
Mathematical Logic (X)

Yijia Chen

1. The Löwenheim-Skolem Theorem and the Compactness Theorem

Using the term-interpretation, it is routine to verify:

Theorem 1.1 (Löwenheim-Skolem). Let Φ ⊆ LS be at most countable and satisfiable. Then there is
an S-interpretation I = (A,β) such that

– the universe A of A is at most countable,

– and I |= Φ. a

The following is a more general version.

Theorem 1.2 (Downward Löwenheim-Skolem). Let Φ ⊆ LS be satisfiable. Then there is an S-
interpretation I = (A,β) such that

– |A| 6 |TS| = |LS|,

– and I |= Φ. a

Corollary 1.3. Let S := {+,×,<, 0, 1} with the usual meaning and

ΦR :=
{
ϕ ∈ LS0

∣∣ (R,+, ·,<, 0, 1) |= ϕ
}

.

Then there is a countable S-structure A with A |= ΦR. a

By the Completeness Theorem:

Theorem 1.4 (Compactness). (a) Φ |= ϕ if and only if there is a finite Φ0 ⊆ Φ with Φ0 |= ϕ.

(b) Φ is satisfiable if and only if every finite Φ0 ⊆ Φ is satisfiable. a

In fact, the “compactness” is a notion from topology. We can explain the topological perspective
of Theorem 1.4 using finite covers from analysis. For every ϕ ∈ LS we define

Mod(ϕ) :=
{
I
∣∣ I |= ϕ

}
,

and
Mod(Φ) :=

{
I
∣∣ I |= Φ

}
=
⋂
ψ∈Φ

Mod(ψ).

We show that Theorem 1.4 is equivalent to the following finite cover property.

Proposition 1.5. Mod(ϕ) ⊆
⋃
ψ∈ΦMod(ψ) if and only if for some finite Φ0 ⊆ Φ we have

Mod(ϕ) ⊆
⋃
ψ∈Φ0

Mod(ψ). a

1

Proof of Theorem 1.4 using Proposition 1.5:

Φ |= ϕ ⇐⇒ Mod(Φ) ⊆ Mod(ϕ)

⇐⇒ Mod(ϕ) ⊆ Mod(Φ)

⇐⇒ Mod(ϕ) ⊆
⋂
ψ∈Φ

Mod(ψ)

⇐⇒ Mod(ϕ) ⊆
⋃
ψ∈Φ

Mod(ψ)

⇐⇒ Mod(¬ϕ) ⊆
⋃
ψ∈Φ

Mod(¬ψ)

⇐⇒ Mod(¬ϕ) ⊆
⋃
ψ∈Φ0

Mod(¬ψ) for some finite Φ0 ⊆ Φ (by Proposition 1.5)

⇐⇒ Mod(ϕ) ⊆
⋃
ψ∈Φ0

Mod(ψ) for some finite Φ0 ⊆ Φ

⇐⇒ Mod(ϕ) ⊆
⋂
ψ∈Φ0

Mod(ψ) for some finite Φ0 ⊆ Φ

⇐⇒
⋂
ψ∈Φ0

Mod(ψ) ⊆ Mod(ϕ) for some finite Φ0 ⊆ Φ

⇐⇒ Mod(Φ0) ⊆ Mod(ϕ) for some finite Φ0 ⊆ Φ
⇐⇒ Φ0 |= ϕ for some finite Φ0 ⊆ Φ. 2

Proof of Proposition 1.5 by Theorem 1.4: The direction from right to left is trivial. So we assume
that

Mod(ϕ) ⊆
⋃
ψ∈Φ

Mod(ψ).

Claim. {¬ψ | ψ ∈ Φ} |= ¬ϕ.

Proof of the claim. Let I be an interpretation with

I |= {¬ψ | ψ ∈ Φ}.

That is, I |= ¬ψ for every ψ ∈ Φ. We can deduce that

I ∈
⋂
ψ∈Φ

Mod(¬ψ) ⇐⇒ I ∈
⋂
ψ∈Φ

Mod(ψ)

⇐⇒ I ∈
⋃
ψ∈Φ

Mod(ψ)

⇐⇒ I /∈
⋃
ψ∈Φ

Mod(ψ)

=⇒ I /∈ Mod(ϕ)

by Mod(ϕ) ⊆
⋃
ψ∈Φ

Mod(ψ)

⇐⇒ I |= ¬ϕ.

This finishes the proof of the claim. a

Now we apply Theorem 1.4 to the above claim. In particular, there is a finite Φ0 ⊆ Φ such that

{¬ψ | ψ ∈ Φ0} |= ¬ϕ

2

Then arguing similarly as above, we obtain

Mod(ϕ) ⊆
⋃
ψ∈Φ0

Mod(ψ). 2

Theorem 1.6. Let Φ ⊆ LS such that for every n ∈ N there exists an S-interpretation In = (An,βn)
with |An| > n and In |= Φ. Then there is an S-interpretation I = (A,β) with infinite A and I |= Φ.

Proof: For every n > 2 we define a sentence

ϕ>n := ∃v0 · · · ∃vn−1

∧
06i<j6n

¬vi ≡ vj.

Clearly for any structure A (regardless of the symbol set S)

A |= ϕ>n ⇐⇒ |A| > n.

Now consider
Ψ := Φ ∪

{
ϕ>n

∣∣ n > 2
}

.

Of course every finite subset of Ψ is contained in

Ψn0 := Φ ∪
{
ϕ>n

∣∣ 2 6 n 6 n0
}

for a sufficiently large n0 ∈ N. By assumption, the interpretation In0 witnesses that Ψn0 is satisfi-
able. Therefore, by the Compactness Theorem, Ψ itself is satisfiable. The result follows immedi-
ately. 2

Theorem 1.7 (Upward Löwenheim-Skolem). LetΦ ⊆ LS and assume that there is an S-interpretation
I = (A,β) such that A is infinite and I |= Φ. Then, for any set B there is an S-interpretation
I ′ = (A ′,β ′) with |A ′| > |B| and I ′ |= Φ.

Proof: For any b ∈ B we introduce a new constant cb /∈ S. In particular, cb 6= cb′ for any b,b ′ ∈ B
with b 6= b. Then consider

Ψ := Φ ∪
{
¬cb ≡ cb′

∣∣ b,b ′ ∈ B with b 6= b ′
}

.

Since Φ has an infinite interpretation, every finite subset of Ψ is satisfiable. By the Compactness
Theorem, we conclude that Φ is satisfiable. Clearly the structure in any interpretation which
satisfies Ψ must have size as large as |B|. 2

Corollary 1.8. Let S = {+,×,<, 0, 1} and

ΦN :=
{
ϕ ∈ LS0

∣∣ (N,+, ·,<, 0, 1) |= ϕ
}

.

Then there is a uncountable S-structure A with A |= ΦN. a

2. Decidability and Enumerability

A. Procedure and Decidability.

Definition 2.1. Let A be an alphabet (which we always assume to be finite) and W ⊆ A∗.

(i) Let P be a procedure/program (which we will make precise shortly afterwards). P is a
decision procedure for W if on every input w ∈ A∗ the procedure P will eventually halt and
output some w ′ ∈ A∗ such that

3

– if w ∈W, then w ′ = 2, where 2 is the empty string,

– if w /∈W, then w ′ 6= 2.

(ii) W is decidable if there is a decision procedure for W. a

B. Enumerability.

Definition 2.2. Let A be an alphabet and W ⊆ A∗.

(i) A procedure P is an enumeration procedure for W if P (without any input) outputs all the
words in W (in some order and possibly with repetitions).

(ii) W is enumerable if there is an enumeration procedure for W. a

Lemma 2.3. If there is an enumeration procedure for W, then there is an enumeration procedure for
W without repetitions. a

Lemma 2.4. Let A be finite. Then A∗ is enumerable. a

Let

S∞ :=
{
c0, c1, . . .

}
(every ci is a constant)

∪
⋃
n>1

{
Rn0 ,Rn1 , . . .

}
(every Rni is an n-ary relation symbol)

∪
⋃
n>1

{
fn0 , fn1 , . . .

}
(every fni is an n-ary function symbol).

Lemma 2.5. {
ϕ ∈ LS∞0

∣∣∣ |= ϕ
}

is enumerable.

Proof: [sketch] By the Completeness Theorem{
ϕ ∈ LS∞0

∣∣∣ |= ϕ
}
=
{
ϕ ∈ LS∞0

∣∣∣ ` ϕ} .

Thus, we can enumerate all possible proofs/derivations of symbol set S∞, thus obtain all those
ϕ ∈ LS∞0 with ` ϕ. 2

C. The Relationship between Decidability and Enumerability.

Theorem 2.6. Every decidable set is enumerable.

Proof: Assume that the procedure P decidesW ⊆ A∗. By Lemma 2.4 we can enumerate allw ∈ A∗.
For each w we can decide whether w ∈ W by calling P. If so, we output w and proceed to the
next string. Otherwise, we move to the next string without outputting w. 2

We will see later that the converse of Theorem 2.6 does not hold, i.e., there are enumerable
sets which are not decidable. Nevertheless, we can show:

Theorem 2.7. Let W ⊆ A∗. Then W is decidable if and only if both W and A∗ \W are enumerable.

4

Proof: The direction from left to right is straightforward by Theorem 2.6 and by observing that
A∗ \W is decidable as well. For the converse, we have two procedures, P1 which enumerates W,
and P2 which enumerates A∗ \W.

Then given an input w ∈ A∗, we simulate two procedures P1 and P2 simultaneously1, eventu-
ally w will appear in exactly one of the outputs of P1 and P2. Then we can answer whether w ∈W
accordingly. 2

D. Computable Functions.

Definition 2.8. Let A and B be two alphabets. A procedure that for each input w ∈ A∗ outputs a
w ′ ∈ B∗ determines a function f : A∗ → B∗ defined by

w
f7→ w ′.

f is said to be computable. a

2.1. Register Machines. We fix an alphabet

A := {a0, . . . ,ar}.

Every register machine (or simply, machine) has a fixed number of registers, i.e.,

R0, . . . ,Rm

for some fixed m ∈ N, where any register Ri can contain any word in A∗. A program consists of a
finite number of instructions, each starting with a label L ∈ N.

There are 5 types of instructions.

–
L LET Ri = Ri + aj,

where L, i, j ∈ N with 0 6 i 6 m and 0 6 j 6 r. That is, add the letter aj at the end of the
word in Ri.

–
L LET Ri = Ri − aj,

where L, i, j ∈ N with 0 6 i 6 m and 0 6 j 6 r. That is, if the word in Ri ends with aj, then
delete this aj; otherwise leave the word unchanged.

–
L IF Ri = 2 THEN L ′ ELSE L0 OR L1OR · · ·OR Lr,

where L,L ′,L0, . . . ,Lr ∈ N. That is, if Ri contains 2, then go the instruction labelled L ′.
Otherwise, if Ri contains a word ending with the letter aj, then go to the instruction labelled
Lj.

–
L PRINT,

where L ∈ N. That is, output the word in R0.

–
L HALT,

with L ∈ N. That is, the program halts.
1More precisely, we simulate the steps of P1 and P2 alternatively, i.e., the first step of P1, the first step of P2, the second

step of P1, the second step of P2, . . .

5

Definition 2.9. A register program (or simply program) is a finite sequence α0, . . . ,αk of instruc-
tions with the following properties.

(i) Every αi has label L = i.

(ii) Every jump operation refers to a label 6 k.

(iii) Only the last instruction αk is a halt instruction. a

Definition 2.10. A program P starts with w ∈ A∗ if in the beginning of the execution of P we
have R0 = w and all other Ri = 2.

If P starts with w and eventually reaches the last halt instruction, then we write

P : w→ halt.

Otherwise,
P : w→∞.

The notation
P : w→ w ′

means that if P starts with w, then it eventually halts, and during the course of computation, has
printed exactly one string w ′. a

6

