} is a model for every $\varphi \in \Phi$. We conclude that Φ is satisfiable.
Now we prove the claim. It suffices to show that every finite subset of Φ^{\prime} is satisfiable. To that end, let

$$
\Phi_{0}^{\prime}:=\left\{\varphi_{1}^{\prime}, \ldots, \varphi_{n}^{\prime}\right\}
$$

where $\varphi_{1}, \ldots, \varphi_{n} \in \Phi$. Clearly free $\left(\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}\right)$ is finite, and $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is consistent by the consistency of Φ. By Corollary 1.6 there is an S-interpretation $\mathfrak{I}=(\mathfrak{A}, \beta)$ such that for every $i \in[n]$

$$
\begin{equation*}
\mathfrak{I} \models \varphi_{i} . \tag{2}
\end{equation*}
$$

We expand the S-structure \mathfrak{A} to an S^{\prime}-structure \mathfrak{A}^{\prime} by setting for every $\mathfrak{i} \in \mathbb{N}$

$$
\begin{equation*}
\mathfrak{c}_{\mathfrak{i}}^{\mathfrak{A}^{\prime}}:=\beta\left(v_{i}\right) . \tag{3}
\end{equation*}
$$

Then for the S^{\prime}-interpretation $\mathfrak{I}^{\prime}:=\left(\mathfrak{A}^{\prime}, \beta\right)$ and any $\varphi \in L^{S}$

$$
\begin{aligned}
\mathfrak{I}^{\prime} \models \varphi^{\prime} & \Longleftrightarrow \mathfrak{I}^{\prime} \models \varphi \frac{\mathfrak{c}_{0} \ldots \mathfrak{c}_{n(\varphi)-1}}{v_{0} \ldots v_{n(\varphi)-1}} \\
& \Longleftrightarrow \mathfrak{I}^{\prime} \frac{\mathfrak{I}^{\prime}\left(\mathfrak{c}_{0}\right) \ldots \mathfrak{I}^{\prime}\left(c_{n(\varphi)-1}\right)}{v_{0} \ldots v_{n(\varphi)-1}} \models \varphi \quad \quad \text { (by the Substitution Lemma) } \\
& \Longleftrightarrow \mathfrak{I}^{\prime} \frac{\mathfrak{c}_{0}^{\mathfrak{2} \mathcal{I}^{\prime} \ldots \mathfrak{c}_{n(\varphi)-1}^{\mathfrak{2}}} \models \varphi}{v_{0} \ldots v_{n(\varphi)-1}} \models \varphi \\
& \Longleftrightarrow \mathfrak{I}^{\prime} \frac{\beta\left(v_{0}\right) \ldots \beta\left(v_{n(\varphi)-1)}\right.}{v_{0} \ldots v_{n(\varphi)-1}} \models \varphi \\
& \Longleftrightarrow \mathfrak{I}^{\prime} \models \varphi \\
& \Longleftrightarrow \mathfrak{I} \models \varphi \quad \text { (by (3)) } \\
& \quad \text { (by the Coincidence Lemma). }
\end{aligned}
$$

It follows that $\mathfrak{I}^{\prime} \models \Phi_{0}^{\prime}$ by (2). Thus Φ_{0}^{\prime} is satisfiable.

2 Exercises

Exercise 2.1. Let $\Phi \subseteq \mathrm{L}^{\mathrm{S}}$ be finite, and let $\varphi \in \mathrm{L}^{\mathrm{S}}$ with $\Phi \vdash \varphi$. Note that a proof might use formulas built on any symbol in S.

Define $S_{0} \subseteq S$ to be the set of symbols that occur in Φ and φ. Show that there is a proof for $\Phi \vdash \varphi$ such that every formula occurs in the proof is an S_{0}-formula.

Exercise 2.2. For $n \in \mathbb{N}$, let S_{n} be symbol sets such that

$$
S_{0} \subseteq S_{1} \subseteq S_{2} \subseteq \ldots,
$$

and let Φ_{n} be sets of S_{n}-formulas such that

$$
\Phi_{0} \subseteq \Phi_{1} \subseteq \Phi_{2} \subseteq \ldots
$$

Let $S=\bigcup_{n \in \mathbb{N}} S_{n}$ and $\Phi=\bigcup_{n \in \mathbb{N}} \Phi_{n}$. Prove that $\operatorname{cons}(\Phi)$ if and only if $\operatorname{cons}\left(\Phi_{n}\right)$ for all $n \in \mathbb{N}$. \dashv

