Mathematical Logic (X)

Yijia Chen

1. The Löwenheim-Skolem Theorem and the Compactness Theorem

Using the term-interpretation, it is routine to verify:

Theorem 1.1 (Löwenheim-Skolem). Let $\Phi \subseteq L^S$ be at most countable and satisfiable. Then there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that

– the universe A of \mathfrak{A} is at most countable,

- and
$$\mathfrak{I} \models \Phi$$
.

The following is a more general version.

Theorem 1.2 (Downward Löwenheim-Skolem). Let $\Phi \subseteq L^S$ be satisfiable. Then there is an Sinterpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that

$$- |\mathsf{A}| \leqslant |\mathsf{T}^{\mathsf{S}}| = |\mathsf{L}^{\mathsf{S}}|,$$

- and
$$\mathfrak{I} \models \Phi$$
.

Corollary 1.3. Let $S := \{+, \times, <, 0, 1\}$ with the usual meaning and

$$\Phi_{\mathbb{R}} := ig\{ \varphi \in \mathsf{L}^{\mathsf{S}}_0 \mid (\mathbb{R}, +, \cdot, <, 0, 1) \models \varphi ig\}.$$

Then there is a countable S-structure \mathfrak{A} with $\mathfrak{A} \models \Phi_{\mathbb{R}}$.

By the Completeness Theorem:

Theorem 1.4 (Compactness). (a) $\Phi \models \varphi$ if and only if there is a finite $\Phi_0 \subseteq \Phi$ with $\Phi_0 \models \varphi$.

(b) Φ is satisfiable if and only if every finite $\Phi_0 \subseteq \Phi$ is satisfiable.

In fact, the "compactness" is a notion from topology. We can explain the topological perspective of Theorem 1.4 using *finite covers* from analysis. For every $\phi \in L^S$ we define

$$\mathrm{Mod}(\varphi) \coloneqq \{ \mathfrak{I} \mid \mathfrak{I} \models \varphi \},\$$

and

$$\operatorname{Mod}(\Phi) := \left\{ \Im \mid \Im \models \Phi \right\} = \bigcap_{\psi \in \Phi} \operatorname{Mod}(\psi).$$

We show that Theorem 1.4 is equivalent to the following *finite cover property*.

Proposition 1.5. $Mod(\phi) \subseteq \bigcup_{\psi \in \Phi} Mod(\psi)$ *if and only if for some finite* $\Phi_0 \subseteq \Phi$ *we have*

$$\operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi_0} \operatorname{Mod}(\psi).$$
 \dashv

 \dashv

 \dashv

 \dashv

 \dashv

Proof of Theorem 1.4 using Proposition 1.5:

$$\begin{split} \Phi \models \phi & \Longleftrightarrow \ \operatorname{Mod}(\Phi) \subseteq \operatorname{Mod}(\phi) \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\operatorname{Mod}(\Phi)} \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\bigcap_{\psi \in \Phi}} \ \operatorname{Mod}(\psi) \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \bigcup_{\psi \in \Phi} \ \overline{\operatorname{Mod}(\psi)} \\ & \Leftrightarrow \ \operatorname{Mod}(\neg \phi) \subseteq \bigcup_{\psi \in \Phi} \ \operatorname{Mod}(\neg \psi) \\ & \Leftrightarrow \ \operatorname{Mod}(\neg \phi) \subseteq \bigcup_{\psi \in \Phi_0} \ \operatorname{Mod}(\neg \psi) \text{ for some finite } \Phi_0 \subseteq \Phi \qquad (by \operatorname{Proposition 1.5}) \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \bigcup_{\psi \in \Phi_0} \ \overline{\operatorname{Mod}(\psi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\bigcap_{\psi \in \Phi_0}} \ \operatorname{Mod}(\psi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \ \overline{\operatorname{Mod}(\psi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \overline{\operatorname{Mod}(\phi)} \subseteq \ \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \operatorname{Mod}(\Phi_0) \subseteq \ \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \operatorname{Mod}(\Phi_0) \subseteq \ \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \operatorname{Mod}(\Phi_0) \subseteq \ \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \operatorname{Mod}(\Phi_0) \subseteq \ \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \operatorname{Mod}(\Phi_0) \subseteq \ \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ & \Leftrightarrow \ \Phi_0 \models \phi \text{ for some finite } \Phi_0 \subseteq \Phi. \end{split}$$

Proof of Proposition 1.5 by Theorem 1.4: The direction from right to left is trivial. So we assume that

 \dashv

$$\operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi).$$

Claim. $\{\neg \psi \mid \psi \in \Phi\} \models \neg \phi$.

Proof of the claim. Let \Im be an interpretation with

$$\mathfrak{I} \models \{\neg \psi \mid \psi \in \Phi\}.$$

That is, $\mathfrak{I}\models\neg\psi$ for every $\psi\in\Phi.$ We can deduce that

$$\begin{split} \mathfrak{I} &\in \bigcap_{\psi \in \Phi} \operatorname{Mod}(\neg \psi) \iff \mathfrak{I} \in \bigcap_{\psi \in \Phi} \overline{\operatorname{Mod}(\psi)} \\ & \Longleftrightarrow \mathfrak{I} \in \overline{\bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi)} \\ & \Longleftrightarrow \mathfrak{I} \notin \bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi) \\ & \Longrightarrow \mathfrak{I} \notin \operatorname{Mod}(\varphi) \\ & \Leftrightarrow \mathfrak{I} \models \neg \varphi. \end{split} \tag{by } \operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi) \end{split}$$

This finishes the proof of the claim.

Now we apply Theorem 1.4 to the above claim. In particular, there is a finite $\Phi_0\subseteq\Phi$ such that

$$\{\neg \psi \mid \psi \in \Phi_0\} \models \neg \varphi$$

Then arguing similarly as above, we obtain

$$Mod(\phi) \subseteq \bigcup_{\psi \in \Phi_0} Mod(\psi).$$

Theorem 1.6. Let $\Phi \subseteq L^S$ such that for every $n \in \mathbb{N}$ there exists an S-interpretation $\mathfrak{I}_n = (\mathfrak{A}_n, \beta_n)$ with $|A_n| \ge n$ and $\mathfrak{I}_n \models \Phi$. Then there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ with infinite A and $\mathfrak{I} \models \Phi$.

Proof: For every $n \ge 2$ we define a sentence

$$\varphi_{\geqslant n} := \exists v_0 \cdots \exists v_{n-1} \bigwedge_{0 \leqslant i < j \leqslant n} \neg v_i \equiv v_j.$$

Clearly for any structure \mathfrak{A} (regardless of the symbol set S)

$$\mathfrak{A}\models \phi_{\geqslant \mathfrak{n}} \iff |A|\geqslant \mathfrak{n}.$$

Now consider

$$\Psi := \Phi \cup \big\{ \varphi_{\geqslant n} \mid n \geqslant 2 \big\}.$$

Of course every finite subset of Ψ is contained in

$$\Psi_{\mathfrak{n}_0} := \Phi \cup ig\{ arphi_{\geqslant \mathfrak{n}} \mid 2 \leqslant \mathfrak{n} \leqslant \mathfrak{n}_0 ig\}$$

for a sufficiently large $n_0 \in \mathbb{N}$. By assumption, the interpretation \mathfrak{I}_{n_0} witnesses that Ψ_{n_0} is satisfiable. Therefore, by the Compactness Theorem, Ψ itself is satisfiable. The result follows immediately. \Box

Theorem 1.7 (Upward Löwenheim-Skolem). Let $\Phi \subseteq L^S$ and assume that there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that A is infinite and $\mathfrak{I} \models \Phi$. Then, for any set B there is an S-interpretation $\mathfrak{I}' = (\mathfrak{A}', \beta')$ with $|A'| \ge |B|$ and $\mathfrak{I}' \models \Phi$.

Proof: For any $b \in B$ we introduce a new constant $c_b \notin S$. In particular, $c_b \neq c_{b'}$ for any $b, b' \in B$ with $b \neq b$. Then consider

$$\Psi := \Phi \cup \{\neg c_b \equiv c_{b'} \mid b, b' \in B \text{ with } b \neq b'\}.$$

Since Φ has an infinite interpretation, every finite subset of Ψ is satisfiable. By the Compactness Theorem, we conclude that Φ is satisfiable. Clearly the structure in any interpretation which satisfies Ψ must have size as large as |B|.

Corollary 1.8. *Let* $S = \{+, \times, <, 0, 1\}$ *and*

$$\Phi_{\mathbb{N}} := ig\{ arphi \in \mathsf{L}^{\mathsf{S}}_{\mathsf{0}} \mid (\mathbb{N},+,\cdot,<,\mathsf{0},\mathsf{1}) \models arphi ig\}.$$

Then there is a uncountable S-structure \mathfrak{A} with $\mathfrak{A} \models \Phi_{\mathbb{N}}$.

2. Decidability and Enumerability

A. Procedure and Decidability.

Definition 2.1. Let \mathcal{A} be an alphabet (which we always assume to be finite) and $W \subseteq \mathcal{A}^*$.

(i) Let P be a procedure/program (which we will make precise shortly afterwards). P is a *decision procedure for* W if on every input w ∈ A* the procedure P will eventually halt and output some w' ∈ A* such that

 \dashv

- if $w \in W$, then $w' = \Box$, where \Box is the empty string,
- if $w \notin W$, then $w' \neq \Box$.
- (ii) W is *decidable* if there is a decision procedure for W.

B. Enumerability.

Definition 2.2. Let \mathcal{A} be an alphabet and $W \subseteq \mathcal{A}^*$.

- (i) A procedure \mathbb{P} is an *enumeration procedure for* W if \mathbb{P} (without any input) outputs all the words in W (in some order and possibly with repetitions).
- (ii) W is *enumerable* if there is an enumeration procedure for W. \dashv

Lemma 2.3. *If there is an enumeration procedure for W, then there is an enumeration procedure for W* without repetitions.

Lemma 2.4. Let A be finite. Then A^* is enumerable.

Let

$$\begin{split} S_{\infty} &\coloneqq \left\{ c_{0}, c_{1}, \ldots \right\} & (every \ c_{i} \ is \ a \ constant) \\ & \cup \bigcup_{n \geqslant 1} \left\{ R_{0}^{n}, R_{1}^{n}, \ldots \right\} & (every \ R_{i}^{n} \ is \ an \ n-ary \ relation \ symbol) \\ & \cup \bigcup_{n \geqslant 1} \left\{ f_{0}^{n}, f_{1}^{n}, \ldots \right\} & (every \ f_{i}^{n} \ is \ an \ n-ary \ function \ symbol). \end{split}$$

Lemma 2.5.

$$\left\{\phi\in L_0^{S_\infty}\ \middle|\ \models \phi\right\}$$

is enumerable.

Proof: [sketch] By the Completeness Theorem

$$\left\{\phi\in L_0^{S_\infty}\ \Big|\ \models \phi\right\}=\left\{\phi\in L_0^{S_\infty}\ \Big|\ \vdash \phi\right\}.$$

Thus, we can enumerate all possible proofs/derivations of symbol set S^{∞} , thus obtain all those $\varphi \in L_0^{S_{\infty}}$ with $\vdash \varphi$.

C. The Relationship between Decidability and Enumerability.

Theorem 2.6. Every decidable set is enumerable.

Proof: Assume that the procedure \mathbb{P} decides $W \subseteq \mathcal{A}^*$. By Lemma 2.4 we can enumerate all $w \in \mathcal{A}^*$. For each w we can decide whether $w \in W$ by calling \mathbb{P} . If so, we output w and proceed to the next string. Otherwise, we move to the next string without outputting w. \Box

We will see later that the converse of Theorem 2.6 does not hold, i.e., there are enumerable sets which are not decidable. Nevertheless, we can show:

Theorem 2.7. Let $W \subseteq A^*$. Then W is decidable if and only if both W and $A^* \setminus W$ are enumerable.

 \dashv

Н

Proof: The direction from left to right is straightforward by Theorem 2.6 and by observing that $\mathcal{A}^* \setminus W$ is decidable as well. For the converse, we have two procedures, \mathbb{P}_1 which enumerates W, and \mathbb{P}_2 which enumerates $\mathcal{A}^* \setminus W$.

Then given an input $w \in A^*$, we simulate two procedures \mathbb{P}_1 and \mathbb{P}_2 simultaneously¹, eventually w will appear in exactly one of the outputs of \mathbb{P}_1 and \mathbb{P}_2 . Then we can answer whether $w \in W$ accordingly.

D. Computable Functions.

Definition 2.8. Let \mathcal{A} and \mathcal{B} be two alphabets. A procedure that for each input $w \in \mathcal{A}^*$ outputs a $w' \in \mathcal{B}^*$ determines a function $f : \mathcal{A}^* \to \mathcal{B}^*$ defined by

$$w \stackrel{f}{\mapsto} w'$$
.

f is said to be *computable*.

2.1. Register Machines. We fix an alphabet

$$\mathcal{A} := \{a_0, \ldots, a_r\}.$$

Every register machine (or simply, machine) has a fixed number of registers, i.e.,

$$R_0, \ldots, R_m$$

for some fixed $m \in \mathbb{N}$, where any register R_i can contain any word in \mathcal{A}^* . A *program* consists of a finite number of *instructions*, each starting with a *label* $L \in \mathbb{N}$.

There are 5 types of instructions.

-

L LET
$$R_i = R_i + a_i$$
,

where $L, i, j \in \mathbb{N}$ with $0 \leq i \leq m$ and $0 \leq j \leq r$. That is, add the letter a_j at the end of the word in R_i .

-

L LET $R_i = R_i - a_j$,

where L, $i, j \in \mathbb{N}$ with $0 \le i \le m$ and $0 \le j \le r$. That is, if the word in R_i ends with a_j , then delete this a_j ; otherwise leave the word unchanged.

_

L IF $R_i = \Box$ THEN L' ELSE L_0 OR L_1 OR \cdots OR L_r ,

where $L, L', L_0, \ldots, L_r \in \mathbb{N}$. That is, if R_i contains \Box , then go the instruction labelled L'. Otherwise, if R_i contains a word ending with the letter a_j , then go to the instruction labelled L_j .

_

L PRINT,

where $L \in \mathbb{N}$. That is, output the word in R_0 .

L HALT,

 \neg

with $L \in \mathbb{N}$. That is, the program halts.

¹More precisely, we simulate the steps of \mathbb{P}_1 and \mathbb{P}_2 alternatively, i.e., the first step of \mathbb{P}_1 , the first step of \mathbb{P}_2 , the second step of \mathbb{P}_1 , the second step of \mathbb{P}_2 , ...

Definition 2.9. A *register program* (or simply *program*) is a finite sequence $\alpha_0, \ldots, \alpha_k$ of instructions with the following properties.

- (i) Every α_i has label L = i.
- (ii) Every jump operation refers to a label $\leq k$.
- (iii) Only the last instruction α_k is a halt instruction.

Definition 2.10. A program \mathbb{P} starts with $w \in \mathcal{A}^*$ if in the beginning of the execution of \mathbb{P} we have $R_0 = w$ and all other $R_i = \Box$.

If \mathbb{P} starts with w and eventually reaches the last halt instruction, then we write

$$\mathbb{P}: w \to halt.$$

Otherwise,

$$\mathbb{P}: w \to \infty.$$

The notation

 $\mathbb{P}: \mathcal{W} \to \mathcal{W}'$

means that if \mathbb{P} starts with w, then it eventually halts, and during the course of computation, has printed exactly one string w'.

 \dashv