Mathematical Logic (XI)

Yijia Chen

1. Decidability and Enumerability

1.1. Register Machines.

We fix an alphabet

$$\mathcal{A} := \{a_0, \ldots, a_r\}.$$

Every register machine (or simply, machine) has a fixed number of registers, i.e.,

 R_0, \ldots, R_m

for some fixed $m \in \mathbb{N}$, where any register R_i can contain any word in \mathcal{A}^* . A *program* consists of a finite number of *instructions*, each starting with a *label* $L \in \mathbb{N}$.

There are 5 types of instructions.

-

L LET $R_i = R_i + a_j$,

where L, $i, j \in \mathbb{N}$ with $0 \leq i \leq m$ and $0 \leq j \leq r$. That is, add the letter a_j at the end of the word in R_i .

L LET $R_i = R_i - a_j$,

where L, $i, j \in \mathbb{N}$ with $0 \le i \le m$ and $0 \le j \le r$. That is, if the word in R_i ends with e_j , then delete this a_j ; otherwise leave the word unchanged.

_

L IF $R_i = \Box$ THEN L' ELSE L₀ OR L₁OR \cdots OR L_r,

where $L, L', L_0, \ldots, L_r \in \mathbb{N}$. That is, if R_i contains \Box , then go the instruction labelled L'. Otherwise, if R_i contains a word ending with the a_j , then go to the instruction labelled L_j .

L PRINT,

where $L \in \mathbb{N}$. That is, output the word in R_0 .

—

L HALT,

with $L \in \mathbb{N}$. That is, the program halts.

Definition 1.1. A *register program* (or simply *program*) is a finite sequence $\alpha_0, \ldots, \alpha_k$ of instructions with the following properties.

- (i) Every α_i has label L = i.
- (ii) Every jump operation refers to a label $\leq k$.
- (iii) Only the last instruction α_k is a halt instruction.

 \dashv

Definition 1.2. A program \mathbb{P} *starts* with $w \in \mathcal{A}^*$ if in the beginning of the execution of \mathbb{P} we have $R_0 = w$ and all other $R_i = \Box$.

If \mathbb{P} starts with w and eventually reaches the last halt instruction, then we write

$$\mathbb{P}: w \to halt.$$

Otherwise,

 $\mathbb{P}: w \to \infty.$

The notation

 $\mathbb{P}: w \to w'$

means that if \mathbb{P} starts with w, then it eventually halts, and during the course of computation, has printed exactly one string w'.

Definition 1.3. Let $W \subseteq A^*$.

(i) A program \mathbb{P} decides W if for all $w \in \mathcal{A}^*$

$$\begin{split} \mathbb{P} : w \to \square & \text{if } w \in W, \\ \mathbb{P} : w \to w' \text{ with } w' \neq \square & \text{if } w \notin W. \end{split}$$

(ii) W is *register-decidable*, or *R-decidable* for short, if there is a register program which decides W.

Definition 1.4. Let $W \subseteq A^*$.

- (i) A program \mathbb{P} *enumerates* W if started with \Box , \mathbb{P} prints out exactly the words in W (in some order with possible repetitions).
- (ii) W is register-enumerable, or R-enumerable for short, if there is program which enumerates W.

Proposition 1.5. Let $W \subseteq A^*$. Then W is R-decidable if and only if both W and $A^* \setminus W$ are *R*-enumerable.

Definition 1.6. Let $F : \mathcal{A}^* \to \mathcal{B}^*$, where \mathcal{A} and \mathcal{B} are two alphabets.

(i) A program \mathbb{P} computes F if for all $w \in \mathcal{A}^*$

$$\mathbb{P}: w \to F(w).$$

(ii) F is register-computable, or R-computable for short, if there is program which computes F. \dashv

1.2. The halting problem for the register machines. Again let $\mathcal{A} := \{a_0, \dots, a_r\}$ be a fixed alphabet. Our goal is to define for every program \mathbb{P} over \mathcal{A} a word $w_{\mathbb{P}} \in \mathcal{A}^*$. To that end, we first introduce an auxiliary alphabet

$$\mathcal{B} := \mathcal{A} \cup \{A, B, C, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{=, +, -, \Box, |\}.$$

As usual, we understand that the words in \mathcal{B}^* are ordered *lexicographically*. Then every program can be naturally encoded as a word in \mathcal{B}^* . For instance

 $0 \text{ LET } R_1 = R_1 - a_0$

1 PRINT

2 HALT

is identified with the word

$$OLETR1 = R1 - a_0 | 1PRINT | 2HALT$$

Note that a_0 is single letter from the alphabet $\mathcal{A} \subseteq \mathcal{B}$. Assume that this word is the n-th word in the lexicographical ordering of \mathcal{B}^* . Then we set

$$w_{\mathbb{P}} := \underbrace{a_0 a_0 \cdots a_0}_{n \text{ times}}.$$

Finally let

$$\Pi := \{ w_{\mathbb{P}} \mid \mathbb{P} \text{ a program over } \mathcal{A} \}.$$

The mapping

$$\mathbb{P}\mapsto w_{\mathbb{I}}$$

is often called the *Gödel numbering*, and $w_{\mathbb{P}}$ is the *Gödel number* of \mathbb{P} .

Lemma 1.7. Π *is* R-*decidable*.

Theorem 1.8. Let A be a fixed alphabet.

(i) The set

 $\Pi_{halt}' := \left\{ w_{\mathbb{P}} \mid \mathbb{P} \text{ a program over } \mathcal{A} \text{ and } \mathbb{P} : w_{\mathbb{P}} \to halt \right\}$

is not R-decidable.

(ii) The set

$$\Pi_{halt} := \left\{ w_{\mathbb{P}} \mid \mathbb{P} \text{ a program over } \mathcal{A} \text{ and } \mathbb{P} : \Box \to halt \right\}$$

is not R-decidable.

Proof: (i) Assume that there is a program \mathbb{P}_0 which decides Π'_{halt} . That is, for every program \mathbb{P}

$\mathbb{P}_0: w_{\mathbb{P}} ightarrow \square$	if $\mathbb{P}: w_{\mathbb{P}} \to halt$,
$\mathbb{P}_0: w_{\mathbb{P}} \to w' \text{ with } w' \neq \Box$	if $\mathbb{P}: w_{\mathbb{P}} \to \infty$.

Assume furthermore that \mathbb{P}_0 has the form

0 1 : 10 PRINT : k HALT

We change \mathbb{P}_0 in such a way that if \mathbb{P}_0 prints out \Box , then the modified program will never halt. To that end, we replace the last k-th halt instruction by two instructions that "reverse the halting behavior", and replace every print instruction by a "jump" instruction that directly goes to the end:

Η

-

0
1
i:
10 IF R₀ = □ THEN k ELSE k OR k OR ··· OR k
i.e, goto the k-th instruction no matter what is in R₀

```
k IF R_0 = \Box THEN k ELSE k + 1 or k + 1 or \cdots or k + 1 k + 1 halt
```

Let \mathbb{P}_1 be the resulting program. It is then easy to see that for any program \mathbb{P}

$$\begin{split} \mathbb{P}_1 : w_{\mathbb{P}} \to \infty & \text{ if } \mathbb{P} : w_{\mathbb{P}} \to \text{ halt,} \\ \mathbb{P}_1 : w_{\mathbb{P}} \to \text{ halt } & \text{ if } \mathbb{P} : w_{\mathbb{P}} \to \infty. \end{split}$$

As a result,

÷

$$\begin{split} \mathbb{P}_1 : w_{\mathbb{P}_1} \to \infty & \text{ if } \mathbb{P}_1 : w_{\mathbb{P}_1} \to \text{ halt,} \\ \mathbb{P}_1 : w_{\mathbb{P}_1} \to \text{ halt } & \text{ if } \mathbb{P}_1 : w_{\mathbb{P}_1} \to \infty, \end{split}$$

which is certainly a contradiction.

(ii) Towards a contradiction, assume that \mathbb{P}_0 decides Π_{halt} . That is, for every program \mathbb{P}

$$\begin{split} & \mathbb{P}_{0}: w_{\mathbb{P}} \to \Box & \text{if } \mathbb{P}: \Box \to \text{halt,} \\ & \mathbb{P}_{0}: w_{\mathbb{P}} \to w' \text{ with } w' \neq \Box & \text{if } \mathbb{P}: \Box \to \infty. \end{split}$$
 (1)

Now for every program $\mathbb P$ we assign in an *effective* way a program $\mathbb P^+$ such that

$$\mathbb{P}: w_{\mathbb{P}} \to \text{halt} \quad \Longleftrightarrow \quad \mathbb{P}^+: \Box \to \text{halt}. \tag{2}$$

Being effective means that there is a further program \mathbb{T} that computes the mapping

 $w_{\mathbb{P}} o w_{\mathbb{P}^+}.$

The construction of \mathbb{T} is tedious but not difficult.

With \mathbb{P}_0 and \mathbb{T} we design a program which decides Π'_{halt} . On any $w \in \mathcal{A}^*$, the program first test whether $w = w_{\mathbb{P}}$ for some \mathbb{P} . If not, it rejects immediately¹. Otherwise, it uses \mathbb{T} to computes $w_{\mathbb{P}^+}$. Then the program calls \mathbb{P}_0 on input $w_{\mathbb{P}^+}$. By (2) and (1), it correctly decides whether

$$\mathbb{P}: w_{\mathbb{P}} \to halt.$$

This gives us the desired contradiction to (i).

It remains to show the construction of \mathbb{P}^+ from any given \mathbb{P} that fulfills (2). Assume that

$$w_{\mathbb{P}} = \underbrace{a_0 a_0 \dots a_0}_{n \text{ times}}.$$

Let \mathbb{P}^+ begin with

0 LET $R_0 = R_0 + a_0$

¹i.e., prints out some $w' \neq \Box$ and halts.

1 LET $R_0 = R_0 + a_0$

n-1 **LET** $R_0 = R_0 + a_0$

:

and followed by the instructions of \mathbb{P} with all labels increased by n. \Box

1.3. The undecidability of first-order logic.

Theorem 1.9. The set

$$\left\{ \phi \in L_{0}^{S_{\infty}} \mid \models \phi \right\}$$
(3)

is not R-decidable.

Proof: By Theorem 1.8 (ii) for the alphabet $\mathcal{A} = \{ | \}$ the problem Π_{halt} is not R-decidable. Our goal is to show that the assumed R-decidability of (3) would contradict this result. To that end, for every program \mathbb{P} we will construct in an *effective* way a $\varphi_{\mathbb{P}} \in L_0^{S_{\infty}}$ such that

$$\mathbb{P}: \Box \to halt \quad \Longleftrightarrow \quad \models \phi_{\mathbb{P}}.$$

Here, the effectivity means that there is a program \mathbb{P}_1 which computes the mapping

$$\mathbb{P} \mapsto \phi_{\mathbb{P}}.$$

Once this is done, given an input $w \in A^*$, we can first check whether $w = w_{\mathbb{P}}$, if so, extract the program \mathbb{P} and compute $\varphi_{\mathbb{P}}$ using \mathbb{P}_1 . Thus if (3) is decidable, we can apply the corresponding decision program on input $\varphi_{\mathbb{P}}$ to decide whether $\mathbb{P} : \Box \to$ halt. Hence, we could decide Π_{halt} .

Let \mathbb{P} consist of instructions $\alpha_0, \ldots, \alpha_k$, in particular every α_i has its label i. Furthermore, assume that the maximum index of the registers which \mathbb{P} uses is n. Hence, the registers referred by all α_i 's are among R_0, \ldots, R_n .

Key to our construction of $\phi_{\mathbb{P}}$ is the notion of configurations of \mathbb{P} . An (n+2)-tuple

$$(L, \mathfrak{m}_0, \ldots, \mathfrak{m}_n)$$

is a configuration of \mathbb{P} (on input \Box) after s steps if

– starting with input \Box the program \mathbb{P} runs at least s steps,

- after s steps, the instruction α_L is to be executed next,
- and for every $0 \leq i \leq n$ the register R_i contains the word

$$\underbrace{||\cdots|}_{m_i \text{ times}}$$

at that moment. To ease presentation, in the following we will simply say that R_i contains the number m_i .

Observe that then the execution of \mathbb{P} on the s + 1-th step is completely determined by the configuration (L, m_0, \ldots, m_n) .

The *initial configuration*, i.e., the configuration of \mathbb{P} after 0 step is

$$(0, 0, \ldots, 0).$$

Recall that α_k is the last instruction of \mathbb{P} , i.e., the only halt instruction. Therefore

 $\mathbb{P}: \Box \to halt \iff \text{for some } s, \mathfrak{m}_0, \dots, \mathfrak{m}_n \in \mathbb{N}$

the tuple $(k, m_0, ..., m_n)$ is the configuration of \mathbb{P} after s steps. (4)

We choose four symbols from S^{∞} : $R := R_0^{n+2}$, $\leq R_0^2$, $f := f_0^1$, and $c := c_0$, and set

 $S := \{R, <, f, c\}.$

Then we associate with \mathbb{P} an S-structure $\mathfrak{A}_{\mathbb{P}}$ which "describes" the execution (i.e., the behaviour) of \mathbb{P} on input \Box . We set $A_{\mathbb{P}} := \mathbb{N}$, $<^{\mathfrak{A}_{\mathbb{P}}} := \{(i, j) \mid i, j \in \mathbb{N} \text{ and } i < j\}$, $f^{\mathfrak{A}_{\mathbb{P}}}(i) := i + 1$ for every $i \in \mathbb{N}$, $c^{\mathfrak{A}_{\mathbb{P}}} := 0$, and

 $R^{\mathfrak{A}_{\mathbb{P}}} \coloneqq \big\{ (L, \mathfrak{m}_0, \dots, \mathfrak{m}_n) \mid (L, \mathfrak{m}_0, \dots, \mathfrak{m}_n) \text{ is a reachable configuration of } \mathbb{P} \big\}.$

Towards the definition of $\varphi_{\mathbb{P}}$ in (3), we first construct a sentence $\psi_{\mathbb{P}}$ which expresses the execution of \mathbb{P} on \Box . We abbreviate c, fc, ffc, ... by $\overline{0}$, $\overline{1}$, $\overline{2}$, ..., respectively. The desired $\psi_{\mathbb{P}}$ should satisfy the following two properties:

- (P1) $\mathfrak{A}_{\mathbb{P}} \models \psi_{\mathbb{P}}$.
- (P2) Let \mathfrak{A} be an S-structure with $\mathfrak{A} \models \psi_{\mathbb{P}}$ and (L, m_0, \dots, m_n) be a reachable configuration of \mathbb{P} . Then

$$\mathfrak{A} \models \mathsf{RL}\bar{\mathfrak{m}}_0 \cdots \bar{\mathfrak{m}}_n.$$

We set

 $\psi_{\mathbb{P}} := \psi_0 \wedge R\bar{0}\bar{0} \cdots \bar{0} \wedge \psi_{\alpha_0} \wedge \cdots \wedge \psi_{\alpha_{k-1}},$

where each conjunct is defined as follows. The first

$$\begin{split} \psi_0 &:= \text{``< is an ordering''} \land \forall x (c < x \lor x \equiv c) \land \forall x (x < fx) \\ \land \forall x \forall y (x < y \to (fx < y \lor fx \equiv y)), \end{split}$$

i.e., < is an ordering, c is the minimum element, fx is the successor of x.

For $\alpha \in \{\alpha_0, \ldots, \alpha_{k-1}\}$ we define φ_{α} by a case analysis.

– $\alpha = L$ LET $R_i = R_i + |$. Then let

$$\psi_{\alpha} := \forall y_0 \cdots \forall y_n \big(R \overline{L} y_0 \cdots y_n \to R \overline{L+1} y_0 \cdots y_{i-1} f y_i y_{i+1} \cdots y_n \big).$$

- $\alpha = L$ LET $R_i = R_i - |$. Then let

$$\begin{split} \psi_{\alpha} &:= \forall y_0 \cdots \forall y_n \big(R\bar{L}y_0 \cdots y_n \rightarrow ((y_i \equiv \bar{0} \land R\overline{L+1}y_0 \cdots y_n) \\ & \lor (\neg y_i \equiv \bar{0} \land \exists u (fu \equiv y_i \\ & \land R\overline{L+1}y_0 \cdots y_{i-1}uy_{i+1} \cdots y_n))) \big) \end{split}$$

– $\alpha = L$ IF $R_i = \Box$ THEN L' ELSE L_0 . Then let

$$\begin{split} \psi_{\alpha} &:= \forall y_0 \cdots \forall y_n \big(RLy_0 \cdots y_n \rightarrow ((y_i \equiv \bar{0} \land R\overline{L'}y_0 \cdots y_n) \\ & \lor (\neg y_i \equiv \bar{0} \land R\overline{L_0}y_0 \cdots y_n)) \big). \end{split}$$

 $- \alpha = L$ **PRINT**. Then let

$$\psi_{\alpha} := \forall y_0 \cdots \forall y_n \big(R \overline{L} y_0 \cdots y_n \to R \overline{L+1} y_0 \cdots y_n \big).$$

The verification of (P1) and (P2) is left as an exercise.

Finally let

$$\varphi_{\mathbb{P}} := \psi_{\mathbb{P}} \to \exists y_0 \cdots \exists y_n Rky_0 \cdots y_n.$$

Now we verify that $\mathbb{P} : \Box \to$ halt if and only if $\models \phi_{\mathbb{P}}$. First, assume $\models \phi_{\mathbb{P}}$, in particular

 $\mathfrak{A}_{\mathbb{P}}\models \phi_{\mathbb{P}}.$

By (P1) we conclude

$$\mathfrak{A}_{\mathbb{P}}\models\exists y_{0}\cdots\exists y_{n}R\bar{k}y_{0}\cdots y_{n}.$$

Then there are some s, $m_0, \ldots, m_n \in A_{\mathbb{P}} \subseteq \mathbb{N}$ such that (k, m_0, \ldots, m_n) is the configuration of \mathbb{P} after s steps. Therefore, \mathbb{P} reaches the last halt instruction after s steps, hence $\mathbb{P} : \Box \to$ halt.

Conversely, assume $\mathbb{P} : \Box \to \text{halt.}$ Let \mathfrak{A} be an S-structure. We need to show that $\mathfrak{A} \models \phi_{\mathbb{P}}$. Clearly, if $\mathfrak{A} \not\models \psi_{\mathbb{P}}$, then we are already done. Thus, assume $\mathfrak{A} \models \psi_{\mathbb{P}}$. Let (k, m_0, \dots, m_n) be the configuration of \mathbb{P} when it reaches the last halt instruction α_k . Now (P2) implies that

$$\mathfrak{A}\models R\overline{s_{\mathbb{P}}}\bar{k}\bar{\mathfrak{m}}_{0}\cdots\bar{\mathfrak{m}}_{n}.$$

Therefore

$$\mathfrak{A}\models \varphi_{\mathbb{P}}$$
.

This finishes the proof.