Mathematical Logic (XII)

Yijia Chen

1. Theories and Decidability

Definition 1.1. A set $T \subseteq L_0^S$ of L-sentences is a *theory* if

– T is satisfiable,

– and T is closed under consequences, i.e., for every $\varphi \in L_0^S$, if T $\models \varphi$, then $\varphi \in T$. ⊣

Example 1.2. Let $\mathfrak A$ be an S-structure. Then

$$
Th(\mathfrak{A}) := \left\{ \phi \in L_0^S \; \big| \; \mathfrak{A} \models \phi \right\}
$$

is a theory. \Box

Definition 1.3. Let $\mathfrak{N} := (\mathbb{N}, +, \cdot, 0, 1)$. Then Th (\mathfrak{N}) is called *(elementary) arithmetic*.

Definition 1.4. Let $\mathsf{T} \subseteq \mathsf{L}_0^S$. We define

$$
T^\models:=\big\{\phi\in L^S_0\;\big|\;T\models\phi\big\}.
$$

Lemma 1.5. *All the following are equivalent.*

- *–* T [|]⁼ *is a theory.*
- *–* T *is satisfiable.*

$$
-\top \vdash \neq \text{L}_0^S. \hspace{2.5cm} \dashv
$$

Definition 1.6. The *Peano Arithmetic* Φ_{PA} consists of the following S_{ar} -sentences, where S_{ar} = $\{+, \cdot, 0, 1\}$:

 $\forall x \neg x + 1 \equiv 0,$
 $\forall x \forall x + 0 \equiv x,$
 $\forall x \forall y (x + 1 \equiv y + 1 \rightarrow x \equiv y),$
 $\forall x \forall y x + (y + 1) \equiv (x + y) + 1$ $\forall x \forall y \ x + (y + 1) \equiv (x + y) + 1,$ $\forall x \ x \cdot 0 \equiv 0,$ $\forall x \forall y \ x \cdot (y+1) \equiv x \cdot y + x,$

and for all $n \in \mathbb{N}$, all variables x_1, \ldots, x_n , y, and all $\varphi \in L^{S_{ar}}$ with

$$
free(\phi) \subseteq \{x_1, \ldots, x_n, y\}
$$

the sentence

$$
\forall x_1 \cdots \forall x_n \left(\left(\phi \frac{0}{y} \wedge \forall y \left(\phi \to \phi \frac{y+1}{y} \right) \right) \to \forall y \phi \right) .
$$

 ${\bf Remark~1.7.}$ It is easy to see that $\mathfrak{N}\models \Phi_{\text{PA}}$, i.e., $\Phi_{\text{PA}}^{\models}\subseteq \text{Th}(\mathfrak{N}).$ We will show that $\Phi_{\text{PA}}^{\models}\subsetneq \text{Th}(\mathfrak{N}).$ \dashv

Definition 1.8. Let $T \subseteq L_0^S$ be a theory.

- (i) T is *R*-axiomatizable if there exists an *R*-decidable $\Phi \subseteq L_0^S$ with $T = \Phi^{\models}$.
- (ii) T is *finitely axiomatizable* if there exists a finite $\Phi \subseteq L_0^S$ with $T = \Phi^{\models}$.

Clearly any finitely axiomatizable T is R-axiomatizable. \Box

Theorem 1.9. *Every* R*-axiomatizable theory is R-enumerable.*

Proof: Let $\top = \Phi^{\models}$ where $\Phi \subseteq \mathcal{L}_0^S$ is R-decidable. We can effectively generate all derivable sequent proofs and check for each proof whether all the used assumptions belong to Φ (by the R-decidability of Φ). ✷

Remark 1.10. There are R-axiomatizable theories that are not R-decidable, e.g., for $S = S_{\infty}$ and $\Phi = \emptyset$

$$
\Phi^{\models} = \{ \varphi \in L^{S_{\infty}} \mid \models \varphi \}.
$$

Definition 1.11. A theory
$$
T \subseteq L_0^S
$$
 is *complete* if for any $\phi \in L_0^S$, either $\phi \in T$ or $\neg \phi \in T$.

Remark 1.12. Let $\mathfrak A$ be an S-structure. Then the theory Th($\mathfrak A$) is complete.

Theorem 1.13. *(i) Every R-axiomatizable complete theory is R-decidable.*

(ii) Every R-enumerable complete theory is R-decidable. a

2. The Undecidability of Arithmetic

Theorem 2.1. Th (\mathfrak{N}) *is not R-decidable.*

Again, for the alphabet $A = \{ \}$ we consider the halting problem

 $\Pi_{\text{halt}} := \{ w_{\mathbb{P}} \mid \mathbb{P} \text{ a program over } A \text{ and } \mathbb{P} : \square \to \text{halt} \}.$

For any program P over A we will construct effectively an S_{ar} -sentence $\varphi_{\mathbb{P}}$ (i.e., $\varphi_{\mathbb{P}}$ can be computed by a register machine) such that

$$
\mathfrak{N}\models \phi_{\mathbb{P}}\quad \Longleftrightarrow\quad \mathbb{P}:\square\rightarrow\text{halt.}
$$

Assume that P consists of instructions $\alpha_0, \ldots, \alpha_k$. Let n be the maximum index i such that R_i is used by $\mathbb P$. Recall that a configuration of $\mathbb P$ is an $(n + 2)$ -tuple

$$
(L, m_0, \ldots, m_n),
$$

where $L \le k$ and $m_0, \ldots, m_n \in \mathbb{N}$, meaning that α_L is the instruction to be executed next and every register R_i contains m_i , i.e., the word $||\cdots|$.

 $\sum_{m_i \text{ times}}$

Lemma 2.2. *For every program* P *over* A *we can compute an* Sar*-formula*

$$
\chi_{\mathbb{P}}(\mathsf{x}_0,\ldots,\mathsf{x}_n,\mathsf{z},\mathsf{y}_0,\ldots,\mathsf{y}_n)
$$

such that for all $\ell_0, \ldots, \ell_n, L, m_0, \ldots, m_n \in \mathbb{N}$

$$
\mathfrak{N}\models \chi_{\mathbb{P}}[\ell_0,\ldots,\ell_n,L,m_0,\ldots,m_n]
$$

if and only if \mathbb{P} *, beginning with the configuration* $(0, \ell_0, \ldots, \ell_n)$ *, after finitely many steps, reaches the configuration* (L, m_0, \ldots, m_n) .

Using the formula $\chi_{\mathbb{P}}$ in Lemma 2.2, we define

$$
\phi_{\mathbb{P}}:=\exists y_0\cdots\exists y_n\chi_{\mathbb{P}}(0,\ldots,0,\bar{k},y_0,\ldots,y_n),
$$

where $\bar{k} := 1 + \cdots + 1$. Then By Lemma 2.2, we conclude $\mathfrak{N} \models \varphi_{\mathbb{P}}$ if and only if \mathbb{P} , beginning \overline{k} times with the initial configuration $(0, 0, \ldots, 0)$, after finitely many steps, reaches the configuration

By Theorem 2.1, Theorem 1.13, and Remark 1.12:

Corollary 2.3. Th(N) *is neither R-axiomatizable nor R-enumerable. Thus*

 (k, m_0, \ldots, m_n) , i.e., $\mathbb{P}: \square \rightarrow \text{halt}$. This finishes our proof of Theorem 2.1.

$$
\Phi_{\text{PA}}^{\models} \subsetneq \text{Th}(\mathfrak{N}).
$$

Proof of Lemma 2.2. Recall that $\chi_{\mathbb{P}}$ expresses in \mathfrak{N} that there is an $s \in \mathbb{N}$ and a sequence of configurations C_0, \ldots, C_s such that

- $-C_0 = (0, x_0, \ldots, x_n),$
- $-C_s = (z, y_0, \ldots, y_n),$
- for all $i < s$ we have $C_i \stackrel{\mathbb{P}}{\rightarrow} C_{i+1}$, i.e., from the configuration C_i the program $\mathbb P$ will reach C_{i+1} in one step.

We slightly rewrite the above formulation as that there is an $s \in \mathbb{N}$ and a sequence of natural numbers

$$
\underbrace{a_0, \ldots, a_{n+1}}_{C_0} \underbrace{a_{n+2}, \ldots, a_{(n+2)+(n+1)}}_{C_1} \cdots \underbrace{a_{s \cdot (n+2)}, \ldots, a_{s \cdot (n+2)+(n+1)}}_{C_s} \tag{1}
$$

such that

$$
- a_0 = 0, a_1 = x_0, \ldots, a_{n+1} = x_n,
$$

- $a_{s+(n+2)} = z, a_{s+(n+2)+1} = y_0, \ldots, a_{s+(n+2)+(n+1)} = y_n,$
- for all $i < s$ we have

$$
\Big(a_{i\cdot (n+2)}, \ldots, a_{i\cdot (n+2)+(n+1)}\Big) \stackrel{\mathbb{P}}{\longrightarrow} \Big(a_{(i+1)\cdot (n+2)}, \ldots, a_{(i+1)\cdot (n+2)+(n+1)}\Big).
$$

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in \mathfrak{N} . So we need the following beautiful (elementary) number-theoretic tool.

Lemma 2.4 (Gödel's β-function). *There is a function* $\beta : \mathbb{N}^3 \to \mathbb{N}$ *with the following properties.*

(i) For every $r \in \mathbb{N}$ and every sequence (a_0, \ldots, a_r) in \mathbb{N} there exist $t, p \in \mathbb{N}$ such that for all $i \leq r$

$$
\beta(t,p,i)=a_i.
$$

(*ii*) β *is definable in* L^{S_{ar}. That is, there is an S_{ar}-formula φ_β(x, y, z, w) such that for all t, q, i, a ∈} N

$$
\mathfrak{N}\models \phi_{\beta}[t,q,i,a]\quad\Longleftrightarrow\quad \beta(t,q,i)=a.
$$

Equipped with the above β function and the formula φ_β , we define the desired $\chi_\mathbb{P}$ as follows.

$$
\exists t \exists p \exists s \Big(\varphi_{\beta}(t, p, 0, 0) \wedge \varphi_{\beta}(t, p, 1, x_{0}) \wedge \cdots \wedge \varphi_{\beta}(t, p, \overline{n+1}, x_{n}) \wedge \varphi_{\beta}(t, p, s \cdot \overline{n+2}, z) \wedge \varphi_{\beta}(t, p, s \cdot \overline{n+2} + 1, y_{0}) \wedge \cdots \wedge \varphi_{\beta}(t, p, s \cdot \overline{n+2} + \overline{n+1}, y_{n}) \wedge \forall i \Big(i < s \rightarrow \forall u \forall u_{0} \cdots \forall u_{n} \forall u' \forall u'_{0} \cdots \forall u'_{n} \\\qquad \qquad (\varphi_{\beta}(t, p, i \cdot \overline{n+2}, u) \wedge \varphi_{\beta}(t, p, i \cdot \overline{n+2} + 1, u_{0}) \wedge \cdots \wedge \varphi_{\beta}(t, p, i \cdot \overline{n+2} + \overline{n+1}, u_{n}) \wedge \varphi_{\beta}(t, p, (i+1) \cdot \overline{n+2}, u') \wedge \varphi_{\beta}(t, p, (i+1) \cdot \overline{n+2} + 1, u'_{0}) \wedge \cdots \wedge \varphi_{\beta}(t, p, (i+1) \cdot \overline{n+2} + \overline{n+1}, u'_{n}) \wedge \cdots \wedge \varphi_{\beta}(t, p, (i+1) \cdot \overline{n+2} + \overline{n+1}, u'_{n}) \Big)
$$

Here,

$$
``(\mathfrak{u},\mathfrak{u}_0,\ldots,\mathfrak{u}_n)\stackrel{\mathbb{P}}{\longrightarrow}(\mathfrak{u}',\mathfrak{u}_0',\ldots,\mathfrak{u}_n')"
$$

stands for a formula describing one-step computation of $\mathbb P$ from configuration (u, u_0, \ldots, u_n) to configuration (u', u'_0, \ldots, u'_n) . Such a formula can be defined as a conjunction

$$
\psi_0\operatornamewithlimits{\wedge}\cdots\operatornamewithlimits{\wedge}\psi_{k-1}.
$$

Recall that the program $\mathbb P$ consists of instructions $\alpha_0, \ldots, \alpha_k$ where the last α_k is the halt instruction. Thus, say α_j is

$$
jLET R1 = R1 + |,
$$

then we let

$$
\psi_j:=u\equiv \bar{j} \to \Big(u'\equiv u+1\wedge u_0'\equiv u_0\wedge u_1'\equiv u_1+1\wedge u_2'\equiv u_2\wedge \cdots \wedge u_n'\equiv u_n\Big).
$$

The remaining details are left to the reader. \Box

 $\overline{}$

Proof of Lemma 2.4: Let (a_0, \ldots, a_r) be a sequence over N. Choose a *prime*

$$
p>\max\{\alpha_0,\ldots,\alpha_r,r+1\},
$$

and set

$$
t := 1 \cdot p^{0} + a_{0} \cdot p^{1} + 2 \cdot p^{2} + a_{1} \cdot p^{3} + \dots + (i + 1) \cdot p^{2i} + a_{i} \cdot p^{2i+1} + \dots + (r + 1) \cdot p^{2r} + a_{r} \cdot p^{2r+1}.
$$
 (2)

In other words, the p*-adic representation* of t is precisely

$$
\alpha_r(r+1)\cdots\alpha_i(i+1)\cdots\alpha_12\alpha_01.
$$

Claim. Let $i \le r$ and $a \in \mathbb{N}$. Then $a = a_i$ if and only if there are $b_0, b_1, b_2 \in \mathbb{N}$ such that:

- (B1) $t = b_0 + b_1((i + 1) + a \cdot p + b_2 \cdot p^2),$ (B2) $a < p$,
- (B3) $b_0 < b_1$,
- (B4) $b_1 = p^{2m}$ for some $m \in \mathbb{N}$.

Proof of the claim. Assume $a = a_i$. We set

$$
\begin{aligned} b_0 &:= 1 \cdot p^0 + a_0 \cdot p^1 + 2 \cdot p^2 + a_1 \cdot p^3 + \dots + i \cdot p^{2i-2} + a_{i-1} \cdot p^{2i-1} \\ b_1 &:= p^{2i} \\ b_2 &:= (i+2) + a_{i+1} \cdot p + \dots + a_r \cdot p^{2(r-i)-1}. \end{aligned}
$$

By (2) it is routine to verify that all (B1)–(B4) hold.

Conversely,

$$
t = (1 \cdot p^0 + a_0 \cdot p^1 + 2 \cdot p^2 + a_1 \cdot p^3 + \dots + i \cdot p^{2i-2} + a_{i-1} \cdot p^{2i-1})
$$

+
$$
(i+1) \cdot p^{2i} + a \cdot p^{2i+1}
$$

+
$$
((i+2) + a_{i+1} \cdot p + \dots + a_r \cdot p^{2(r-i)-1}) \cdot p^{2i+2}
$$

=
$$
b_0 + (i+1) \cdot p^{2m} + a \cdot p^{2m+1} + b_2 \cdot p^{2m+2}.
$$

It is well known that the p-adic representation of any number is unique. Together with $b_0 < p^{2m}$, we conclude $a = a_i$.

Since p is chosen to be a prime, it is easy to verify that (B4) is equivalent to

(B4[']) b₁ is a square, and for any $d > 1$ if $d | b_1$, then $p | d$.

Finally for every t, q, i $\in \mathbb{N}$ we define $\beta(t, q, i)$ to be *smallest* $a \in \mathbb{N}$ such that there are $b_0, b_1, b_2 \in \mathbb{N}$ such that

$$
-t = b_0 + b_1((i+1) + \alpha \cdot q + b_2 \cdot q^2),
$$

$$
-\ \alpha < q,
$$

$$
-\ b_0 < b_1,
$$

- b_1 is a square, and for any $d > 1$ if $d | b_1$, then q | d.

If no such a exists, then we let $\beta(t, q, i) := 0$.

By the above argument, (i) holds by choosing q to be a sufficiently large prime. To show (ii) we define

$$
\varphi_{\beta}(x, y, z, w) := (\psi(x, y, z, w) \land \forall w' (\psi(x, y, z, w') \to (w' \equiv w \lor w < w'^{1})))
$$

$$
\lor (\neg \psi(x, y, z, w) \land w \equiv 0).
$$

Here $\psi(x, y, z, w)$ expresses the properties (B1), (B2), (B3), and (B4'):

$$
\psi(x, y, z, w) := \exists u_0 \exists u_1 \exists u_2 \Big(x \equiv u_0 + u_1 \cdot ((z + 1) + w \cdot y + u_2 \cdot y \cdot y) \Big) \wedge w < y \wedge u_0 < u_1
$$

$$
\wedge \exists v \ u_1 \equiv v \cdot v \wedge \forall v (\exists v' u_1 \equiv v \cdot v' \rightarrow (v \equiv 1 \vee \exists v' v \equiv y \cdot v')) \Big).
$$

 $1_w < w'$ stands for the formula $\exists v (\neg v \equiv 0 \land w + v \equiv w').$