Mathematical Logic (II)

Yijia Chen

1 The Syntax of First-order Logic

Example 1.1 (Group Theory).

(G1) For all x, y, z we have $(x \circ y) \circ z = x \circ (y \circ z)$.

(G2) For all x we have $x \circ e = e$.

(G3) For every x there is a y such that $x \circ y = e$.

A group is a triple $\mathfrak{G} = (G, \circ^{\mathfrak{G}}, e^{\mathfrak{G}})$, i.e., a structure \mathfrak{G} , which satisfies (G1)–(G3).

Example 1.2 (Equivalence Relations).

- (E1) For all x we have $(x, x) \in R$.
- (E2) For all x and y if $(x, y) \in R$ then $(y, x) \in R$.
- (E3) For all x, y, z if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

An equivalence relation is specified by a structure $\mathfrak{A} = (A, R^{\mathfrak{A}})$ in which R^{A} satisfies (E1)–(E3). \dashv

1.1 Alphabets

Definition 1.3. An alphabet is a nonempty set of symbols.

Definition 1.4. Let \mathbb{A} be an alphabet. Then a **word** *w* over \mathbb{A} is a finite sequence of symbols in \mathbb{A} , i.e.,

$$w = w_1 w_2 \cdots w_n$$

where $n \in \mathbb{N}$ and $w_i \in \mathbb{A}$ for every $i \in [n] = \{1, ..., n\}$. In case n = 0, then w is the **empty word**, denoted by ε . The **length** |w| of w is n. In particular, $|\varepsilon| = 0$. \mathbb{A}^* denotes the set of all words over \mathbb{A} , or equivalently

$$\mathbb{A}^* = \bigcup_{n \in \mathbb{N}} \mathbb{A}^n = \bigcup_{n \in \mathbb{N}} \{ w_1 \dots w_n \mid w_1, \dots, w_n \in \mathbb{A} \}.$$

Countable sets

Later on, we will need to count the number of words over a given alphabet.

Definition 1.5. A set M is **countable** if there exists an **injective** function α from N **onto** M, i.e., $\alpha : \mathbb{N} \to M$ is a bijection. Thereby, we can write

$$M = \big\{ \alpha(n) \mid n \in \mathbb{N} \big\} = \big\{ \alpha(0), \alpha(1), \ldots, \alpha(n), \ldots \big\}.$$

A set M is **at most countable** if M is either finite or countable.

 \dashv

-

 \neg

Lemma 1.6. Let M be a non-empty set. Then the following are equivalent.

- (a) M is at most countable.
- (b) There is a surjective function $f : \mathbb{N} \to M$.
- (c) There is an injective function $f: M \to \mathbb{N}$.

Lemma 1.7. Let \mathbb{A} be an alphabet which is at most countable. Then \mathbb{A}^* is countable.

1.2 The alphabet of a first-order language

Definition 1.8. The **alphabet of a first-order language** consists of the following symbols.

- (a) $v_0, v_1, ...$ (variables).
- (b) $\neg, \land, \lor, \rightarrow, \leftrightarrow$, (negation, conjunction, disjunction, implication, if and only if).
- (c) \forall , \exists , (for all, exists).
- (d) \equiv , (equality).
- (e) (,), (parentheses).
- (f) (1) For every $n \ge 1$ a set of n-ary relation symbols.
 - (2) For every $n \ge 1$ a set of n-ary function symbols.
 - (3) A set of **constants**.

Note any set in (f) can be empty.

We use \mathbb{A} to denote the set of symbols in (a)–(e), i.e., the set of **logic symbols**, while S is the set of remaining symbols in (f). Then a first-order language has

$$\mathbb{A}_{S} := \mathbb{A} \cup S$$

as its alphabet and S as its symbol set.

Thus every first-order language has the same set \mathbb{A} of logic symbols but might have different symbol set S.

1.3 Terms and formulas

Throughout this section, we fix a symbol set S.

Definition 1.9. The set T^S of S-**terms** contains precisely those words in \mathbb{A}^*_S which can be obtained by applying the following rules finitely many times.

- (T1) Every variable is an S-term.
- (T2) Every constant in S is an S-term.
- (T3) If t_1, \ldots, t_n are S-terms and f is a n-ary function symbol in S, then $ft_1 \ldots t_n$ is an S-term. \dashv

Definition 1.10. The set L^S of S-formulas contains precisely those words in \mathbb{A}^*_S which can be obtained by applying the following rules finitely many times.

- (A1) Let t_1 and t_2 be two S-terms. Then $t_1 \equiv t_2$ is an S-formula.
- (A2) Let t_1, \ldots, t_n be S-terms and R an n-ary relation symbol in S. Then $Rt_1 \cdots t_n$ is also an S-formula.
- (A3) If φ is an S-formula, then so is $\neg \varphi$.
- (A4) If φ and ψ are S-formulas, then so is $(\varphi * \psi)$ where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

 \dashv

-

(A5) Let φ be an S-formula and x a variable. Then $\forall x \varphi$ and $\exists x \varphi$ are S-formulas, too.

The formulas in (A1) and (A2) are **atomic**, as they don't contain any other S-formulas as subformulas.

- $\neg \phi$ is the **negation** of ϕ .
- $(\phi \land \psi)$ is the **conjunction** of ϕ and ψ .
- $(\phi \lor \psi)$ is the **disjunction** of ϕ and ψ .
- $(\phi \rightarrow \psi)$ is the **implication** from ϕ to ψ .
- $(\phi \leftrightarrow \psi)$ is the **equivalence** between ϕ and ψ .

 \dashv

Lemma 1.11. Let S be at most countable. Then both T^S and L^S are countable.

Definition 1.12. Let t be an S-term. Then var(t) is the set of variables in t. Or inductively,

$$var(x) := \{x\},$$

$$var(c) := \emptyset,$$

$$var(ft_1 \dots t_n) := \bigcup_{i \in [n]} var(t_i).$$

Definition 1.13. Let φ be an S-formula and x a variable. We say that **an occurrence of** x **in** φ **is free** if it is not in the scope of any $\forall x$ or $\exists x$. Otherwise, the occurrence is **bound**.

Definition 1.14. Let ϕ be an S-formula. Then free (ϕ) is the set of variables which have free occurrences in ϕ . Or inductively,

$$\begin{split} & \text{free}(t_1 \equiv t_2) \coloneqq \text{var}(t_1) \cup \text{var}(t_2), \\ & \text{free}(\mathsf{R}t_1 \cdots t_n) \coloneqq \bigcup_{i \in [n]} \text{var}(t_i), \\ & \text{free}(\neg \phi) \coloneqq \text{free}(\phi), \\ & \text{free}(\phi \ast \psi) \coloneqq \text{free}(\phi) \cup \text{free}(\psi) \quad \text{with} \ast \in \{ \land, \lor, \rightarrow, \leftrightarrow \}, \\ & \text{free}(\forall x \phi) \coloneqq \text{free}(\phi) \setminus \{ x \}, \\ & \text{free}(\exists x \phi) \coloneqq \text{free}(\phi) \setminus \{ x \}. \end{split}$$

Example 1.15. The formula below shows that a variable might have both free and bound occurrences in the same formula.

$$\begin{aligned} \operatorname{free}((\operatorname{Rxy} \to \forall y \neg y \equiv z)) &= \operatorname{free}(\operatorname{Rxy}) \cup \operatorname{free}(\forall y \neg y \equiv z) \\ &= \{x, y\} \cup \left(\operatorname{free}(y \equiv z) \setminus \{y\}\right) = \{x, y, z\}. \end{aligned}$$

Definition 1.16. An S-formula is an S-sentence if $free(\phi) = \emptyset$.

Recall that **actual** variables we can use are v_0, v_1, \ldots

Definition 1.17. Let $n \in \mathbb{N}$. Then

$$L_n^{S} := \big\{ \phi \mid \phi \text{ an S-formula with free}(\phi) \subseteq \{\nu_0, \dots, \nu_{n-1}\} \big\}.$$

In particular, L_0^S is the set of S-sentences.

Н

 \dashv

2 The Semantics of First-order Logic

2.1 Structures and interpretations

We fix a symbol set S.

Definition 2.1. An S-structure is a pair $\mathfrak{A} = (A, \mathfrak{a})$ which satisfies the following conditions.

- 1. $A \neq \emptyset$ is the **universe** of \mathfrak{A} .
- 2. a is a function defined on S such that:
 - (a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^n$.
 - (b) Let $f \in S$ be an n-ary function symbol. Then $\mathfrak{a}(f) : A^n \to A$.
 - (c) $\mathfrak{a}(c) \in A$ for every constant $c \in S$.

For better readability, we write $R^{\mathfrak{A}}$, $f^{\mathfrak{A}}$, and $c^{\mathfrak{A}}$, or even R^{A} , f^{A} , and c^{A} , instead of $\mathfrak{a}(R)$, $\mathfrak{a}(f)$, and $\mathfrak{a}(c)$. Thus for $S = \{R, f, c\}$ we might write an S-structure as

$$\mathfrak{A} = (\mathsf{A}, \mathsf{R}^{\mathfrak{A}}, \mathsf{f}^{\mathfrak{A}}, \mathsf{c}^{\mathfrak{A}}) = (\mathsf{A}, \mathsf{R}^{\mathsf{A}}, \mathsf{f}^{\mathsf{A}}, \mathsf{c}^{\mathsf{A}}) \,. \qquad \qquad \dashv$$

Examples 2.2. 1. For $S_{Ar} := \{+, \cdot, 0, 1\}$ the S_{Ar} -structure

$$\mathfrak{N}=(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and 1.

2. For $S^<_{Ar}:=\left\{+,\cdot,0,1,<\right\}$ we have an $S^<_{Ar}\text{-structure}$

$$\mathfrak{M}^<=(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}},<^{\mathbb{N}})$$
 ,

i.e., the standard model of \mathbb{N} with the natural ordering <.

Definition 2.3. An assignment in an S-structure A is a mapping

$$\beta: \{\nu_i \mid i \in \mathbb{N}\} \to A. \quad \dashv$$

 \neg

Definition 2.4. An S-interpretation \mathfrak{I} is a pair (\mathfrak{A}, β) where \mathfrak{A} is an S-structure and β is an assignment in \mathfrak{A} .

Definition 2.5. Let β be an assignment in \mathfrak{A} , $a \in A$, and x a variable. Then $\beta \frac{a}{x}$ is the assignment defined by

$$\beta \frac{a}{x}(y) := \begin{cases} a, & \text{if } y = x, \\ \beta(y), & \text{otherwise} \end{cases}$$

Then, for the S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ we use $\mathfrak{I}_{\frac{\alpha}{\lambda}}^{\underline{\alpha}}$ to denote the S-interpretation $(\mathfrak{A}, \beta_{\frac{\alpha}{\lambda}})$. \dashv

2.2 The satisfaction relation $\Im \models \varphi$

We fix an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$.

Definition 2.6. For every S-term t we define its **interpretation** $\Im(t)$ by induction on the construction of t.

(a) $\Im(x) = \beta(x)$ for a variable x.

- (b) $\mathfrak{I}(c) = c^{\mathfrak{A}}$ for a constant $c \in S$.
- (c) Let $f\in S$ be an n-ary function symbol and t_1,\ldots,t_n S-terms. Then

$$\Im \big(ft_1 \cdots t_n \big) = f^{\mathfrak{A}} \big(\mathfrak{I}(t_1), \dots, \mathfrak{I}(t_n) \big). \qquad \qquad \dashv$$

Example 2.7. Let $S := S_{Gr} = \{\circ, e\}$ and $\mathfrak{I} := (\mathfrak{A}, \beta)$ with $\mathfrak{A} = (\mathbb{R}, +, 0)$, $\beta(\nu_0) = 2$, and $\beta(\nu_2) = 6$. Then

$$\begin{split} \Im\big(\nu_0 \circ (e \circ \nu_2)\big) &= \Im(\nu_0) + \Im(e \circ \nu_2) \\ &= 2 + \big(\Im(e) + \Im(\nu_2)\big) = 2 + (0+6) = 2 + 6 = 8. \end{split} \quad \quad \dashv$$

Definition 2.8. Let φ be an S-formula. We define $\Im \models \varphi$ by induction on the construction of φ .

- (a) $\mathfrak{I}\models t_1\equiv t_2$ if $\mathfrak{I}(t_1)=\mathfrak{I}(t_2)$.
- (b) $\mathfrak{I} \models \mathsf{Rt}_1 \cdots t_n$ if $(\mathfrak{I}(t_1), \ldots, \mathfrak{I}(t_n)) \in \mathsf{R}^{\mathfrak{A}}$.
- (c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not\models \varphi$ (i.e., it is **not** the case that $\mathfrak{I} \models \varphi$).
- (d) $\mathfrak{I} \models (\phi \land \psi)$ if $\mathfrak{I} \models \phi$ and $\mathfrak{I} \models \psi$.
- (e) $\mathfrak{I} \models (\phi \lor \psi)$ if $\mathfrak{I} \models \phi$ or $\mathfrak{I} \models \psi$.
- (f) $\mathfrak{I} \models (\phi \rightarrow \psi)$ if $\mathfrak{I} \models \phi$ implies $\mathfrak{I} \models \psi$.
- (g) $\mathfrak{I} \models (\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi \text{ if and only if } \mathfrak{I} \models \psi)$.
- (h) $\mathfrak{I} \models \forall x \varphi$ if for all $\mathfrak{a} \in A$ we have $\mathfrak{I}_{x}^{\underline{a}} \models \varphi$.
- (i) $\mathfrak{I} \models \exists x \varphi$ if for some $a \in A$ we have $\mathfrak{I}_{\overline{x}} \models \varphi$.

If $\mathfrak{I} \models \varphi$, then \mathfrak{I} is a **model** of φ , of \mathfrak{I} **satisfies** φ .

Let Φ be a set of S-formulas. Then $\mathfrak{I} \models \Phi$ if $\mathfrak{I} \models \phi$ for all $\phi \in \Phi$. Similarly as above, we say that \mathfrak{I} is a model of Φ , or \mathfrak{I} satisfies Φ .

Example 2.9. Let $S := S_{Gr}$ and $\mathfrak{I} := (\mathfrak{A}, \beta)$ with $\mathfrak{A} = (\mathbb{R}, +, 0)$ and $\beta(x) = 9$ for all variables x. Then

$$\mathfrak{I} \models \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0 \iff \text{for all } r \in \mathbb{R} \text{ we have } \mathfrak{I} \frac{r}{\nu_0} \models \nu_0 \circ e \equiv \nu_0, \\ \iff \text{for all } r \in \mathbb{R} \text{ we have } r + 0 = r.$$

Definition 2.10. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a **consequence of** Φ , written $\Phi \models \varphi$, if for any interpretation \Im it holds that $\Im \models \Phi$ implies $\Im \models \varphi$.

For simplicity, in case $\Phi = \{\psi\}$ we write $\psi \models \varphi$ instead of $\{\psi\} \models \varphi$.

Example 2.11. Let

$$\begin{split} \Phi_{\mathrm{Gr}} := & \{ \forall \nu_0 \forall \nu_1 \forall \nu_2 \ (\nu_0 \circ \nu_1) \circ \nu_2 \equiv \nu_0 \circ (\nu_1 \circ \nu_2), \\ & \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0, \forall \nu_0 \exists \nu_1 \ \nu_0 \circ \nu_1 \equiv e \}. \end{split}$$

Then it can be shown that

$$\Phi_{\rm Gr} \models \forall \nu_0 \ e \circ \nu_0 \equiv \nu_0$$

and

$$\Phi_{\rm Gr} \models \forall \nu_0 \exists \nu_1 \ \nu_1 \circ \nu_0 \equiv e. \qquad -$$

 \dashv

Definition 2.12. An S-formula φ is valid, written $\models \varphi$, if $\emptyset \models \varphi$. Or equivalently, $\mathfrak{I} \models \varphi$ for any \mathfrak{I} .

Definition 2.13. An S-formula φ is **satisfiable**, if there exists an S-interpretation \Im with $\Im \models \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation \Im such that $\Im \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of **proof by contradiction**.

Lemma 2.14. Let Φ be a set of S-formulas and ϕ an S-formula. Then $\Phi \models \phi$ if and only if $\Phi \cup \{\neg \phi\}$ is not satisfiable.

Proof:

$$\begin{split} \Phi \vDash \varphi &\iff \text{Every model of } \Phi \text{ is a model of } \varphi, \\ &\iff \text{there is no model } \Im \text{ with } \Im \vDash \Phi \text{ and } \Im \nvDash \varphi, \\ &\iff \text{there is no model } \Im \text{ with } \Im \vDash \Phi \cup \{\neg \varphi\}, \\ &\iff \Phi \cup \{\neg \varphi\} \text{ is not satisfiable.} \end{split}$$

Definition 2.15. Two S-formulas φ and ψ are **logic equivalent** if $\varphi \models \psi$ and $\psi \models \varphi$. \dashv

Example 2.16. Let ϕ be an S-formula. We define a logic equivalent ϕ^* which does not contain the logic symbols $\land, \rightarrow, \leftrightarrow, \forall$.

$$\begin{split} \varphi^* &:= \varphi \quad \text{if } \varphi \text{ is atomic,} \\ (\neg \varphi)^* &:= \neg \varphi^*, \\ (\varphi \land \psi)^* &:= \neg (\neg \varphi^* \lor \neg \psi^*), \\ (\varphi \lor \psi)^* &:= (\varphi^* \lor \psi^*), \\ (\varphi \to \psi)^* &:= (\neg \varphi^* \lor \psi^*), \\ (\varphi \leftrightarrow \psi)^* &:= \neg (\varphi^* \lor \psi^*) \lor \neg (\neg \varphi^* \lor \neg \psi^*), \\ (\forall x \varphi)^* &:= \neg \exists x \neg \varphi^*, \\ (\exists x \varphi)^* &:= \exists x \varphi^*. \end{split}$$

Thus, it suffices to consider \neg, \lor, \exists as the only logic symbols in any given φ .

 \dashv