Mathematical Logic (II)

Yijia Chen

1 The Syntax of First-order Logic

Example 1.1 (Group Theory)**.**

(G1) For all x, y, z we have $(x \circ y) \circ z = x \circ (y \circ z)$.

(G2) For all x we have $x \circ e = e$.

(G3) For every x there is a y such that $x \circ y = e$.

A group is a triple $\mathfrak{G} = (\mathsf{G}, \circ^\mathfrak{G}, e^\mathfrak{G}),$ i.e., a structure $\mathfrak{G},$ which satisfies (G1)–(G3). \Box

Example 1.2 (Equivalence Relations)**.**

- (E1) For all x we have $(x, x) \in R$.
- (E2) For all x and y if $(x, y) \in R$ then $(y, x) \in R$.
- (E3) For all x, y, z if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

An equivalence relation is specified by a structure $\mathfrak{A} = (A, \mathsf{R}^\mathfrak{A})$ in which R^A satisfies (E1)–(E3). \dashv

1.1 Alphabets

Definition 1.3. An **alphabet** is a nonempty set of **symbols**. a

Definition 1.4. Let $\mathbb A$ be an alphabet. Then a **word** w over $\mathbb A$ is a finite sequence of symbols in $\mathbb A$, i.e.,

$$
\mathcal{W}=\mathcal{W}_1\mathcal{W}_2\cdots\mathcal{W}_n
$$

where $n \in \mathbb{N}$ and $w_i \in \mathbb{A}$ for every $i \in [n] = \{1, \ldots, n\}$. In case $n = 0$, then w is the **empty word**, denoted by ε . The **length** $|w|$ of w is n. In particular, $|\varepsilon| = 0$. A [∗] denotes the set of all words over A, or equivalently

$$
\mathbb{A}^* = \bigcup_{n \in \mathbb{N}} \mathcal{A}^n = \bigcup_{n \in \mathbb{N}} \{w_1 \dots w_n \mid w_1, \dots, w_n \in \mathbb{A}\}.
$$

Countable sets

Later on, we will need to count the number of words over a given alphabet.

Definition 1.5. A set M is **countable** if there exists an **injective** function α from N **onto** M, i.e., $\alpha : \mathbb{N} \to M$ is a bijection. Thereby, we can write

$$
M=\big\{\alpha(n)\;\big|\;n\in\mathbb{N}\big\}=\big\{\alpha(0),\alpha(1),\ldots,\alpha(n),\ldots\big\}.
$$

A set M is **at most countable** if M is either finite or countable. a

Lemma 1.6. *Let* M *be a non-empty set. Then the following are equivalent.*

- *(a)* M *is at most countable.*
- *(b)* There is a surjective function $f : \mathbb{N} \to M$.
- *(c)* There is an injective function $f : M \to N$.

Lemma 1.7. Let A be an alphabet which is at most countable. Then A^{*} is countable.
→

1.2 The alphabet of a first-order language

Definition 1.8. The **alphabet of a first-order language** consists of the following symbols.

- (a) v_0, v_1, \ldots (variables).
- (b) $\neg, \wedge, \vee, \rightarrow, \leftrightarrow,$ (negation, conjunction, disjunction, implication, if and only if).
- (c) \forall , \exists , (for all, exists).
- (d) \equiv , (equality).
- (e) $(,)$, $(parenttheses)$.
- (f) (1) For every $n \ge 1$ a set of n-ary relation symbols.
	- (2) For every $n \geq 1$ a set of n-ary function symbols.
	- (3) A set of **constants**.

Note any set in (f) can be empty. \Box

We use A to denote the set of symbols in (a)–(e), i.e., the set of **logic symbols**, while S is the set of remaining symbols in (f). Then a first-order language has

$$
\mathbb{A}_S:=\mathbb{A}\cup S
$$

as its alphabet and S as its **symbol set**.

Thus every first-order language has the same set A of logic symbols but might have different symbol set S.

1.3 Terms and formulas

Throughout this section, we fix a symbol set S.

Definition 1.9. The set T^S of S-t<mark>erms</mark> contains precisely those words in \mathbb{A}^*_S which can be obtained by applying the following rules finitely many times.

- (T1) Every variable is an S-term.
- (T2) Every constant in S is an S-term.
- (T3) If t_1, \ldots, t_n are S-terms and f is a n-ary function symbol in S, then $ft_1 \ldots t_n$ is an S-term. \dashv

Definition 1.10. The set L^S of S-formulas contains precisely those words in \mathbb{A}^*_S which can be obtained by applying the following rules finitely many times.

- (A1) Let t_1 and t_2 be two S-terms. Then $t_1 \equiv t_2$ is an S-formula.
- (A2) Let t_1, \ldots, t_n be S-terms and R an n-ary relation symbol in S. Then $Rt_1 \cdots t_n$ is also an S-formula.
- (A3) If φ is an S-formula, then so is $\neg \varphi$.
- (A4) If φ and ψ are S-formulas, then so is $(\varphi * \psi)$ where $* \in \{\land, \lor, \to, \leftrightarrow\}.$

(A5) Let φ be an S-formula and x a variable. Then $\forall x \varphi$ and $\exists x \varphi$ are S-formulas, too.

The formulas in (A1) and (A2) are **atomic**, as they don't contain any other S-formulas as subformulas.

- $\neg \varphi$ is the **negation** of φ .
- $(\varphi \wedge \psi)$ is the **conjunction** of φ and ψ .
- ($\varphi \lor \psi$) is the **disjunction** of φ and ψ .
- $(\varphi \rightarrow \psi)$ is the **implication** from φ to ψ .
- $(φ \leftrightarrow ψ)$ is the **equivalence** between $φ$ and $ψ$.

Lemma 1.11. *Let* S *be at most countable. Then both* T ^S *and* L ^S *are countable.*

Definition 1.12. Let t be an S-term. Then $var(t)$ is the set of variables in t. Or inductively,

$$
var(x) := \{x\},
$$

\n
$$
var(c) := \emptyset,
$$

\n
$$
var(ft_1 ... t_n) := \bigcup_{i \in [n]} var(t_i).
$$

Definition 1.13. Let φ be an S-formula and x a variable. We say that **an occurrence of** x **in** φ **is free** if it is not in the scope of any ∀x or ∃x. Otherwise, the occurrence is **bound**.

Definition 1.14. Let φ be an S-formula. Then free(φ) is the set of variables which have free occurrences in ϕ. Or inductively,

$$
\begin{aligned}\n\text{free}(t_1 \equiv t_2) &:= \text{var}(t_1) \cup \text{var}(t_2), \\
\text{free}(Rt_1 \cdots t_n) &:= \bigcup_{i \in [n]} \text{var}(t_i), \\
&\quad \text{free}(\neg \phi) := \text{free}(\phi), \\
\text{free}(\phi * \psi) &:= \text{free}(\phi) \cup \text{free}(\psi) \quad \text{with } * \in \{\land, \lor, \to, \leftrightarrow\}, \\
&\quad \text{free}(\forall x \phi) &:= \text{free}(\phi) \setminus \{x\}, \\
&\quad \text{free}(\exists x \phi) &:= \text{free}(\phi) \setminus \{x\}.\n\end{aligned}
$$

Example 1.15. The formula below shows that a variable might have both free and bound occurrences in the same formula.

$$
free((Rxy \to \forall y \to y \equiv z)) = free(Rxy) \cup free(\forall y \to y \equiv z)
$$

$$
= \{x, y\} \cup (free(y \equiv z) \setminus \{y\}) = \{x, y, z\}.
$$

Definition 1.16. An S-formula is an S-sentence if free(φ) = \emptyset .

Recall that **actual** variables we can use are v_0, v_1, \ldots

Definition 1.17. Let $n \in \mathbb{N}$. Then

$$
L^S_n:=\big\{\phi\ \big|\ \phi\text{ an S-formula with free}(\phi)\subseteq\{\nu_0,\ldots,\nu_{n-1}\}\big\}.
$$

In particular, L_0^S is the set of S-sentences.

 \overline{a}

2 The Semantics of First-order Logic

2.1 Structures and interpretations

We fix a symbol set S.

Definition 2.1. An S-structure is a pair $\mathfrak{A} = (A, \mathfrak{a})$ which satisfies the following conditions.

- 1. $A \neq \emptyset$ is the **universe** of \mathfrak{A} .
- 2. a is a function defined on S such that:
	- (a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^n$.
	- (b) Let $f \in S$ be an n-ary function symbol. Then $\alpha(f) : A^n \to A$.
	- (c) $a(c) \in A$ for every constant $c \in S$.

For better readability, we write $R^\mathfrak{A}$, $f^\mathfrak{A}$, and $c^\mathfrak{A}$, or even $R^\mathcal{A}$, $f^\mathcal{A}$, and $c^\mathcal{A}$, instead of $\mathfrak{a}(R)$, $\mathfrak{a}(f)$, and $a(c)$. Thus for $S = \{R, f, c\}$ we might write an S-structure as

$$
\mathfrak{A} = (A, R^{\mathfrak{A}}, f^{\mathfrak{A}}, c^{\mathfrak{A}}) = (A, R^A, f^A, c^A).
$$

Examples 2.2. 1. For $S_{Ar} := \{+, \cdot, 0, 1\}$ the S_{Ar} -structure

$$
\mathfrak{N} = \left(\mathbb{N}, +^\mathbb{N}, \cdot^\mathbb{N}, 0^\mathbb{N}, 1^\mathbb{N}\right)
$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and 1.

2. For $S_{Ar}^{\leq} := \{+, \cdot, 0, 1, \lt\}$ we have an S_{Ar}^{\leq} -structure

$$
\mathfrak{N}^< = (\mathbb{N}, +^\mathbb{N}, \cdot^\mathbb{N}, 0^\mathbb{N}, 1^\mathbb{N}, <^\mathbb{N}),
$$

i.e., the standard model of N with the natural ordering \lt .

Definition 2.3. An **assignment** in an S-structure $\mathfrak A$ is a mapping

$$
\beta: \left\{ \nu_i \ \middle| \ i \in \mathbb{N} \right\} \to A. \hspace{2cm} \dashv
$$

Definition 2.4. An S-interpretation \Im is a pair $(π, β)$ where \Re is an S-structure and $β$ is an assignment in \mathfrak{A} .

Definition 2.5. Let β be an assignment in \mathfrak{A} , $\alpha \in A$, and x a variable. Then $\beta \frac{\alpha}{x}$ is the assignment defined by

$$
\beta \frac{\mathfrak{a}}{x}(y) := \begin{cases} \mathfrak{a}, & \text{if } y = x, \\ \beta(y), & \text{otherwise.} \end{cases}
$$

Then, for the S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ we use $\mathfrak{I}^{\frac{\alpha}{x}}_{\mathfrak{X}}$ to denote the S-interpretation $(\mathfrak{A}, \beta \frac{\alpha}{x})$ $\overline{}$

2.2 The satisfaction relation $\mathfrak{I} \models \varphi$

We fix an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$.

Definition 2.6. For every S-term t we define its **interpretation** $\mathfrak{I}(t)$ by induction on the construction of t.

(a) $\mathfrak{I}(x) = \beta(x)$ for a variable x.

- (b) $\mathfrak{I}(c) = c^{\mathfrak{A}}$ for a constant $c \in S$.
- (c) Let $f \in S$ be an n-ary function symbol and t_1, \ldots, t_n S-terms. Then

$$
\mathfrak{I}(\mathsf{ft}_1 \cdots \mathsf{t}_n) = \mathsf{f}^{\mathfrak{A}}(\mathfrak{I}(\mathsf{t}_1), \ldots, \mathfrak{I}(\mathsf{t}_n)). \qquad \qquad \Box
$$

Example 2.7. Let $S := S_{Gr} = \{ \circ, e \}$ and $\mathfrak{I} := (\mathfrak{A}, \beta)$ with $\mathfrak{A} = (\mathbb{R}, +, 0)$, $\beta(v_0) = 2$, and $\beta(v_2) = 6$. Then

$$
\mathfrak{I}(v_0 \circ (e \circ v_2)) = \mathfrak{I}(v_0) + \mathfrak{I}(e \circ v_2)
$$

= 2 + (\mathfrak{I}(e) + \mathfrak{I}(v_2)) = 2 + (0 + 6) = 2 + 6 = 8.

Definition 2.8. Let φ be an S-formula. We define $\mathfrak{I} \models \varphi$ by induction on the construction of φ .

- (a) $\mathfrak{I} \models \mathfrak{t}_1 \equiv \mathfrak{t}_2$ if $\mathfrak{I}(\mathfrak{t}_1) = \mathfrak{I}(\mathfrak{t}_2)$.
- (b) $\mathfrak{I} \models \mathsf{R}t_1 \cdots t_n$ if $(\mathfrak{I}(t_1), \ldots, \mathfrak{I}(t_n)) \in \mathsf{R}^{\mathfrak{A}}$.
- (c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not\models \varphi$ (i.e., it is **not** the case that $\mathfrak{I} \models \varphi$).
- (d) $\mathfrak{I} \models (\varphi \land \psi) \text{ if } \mathfrak{I} \models \varphi \text{ and } \mathfrak{I} \models \psi.$
- (e) $\mathfrak{I} \models (\varphi \lor \psi)$ if $\mathfrak{I} \models \varphi$ or $\mathfrak{I} \models \psi$.
- (f) $\mathfrak{I} \models (\varphi \rightarrow \psi)$ if $\mathfrak{I} \models \varphi$ implies $\mathfrak{I} \models \psi$.
- (g) $\mathfrak{I} \models (\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi)$ if and only if $\mathfrak{I} \models \psi)$.
- (h) $\mathfrak{I} \models \forall x \varphi$ if for all $\alpha \in A$ we have $\mathfrak{I}_{x}^{\alpha} \models \varphi$.
- (i) $\mathfrak{I} \models \exists x \varphi$ if for some $\alpha \in A$ we have $\mathfrak{I}_{\mathfrak{X}}^{\alpha} \models \varphi$.

If $\mathcal{I} \models \varphi$, then \mathcal{I} is a **model** of φ , of \mathcal{I} **satisfies** φ .

Let Φ be a set of S-formulas. Then $\Im \models \Phi$ if $\Im \models \phi$ for all $\phi \in \Phi$. Similarly as above, we say that I is a model of Φ, or I satisfies Φ. and \vdots and \vdots are a set of \vdots and \vdots are a set of

Example 2.9. Let $S := S_{Gr}$ and $\mathfrak{I} := (\mathfrak{A}, \beta)$ with $\mathfrak{A} = (\mathbb{R}, +, 0)$ and $\beta(x) = 9$ for all variables x. Then

$$
\mathfrak{I} \models \forall v_0 \ v_0 \circ e \equiv v_0 \iff \text{for all } r \in \mathbb{R} \text{ we have } \mathfrak{I} \frac{r}{v_0} \models v_0 \circ e \equiv v_0,
$$

$$
\iff \text{for all } r \in \mathbb{R} \text{ we have } r + 0 = r.
$$

Definition 2.10. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a **consequence of** Φ, written $\Phi \models \varphi$, if for any interpretation \Im it holds that $\Im \models \Phi$ implies $\Im \models \varphi$.

For simplicity, in case $\Phi = {\psi}$ we write $\psi \models \varphi$ instead of ${\psi} \models \varphi$.

Example 2.11. Let

$$
\Phi_{Gr} := \{ \forall v_0 \forall v_1 \forall v_2 \ (v_0 \circ v_1) \circ v_2 \equiv v_0 \circ (v_1 \circ v_2),
$$

$$
\forall v_0 \ v_0 \circ e \equiv v_0, \forall v_0 \exists v_1 \ v_0 \circ v_1 \equiv e \}.
$$

Then it can be shown that

$$
\Phi_{Gr} \models \forall \nu_0 \; \varepsilon \circ \nu_0 \equiv \nu_0.
$$

and

 $\Phi_{\text{Gr}} \models \forall v_0 \exists v_1 \; v_1 \circ v_0 \equiv e.$

Definition 2.12. An S-formula φ is **valid**, written $\models \varphi$, if $\emptyset \models \varphi$. Or equivalently, $\mathfrak{I} \models \varphi$ for any $\mathfrak{I}.$

Definition 2.13. An S-formula φ is **satisfiable**, if there exists an S-interpretation \Im with $\Im \models \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation \Im such that $\Im \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of **proof by contradiction**.

Lemma 2.14. *Let* Φ *be a set of* S-formulas and ϕ *an* S-formula. Then $\Phi \models \phi$ *if and only if* $\Phi \cup {\neg \phi}$ *is not satisfiable.* a

Proof:

$$
\Phi \models \varphi \iff \text{Every model of } \Phi \text{ is a model of } \varphi,
$$

$$
\iff \text{there is no model } \Im \text{ with } \Im \models \Phi \text{ and } \Im \not\models \varphi,
$$

$$
\iff \text{there is no model } \Im \text{ with } \Im \models \Phi \cup \{\neg \varphi\},
$$

$$
\iff \Phi \cup \{\neg \varphi\} \text{ is not satisfiable.}
$$

Definition 2.15. Two S-formulas φ and ψ are **logic equivalent** if $\varphi \models \psi$ and $\psi \models \varphi$.

Example 2.16. Let ϕ be an S-formula. We define a logic equivalent ϕ[∗] which does not contain the logic symbols $\wedge, \rightarrow, \leftrightarrow, \forall.$

$$
\varphi^* := \varphi \quad \text{if } \varphi \text{ is atomic,}
$$

\n
$$
(\neg \varphi)^* := \neg \varphi^*,
$$

\n
$$
(\varphi \wedge \psi)^* := \neg(\neg \varphi^* \vee \neg \psi^*),
$$

\n
$$
(\varphi \vee \psi)^* := (\varphi^* \vee \psi^*),
$$

\n
$$
(\varphi \rightarrow \psi)^* := (\neg \varphi^* \vee \psi^*),
$$

\n
$$
(\varphi \leftrightarrow \psi)^* := \neg (\varphi^* \vee \psi^*) \vee \neg(\neg \varphi^* \vee \neg \psi^*),
$$

\n
$$
(\forall x \varphi)^* := \neg \exists x \neg \varphi^*,
$$

\n
$$
(\exists x \varphi)^* := \exists x \varphi^*.
$$

Thus, it suffices to consider \neg, \vee, \exists as the only logic symbols in any given φ .