Mathematical Logic (VIII)

Yijia Chen

1 Completeness

1.1 Henkin's Theorem

Recall that we fix a set Φ of S-formulas.

Definition 1.1. (i) Φ is **negation complete** if for every S-formula φ

$$\Phi \vdash \varphi$$
 or $\Phi \vdash \neg \varphi$.

(ii) Φ contains witnesses if for every S-formula ϕ and every variable x there is a term $t \in T^S$ with

$$\Phi \vdash \left(\exists x \phi \to \phi \frac{t}{x} \right). \qquad \qquad \dashv$$

Theorem 1.2 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then for every S-formula φ

$$\mathfrak{I}^{\Phi}\models\varphi\quad\Longleftrightarrow\quad\Phi\vdash\varphi.$$

Corollary 1.3. Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then

 $\mathfrak{I}^{\Phi} \models \Phi.$

In particular, Φ is satisfiable.

1.2 The countable case

We fix a symbol set S which is at most countable. As a consequence, both T^S and L^S are countable. Let $\Phi \subseteq L^S$ we define

$$\operatorname{free}(\Phi) \coloneqq \bigcup_{\varphi \in \Phi} \operatorname{free}(\varphi).$$

We will prove the following two lemmas.

Lemma 1.4. Let $\Phi \subseteq L^S$ be consistent with *finite* free (Φ) . Then there is a consistent Ψ with $\Phi \subseteq \Psi \subseteq L^S$ such that Ψ contains witnesses.

Lemma 1.5. Let $\Psi \subseteq L^S$ be consistent. Then there is a consistent Θ with $\Psi \subseteq \Theta \subseteq L^S$ such that Θ is negation complete.

Corollary 1.6. Let $\Phi \subseteq L^S$ be consistent with finite free (Φ) . Then there is a Θ such that

- $\Phi \subseteq \Theta \subseteq L^{S}$;
- Θ is consistent, negation complete, and contains witnesses.

Corollary 1.7. Let $\Phi \subseteq L^S$ be consistent with finite free (Φ) . Then Φ is satisfiable.

Proof: By Corollary 1.6 and Corollary 1.3.

Proof of Lemma 1.4: Recall L^S is countable, thus we can enumerate all S-formulas

$$\exists x_0 \varphi_0, \exists x_1 \varphi_1, \ldots$$

which start with an existential quantifier. Then we define inductively for every $n \in \mathbb{N}$ an S-formula ψ_n as follows. Assume that ψ_m has been defined for all m < n. Let

$$\mathfrak{i}_{\mathfrak{n}} := \min \{ \mathfrak{i} \in \mathbb{N} \mid \nu_{\mathfrak{i}} \notin \operatorname{free} (\Phi \cup \{ \psi_{\mathfrak{m}} \mid \mathfrak{m} < \mathfrak{n} \} \cup \{ \exists x_{\mathfrak{n}} \varphi_{\mathfrak{n}} \}) \}.$$

That is, i_n is the smallest index i such that v_i is not free in $\Phi \cup \{\psi_m \mid m < n\} \cup \{\exists x_n \varphi_n\}$. Then we set

$$\psi_{n} := \left(\exists x_{n} \phi_{n} \to \phi_{n} \frac{v_{i_{n}}}{x_{n}} \right)$$

Next, let

 $\Phi_{\mathfrak{n}} := \Phi \cup \{ \psi_{\mathfrak{m}} \mid \mathfrak{m} < \mathfrak{n} \},\$

and $\Psi := \bigcup_{n \in \mathbb{N}} \Phi_n$. It should be clear that Φ contains witness. So what remains is to show that Ψ is consistent, or equivalently every Φ_n is consistent.

Recall that $\Phi_0 = \Phi$ is consistent by our assumption. Towards a contradiction, assume that Φ_n is consistent, but Φ_{n+1} is not. Therefore, for every χ with $\nu_{i_n} \notin \text{free}(\chi)$ there is a finite $\Gamma \subseteq \Phi_n$ with the following deduction.

	:			
m.	Г	$\left(\neg \exists x_n \varphi_n \lor \varphi_n \frac{v_{i_n}}{x_n}\right)$	х	
(m + 1).	Γ	$\neg \exists x_n \varphi_n$	$\neg \exists x_n \varphi_n$	(assumption)
(m+2).	Г	$\neg \exists x_n \varphi_n$	$\left(\neg \exists x_n \varphi_n \lor \varphi_n \frac{v_{in}}{x_n}\right)$	(V-introduction in the succedent)
(m+3).	Г	$\neg \exists x_n \varphi_n$	х	(chain rule)
	:			
$(\ell).$ $(\ell + 1).$	Г	$\varphi_n \frac{v_{i_n}}{x_n}$	х	(similarly)
$(\ell + 1).$	Г	$\exists x_n \varphi_n$	х	$(\exists$ -introduction in the
				antecedent)
$(\ell+2).$	Γ		Х	(case analysis).

Now by taking $\chi := \exists v_0 v_0 \equiv v_0$ and $\chi := \neg \exists v_0 v_0 \equiv v_0$ we conclude that Φ_n is inconsistent, which contradicts our assumption.

Proof of Lemma 1.5: Let $\varphi_0, \varphi_1, \ldots$ be an enumeration of L^S . For every $n \in \mathbb{N}$ we define Θ_n by induction. First $\Theta_0 := \Psi$. Then,

$$\Theta_{n+1} := \begin{cases} \Theta_n \cup \{\varphi_n\} & \text{if } \Theta_n \cup \{\varphi_n\} \text{ is consistent,} \\ \Theta_n & \text{otherwise.} \end{cases}$$

It is immediate that every Θ_n is consistent, and the consistency of

$$\Theta := \bigcup_{n \in \mathbb{N}} \Theta_n$$

follows. To see that Θ is negation complete, let $\varphi \in L^S$, in particular $\varphi = \varphi_n$ for some $n \in \mathbb{N}$. Assuming $\Theta \not\vdash \neg \varphi_n$, we conclude $\Theta_n \not\vdash \neg \varphi_n$ by $\Theta_n \subseteq \Theta$. Therefore, $\Theta_n \cup \{\varphi\}$ is consistent. It follows that $\varphi \in \Theta_{n+1} \subseteq \Theta$, and thus $\Theta \vdash \varphi$. \Box

In the next step we eliminate the condition free(Φ) being finite.

Corollary 1.8. Let S be countable and $\Phi \subseteq L^S$ consistent. Then Φ is satisfiable.

Proof: First, we let

$$S' := S \cup \{c_0, c_1, \ldots\}.$$

For every $\varphi \in L^S$ we define

$$\mathfrak{n}(\varphi) \coloneqq \min \{ \mathfrak{n} \mid \operatorname{free}(\varphi) \subseteq \{ \nu_0, \dots, \nu_{n-1} \}, \text{ i.e., } \varphi \in L_n^S \}$$

and let

$$\varphi' := \varphi \frac{c_0 \dots c_{n(\varphi)-1}}{\nu_0 \dots \nu_{n(\varphi)-1}}.$$

Then we set

$$\Phi' := \left\{ \phi' \mid \phi \in \Phi \right\} \subseteq L^{S'}$$

Note free(Φ') = \emptyset .

Claim. Φ' is consistent.

Once we establish the claim, together with free(Φ') = \emptyset , Corollary 1.6 implies that there is an S'interpretation $\mathfrak{I}' = (\mathfrak{A}', \beta')$ such that $\mathfrak{I}' \models \Phi'$. Applying the Coincidence Lemma with free(Φ') = \emptyset , we can assume without loss of generality that

$$\beta'(v_i) = c_i^{\mathfrak{A}'} = \mathfrak{I}'(c_i). \tag{1}$$

It follows that for every $\varphi \in \Phi$

$$\begin{split} \mathfrak{I}' \vDash \varphi' &\iff \mathfrak{I}' \vDash \varphi \frac{\mathfrak{c}_0 \dots \mathfrak{c}_{\mathfrak{n}(\varphi)-1}}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} \\ &\iff \mathfrak{I}' \frac{\mathfrak{I}'(\mathfrak{c}_0) \dots \mathfrak{I}'(\mathfrak{c}_{\mathfrak{n}(\varphi)-1})}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} \vDash \varphi \qquad \text{(by the Substitution Lemma)} \\ &\iff \mathfrak{I}' \frac{\mathfrak{I}'(\mathfrak{v}_0) \dots \mathfrak{I}'(\mathfrak{v}_{\mathfrak{n}(\varphi)-1})}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} \vDash \varphi \qquad \text{(by (1))} \\ & \text{i.e., } \mathfrak{I}' \vDash \varphi. \end{split}$$

That is, \mathfrak{I}' is a model for every $\varphi \in \Phi$. We conclude that Φ is satisfiable.

Now we prove the claim. It suffices to show that every finite subset of Φ' is satisfiable. To that end, let

$$\Phi_0' := \{\varphi_1', \ldots, \varphi_n'\},\$$

where $\varphi_1, \ldots, \varphi_n \in \Phi$. Clearly free $(\{\varphi_1, \ldots, \varphi_n\})$ is finite, and $\{\varphi_1, \ldots, \varphi_n\}$ is consistent by the consistency of Φ . By Corollary 1.6 there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that for every $i \in [n]$

$$\mathfrak{I}\models\varphi_{\mathbf{i}}.$$
 (2)

We expand the S-structure \mathfrak{A} to an S'-structure \mathfrak{A}' by setting for every $\mathfrak{i} \in \mathbb{N}$

$$c_i^{\mathfrak{A}'} \coloneqq \beta(\nu_i). \tag{3}$$

Then for the S'-interpretation $\mathfrak{I}':=(\mathfrak{A}',\beta)$ and any $\phi\in L^S$

$$\begin{aligned} \mathfrak{I}' \vDash \varphi' \iff \mathfrak{I}' \vDash \varphi \frac{\mathfrak{c}_0 \dots \mathfrak{c}_{\mathfrak{n}(\varphi)-1}}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} & \Leftrightarrow \mathfrak{I}' \frac{\mathfrak{I}'(\mathfrak{c}_0) \dots \mathfrak{I}'(\mathfrak{c}_{\mathfrak{n}(\varphi)-1})}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} \vDash \varphi & \text{(by the Substitution Lemma)} \\ & \Leftrightarrow \mathfrak{I}' \frac{\mathfrak{c}_0^{\mathfrak{Q}'} \dots \mathfrak{c}_{\mathfrak{n}(\varphi)-1}^{\mathfrak{Q}'}}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} \vDash \varphi \\ & \Leftrightarrow \mathfrak{I}' \frac{\beta(\mathfrak{v}_0) \dots \beta(\mathfrak{v}_{\mathfrak{n}(\varphi)-1})}{\mathfrak{v}_0 \dots \mathfrak{v}_{\mathfrak{n}(\varphi)-1}} \vDash \varphi & \text{(by (3))} \\ & \Leftrightarrow \mathfrak{I}' \vDash \varphi \\ & \Leftrightarrow \mathfrak{I} \vDash \varphi & \text{(by the Coincidence Lemma).} \end{aligned}$$

It follows that $\mathfrak{I}' \models \Phi_0'$ by (2). Thus Φ_0' is satisfiable.

2 Exercises

Exercise 2.1. Let $\Phi \subseteq L^S$ be finite, and let $\varphi \in L^S$ with $\Phi \vdash \varphi$. Note that a proof might use formulas built on any symbol in S.

Define $S_0 \subseteq S$ to be the set of symbols that occur in Φ and φ . Show that there is a proof for $\Phi \vdash \varphi$ such that every formula occurs in the proof is an S_0 -formula. \dashv

Exercise 2.2. For $n \in \mathbb{N}$, let S_n be symbol sets such that

 $S_0 \subseteq S_1 \subseteq S_2 \subseteq \ldots$,

and let Φ_n be sets of S_n -formulas such that

$$\Phi_0 \subseteq \Phi_1 \subseteq \Phi_2 \subseteq \ldots$$

Let $S = \bigcup_{n \in \mathbb{N}} S_n$ and $\Phi = \bigcup_{n \in \mathbb{N}} \Phi_n$. Prove that $cons(\Phi)$ if and only if $cons(\Phi_n)$ for all $n \in \mathbb{N}$. \dashv