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1. Theories and Decidability

Definition 1.1. A set T ⊆ LS0 of L-sentences is a theory if

– T is satisfiable,

– and T is closed under consequences, i.e., for every ϕ ∈ LS0 , if T |= ϕ, then ϕ ∈ T . a

Example 1.2. Let A be an S-structure. Then

Th(A) :=
{
ϕ ∈ LS0

∣∣ A |= ϕ
}

is a theory. a

Definition 1.3. Let N := (N,+, ·, 0, 1). Then Th(N) is called (elementary) arithmetic. a

Definition 1.4. Let T ⊆ LS0 . We define

T |= :=
{
ϕ ∈ LS0

∣∣ T |= ϕ
}

. a

Lemma 1.5. All the following are equivalent.

– T |= is a theory.

– T is satisfiable.

– T |= 6= LS0 . a

Definition 1.6. The Peano Arithmetic ΦPA consists of the following Sar-sentences, where Sar =
{+, ·, 0, 1}:

∀x¬x+ 1 ≡ 0, ∀x∀y(x+ 1 ≡ y+ 1→ x ≡ y),
∀x x+ 0 ≡ x, ∀x∀y x+ (y+ 1) ≡ (x+ y) + 1,
∀x x · 0 ≡ 0, ∀x∀y x · (y+ 1) ≡ x · y+ x,

and for all n ∈ N, all variables x1, . . . , xn, y, and all ϕ ∈ LSar with

free(ϕ) ⊆ {x1, . . . , xn,y}

the sentence

∀x1 · · · ∀xn

((
ϕ

0
y
∧ ∀y

(
ϕ→ ϕ

y+ 1
y

))
→ ∀yϕ

)
. a

Remark 1.7. It is easy to see that N |= ΦPA, i.e., Φ|=
PA ⊆ Th(N). We will show that Φ|=

PA ( Th(N). a

Definition 1.8. Let T ⊆ LS0 be a theory.
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(i) T is R-axiomatizable if there exists an R-decidable Φ ⊆ LS0 with T = Φ|=.

(ii) T is finitely axiomatizable if there exists a finite Φ ⊆ LS0 with T = Φ|=.

Clearly any finitely axiomatizable T is R-axiomatizable. a

Theorem 1.9. Every R-axiomatizable theory is R-enumerable.

Proof: Let T = Φ|= where Φ ⊆ LS0 is R-decidable. We can effectively generate all derivable
sequent proofs and check for each proof whether all the used assumptions belong to Φ (by the
R-decidability of Φ). 2

Remark 1.10. There are R-axiomatizable theories that are not R-decidable, e.g., for S = S∞ and
Φ = ∅

Φ|= =
{
ϕ ∈ LS∞ ∣∣ |= ϕ

}
. a

Definition 1.11. A theory T ⊆ LS0 is complete if for any ϕ ∈ LS0 , either ϕ ∈ T or ¬ϕ ∈ T . a

Remark 1.12. Let A be an S-structure. Then the theory Th(A) is complete. a

Theorem 1.13. (i) Every R-axiomatizable complete theory is R-decidable.

(ii) Every R-enumerable complete theory is R-decidable. a

2. The Undecidability of Arithmetic

Theorem 2.1. Th(N) is not R-decidable.

Again, for the alphabet A = {|} we consider the halting problem

Πhalt :=
{
wP
∣∣ P a program over A and P : 2→ halt

}
.

For any program P over A we will construct effectively an Sar-sentence ϕP (i.e., ϕP can be com-
puted by a register machine) such that

N |= ϕP ⇐⇒ P : 2→ halt.

Assume that P consists of instructions α0, . . . ,αk. Let n be the maximum index i such that Ri is
used by P. Recall that a configuration of P is an (n+ 2)-tuple

(L,m0, . . . ,mn),

where L 6 k and m0, . . . ,mn ∈ N, meaning that αL is the instruction to be executed next and
every register Ri contains mi, i.e., the word | | · · · |︸ ︷︷ ︸

mi times

.

Lemma 2.2. For every program P over A we can compute an Sar-formula

χP(x0, . . . , xn, z,y0, . . . ,yn)

such that for all `0, . . . , `n,L,m0, . . . ,mn ∈ N

N |= χP[`0, . . . , `n,L,m0, . . . ,mn]

if and only if P, beginning with the configuration (0, `0, . . . , `n), after finitely many steps, reaches the
configuration (L,m0, . . . ,mn). a
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Using the formula χP in Lemma 2.2, we define

ϕP := ∃y0 · · · ∃ynχP(0, . . . , 0, k̄,y0, . . . ,yn),

where k̄ := 1 + · · ·+ 1︸ ︷︷ ︸
k times

. Then By Lemma 2.2, we conclude N |= ϕP if and only if P, beginning

with the initial configuration (0, 0, . . . , 0), after finitely many steps, reaches the configuration
(k,m0, . . . ,mn), i.e., P : 2→ halt. This finishes our proof of Theorem 2.1. 2

By Theorem 2.1, Theorem 1.13, and Remark 1.12:

Corollary 2.3. Th(N) is neither R-axiomatizable nor R-enumerable. Thus

Φ
|=
PA ( Th(N). a

Proof of Lemma 2.2. Recall that χP expresses in N that there is an s ∈ N and a sequence of
configurations C0, . . . ,Cs such that

– C0 = (0, x0, . . . , xn),

– Cs = (z,y0, . . . ,yn),

– for all i < s we have Ci
P→ Ci+1, i.e., from the configuration Ci the program P will reach

Ci+1 in one step.

We slightly rewrite the above formulation as that there is an s ∈ N and a sequence of natural
numbers

a0, . . . ,an+1︸ ︷︷ ︸
C0

an+2, . . . ,a(n+2)+(n+1)︸ ︷︷ ︸
C1

. . .as·(n+2), . . . ,as·(n+2)+(n+1)︸ ︷︷ ︸
Cs

(1)

such that

– a0 = 0, a1 = x0, . . . , an+1 = xn,

– as·(n+2) = z, as·(n+2)+1 = y0, . . . , as·(n+2)+(n+1) = yn,

– for all i < s we have(
ai·(n+2), . . . ,ai·(n+2)+(n+1)

)
P−→
(
a(i+1)·(n+2), . . . ,a(i+1)·(n+2)+(n+1)

)
.

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in N.
So we need the following beautiful (elementary) number-theoretic tool.

Lemma 2.4 (Gödel’s β-function). There is a function β : N3 → N with the following properties.

(i) For every r ∈ N and every sequence (a0, . . . ,ar) in N there exist t,p ∈ N such that for all i 6 r

β(t,p, i) = ai.

(ii) β is definable in LSar . That is, there is an Sar-formula ϕβ(x,y, z,w) such that for all t,q, i,a ∈
N

N |= ϕβ[t,q, i,a] ⇐⇒ β(t,q, i) = a.
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Equipped with the above β function and the formula ϕβ, we define the desired χP as follows.

∃t∃p∃s
(
ϕβ(t,p, 0, 0)∧ϕβ(t,p, 1, x0)∧ · · ·∧ϕβ(t,p,n+ 1, xn)

∧ϕβ(t,p, s · n+ 2, z)∧ϕβ(t,p, s · n+ 2 + 1,y0)

∧ · · ·∧ϕβ(t,p, s · n+ 2 + n+ 1,yn)

∧ ∀i
(
i < s→ ∀u∀u0 · · · ∀un∀u ′∀u ′0 · · · ∀u ′n(

ϕβ(t,p, i · n+ 2,u)∧ϕβ(t,p, i · n+ 2 + 1,u0)

∧ · · ·∧ϕβ(t,p, i · n+ 2 + n+ 1,un)

∧ϕβ(t,p, (i+ 1) · n+ 2,u ′)∧ϕβ(t,p, (i+ 1) · n+ 2 + 1,u ′0)

∧ · · ·∧ϕβ(t,p, (i+ 1) · n+ 2 + n+ 1,u ′n)

→ “(u,u0, . . . ,un)
P−→ (u ′,u ′0, . . . ,u ′n)”

)))
.

Here,
“(u,u0, . . . ,un)

P−→ (u ′,u ′0, . . . ,u ′n)”

stands for a formula describing one-step computation of P from configuration (u,u0, . . . ,un) to
configuration (u ′,u ′0, . . . ,u ′n). Such a formula can be defined as a conjunction

ψ0 ∧ · · ·∧ψk−1.

Recall that the program P consists of instructions α0, . . . ,αk where the last αk is the halt instruc-
tion. Thus, say αj is

j LET R1 = R1+ |,

then we let

ψj := u ≡ j→
(
u ′ ≡ u+ 1 ∧ u ′0 ≡ u0 ∧ u

′
1 ≡ u1 + 1 ∧ u ′2 ≡ u2 ∧ · · ·∧ u ′n ≡ un

)
.

The remaining details are left to the reader. 2

Proof of Lemma 2.4: Let (a0, . . . ,ar) be a sequence over N. Choose a prime

p > max{a0, . . . ,ar, r+ 1},

and set

t := 1 · p0 + a0 · p1 + 2 · p2 + a1 · p3 + · · ·+ (i+ 1) · p2i + ai · p2i+1

+ · · ·+ (r+ 1) · p2r + ar · p2r+1. (2)

In other words, the p-adic representation of t is precisely

ar(r+ 1) · · ·ai(i+ 1) · · ·a12a01.

Claim. Let i 6 r and a ∈ N. Then a = ai if and only if there are b0,b1,b2 ∈ N such that:

(B1) t = b0 + b1
(
(i+ 1) + a · p+ b2 · p2

)
,

(B2) a < p,

(B3) b0 < b1,

(B4) b1 = p2m for some m ∈ N.
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Proof of the claim. Assume a = ai. We set

b0 := 1 · p0 + a0 · p1 + 2 · p2 + a1 · p3 + · · ·+ i · p2i−2 + ai−1 · p2i−1

b1 := p2i

b2 := (i+ 2) + ai+1 · p+ · · ·+ ar · p2(r−i)−1.

By (2) it is routine to verify that all (B1)–(B4) hold.

Conversely,

t =
(
1 · p0 + a0 · p1 + 2 · p2 + a1 · p3 + · · ·+ i · p2i−2 + ai−1 · p2i−1)
+ (i+ 1) · p2i + a · p2i+1

+
(
(i+ 2) + ai+1 · p+ · · ·+ ar · p2(r−i)−1) · p2i+2

= b0 + (i+ 1) · p2m + a · p2m+1 + b2 · p2m+2.

It is well known that the p-adic representation of any number is unique. Together with b0 < p
2m,

we conclude a = ai. a

Since p is chosen to be a prime, it is easy to verify that (B4) is equivalent to

(B4 ′) b1 is a square, and for any d > 1 if d | b1, then p | d.

Finally for every t,q, i ∈ N we define β(t,q, i) to be smallest a ∈ N such that there are
b0,b1,b2 ∈ N such that

– t = b0 + b1
(
(i+ 1) + a · q+ b2 · q2

)
,

– a < q,

– b0 < b1,

– b1 is a square, and for any d > 1 if d | b1, then q | d.

If no such a exists, then we let β(t,q, i) := 0.

By the above argument, (i) holds by choosing q to be a sufficiently large prime. To show (ii)
we define

ϕβ(x,y, z,w) :=
(
ψ(x,y, z,w)∧ ∀w ′

(
ψ(x,y, z,w ′)→ (w ′ ≡ w∨w < w ′1)

))
∨
(
¬ψ(x,y, z,w)∧w ≡ 0

)
.

Here ψ(x,y, z,w) expresses the properties (B1), (B2), (B3), and (B4 ′):

ψ(x,y, z,w) := ∃u0∃u1∃u2

(
x ≡ u0 + u1 ·

(
(z+ 1) +w · y+ u2 · y · y

)
∧w < y∧ u0 < u1

∧ ∃v u1 ≡ v · v∧ ∀v
(
∃v ′u1 ≡ v · v ′ → (v ≡ 1 ∨ ∃v ′v ≡ y · v ′)

))
.

2

1w<w ′ stands for the formula ∃v(¬v ≡ 0 ∧w+ v ≡w ′).
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