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1 The Syntax of First-order Logic

Example 1.1 (Group Theory).

(G1) For all x,y, z we have (x ◦ y) ◦ z = x ◦ (y ◦ z).

(G2) For all x we have x ◦ e = e.

(G3) For every x there is a y such that x ◦ y = e.

A group is a triple G = (G, ◦G, eG), i.e., a structure G, which satisfies (G1)–(G3). a

Example 1.2 (Equivalence Relations).

(E1) For all x we have (x, x) ∈ R.

(E2) For all x and y if (x,y) ∈ R then (y, x) ∈ R.

(E3) For all x,y, z if (x,y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

An equivalence relation is specified by a structure A = (A,RA) in which RA satisfies (E1)–(E3). a

1.1 Alphabets

Definition 1.3. An alphabet is a nonempty set of symbols. a

Definition 1.4. Let A be an alphabet. Then a word w over A is a finite sequence of symbols in A,
i.e.,

w = w1w2 · · ·wn

where n ∈ N and wi ∈ A for every i ∈ [n] = {1, . . . ,n}. In case n = 0, then w is the empty word,
denoted by ε. The length |w| of w is n. In particular, |ε| = 0.
A∗ denotes the set of all words over A, or equivalently

A∗ =
⋃
n∈N

An =
⋃
n∈N

{
w1 . . .wn

∣∣ w1, . . . ,wn ∈ A
}

.
a

Countable sets

Later on, we will need to count the number of words over a given alphabet.

Definition 1.5. A set M is countable if there exists an injective function α from N onto M, i.e.,
α : N→M is a bijection. Thereby, we can write

M =
{
α(n)

∣∣ n ∈ N
}
=

{
α(0),α(1), . . . ,α(n), . . .

}
.

A set M is at most countable if M is either finite or countable. a

Lemma 1.6. Let M be a non-empty set. Then the following are equivalent.
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(a) M is at most countable.

(b) There is a surjective function f : N→M.

(c) There is an injective function f :M→ N. a

Lemma 1.7. Let A be an alphabet which is at most countable. Then A∗ is countable. a

1.2 The alphabet of a first-order language

Definition 1.8. The alphabet of a first-order language consists of the following symbols.

(a) v0, v1, . . . (variables).

(b) ¬,∧,∨,→,↔, (negation, conjunction, disjunction, implication, if and only if).

(c) ∀,∃, (for all, exists).

(d) ≡, (equality).

(e) (, ), (parentheses).

(f) (1) For every n > 1 a set of n-ary relation symbols.

(2) For every n > 1 a set of n-ary function symbols.

(3) A set of constants.

Note any set in (f) can be empty. a

We use A to denote the set of symbols in (a)–(e), i.e., the set of logic symbols, while S is the
set of remaining symbols in (f). Then a first-order language has

AS := A ∪ S

as its alphabet and S as its symbol set.
Thus every first-order language has the same set A of logic symbols but might have different

symbol set S.

1.3 Terms and formulas

Throughout this section, we fix a symbol set S.

Definition 1.9. The set TS of S-terms contains precisely those words in A∗S which can be obtained
by applying the following rules finitely many times.

(T1) Every variable is an S-term.

(T2) Every constant in S is an S-term.

(T3) If t1, . . . , tn are S-terms and f is a n-ary function symbol in S, then ft1 . . . tn is an S-term. a

Definition 1.10. The set LS of S-formulas contains precisely those words in A∗S which can be
obtained by applying the following rules finitely many times.

(A1) Let t1 and t2 be two S-terms. Then t1 ≡ t2 is an S-formula.

(A2) Let t1, . . . , tn be S-terms and R an n-ary relation symbol in S. Then Rt1 · · · tn is also an
S-formula.

(A3) If ϕ is an S-formula, then so is ¬ϕ.

(A4) If ϕ and ψ are S-formulas, then so is (ϕ ∗ψ) where ∗ ∈ {∧,∨,→,↔}.
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(A5) Let ϕ be an S-formula and x a variable. Then ∀xϕ and ∃xϕ are S-formulas, too.

The formulas in (A1) and (A2) are atomic, as they don’t contain any other S-formulas as
subformulas.

• ¬ϕ is the negation of ϕ.

• (ϕ∧ψ) is the conjunction of ϕ and ψ.

• (ϕ∨ψ) is the disjunction of ϕ and ψ.

• (ϕ→ ψ) is the implication from ϕ to ψ.

• (ϕ↔ ψ) is the equivalence between ϕ and ψ. a

Lemma 1.11. Let S be at most countable. Then both TS and LS are countable.

Definition 1.12. Let t be an S-term. Then var(t) is the set of variables in t. Or inductively,

var(x) := {x},

var(c) := ∅,

var(ft1 . . . tn) :=
⋃

i∈[n]

var(ti). a

Definition 1.13. Let ϕ be an S-formula and x a variable. We say that an occurrence of x in ϕ is
free if it is not in the scope of any ∀x or ∃x. Otherwise, the occurrence is bound.

Definition 1.14. Let ϕ be an S-formula. Then free(ϕ) is the set of variables which have free
occurrences in ϕ. Or inductively,

free(t1 ≡ t2) := var(t1) ∪ var(t2),

free(Rt1 · · · tn) :=
⋃

i∈[n]

var(ti),

free(¬ϕ) := free(ϕ),

free(ϕ ∗ψ) := free(ϕ) ∪ free(ψ) with ∗ ∈ {∧,∨,→,↔},

free(∀xϕ) := free(ϕ) \ {x},

free(∃xϕ) := free(ϕ) \ {x}. a

Example 1.15. The formula below shows that a variable might have both free and bound occur-
rences in the same formula.

free((Rxy→ ∀y¬y ≡ z)) = free(Rxy) ∪ free(∀y¬y ≡ z)
= {x,y} ∪

(
free(y ≡ z) \ {y}

)
= {x,y, z}. a

Definition 1.16. An S-formula is an S-sentence if free(ϕ) = ∅. a

Recall that actual variables we can use are v0, v1, . . ..

Definition 1.17. Let n ∈ N. Then

LSn :=
{
ϕ
∣∣ ϕ an S-formula with free(ϕ) ⊆ {v0, . . . , vn−1}

}
.

In particular, LS0 is the set of S-sentences. a

3



2 The Semantics of First-order Logic

2.1 Structures and interpretations

We fix a symbol set S.

Definition 2.1. An S-structure is a pair A = (A, a) which satisfies the following conditions.

1. A 6= ∅ is the universe of A.

2. a is a function defined on S such that:

(a) Let R ∈ S be an n-ary relation symbol. Then a(R) ⊆ An.

(b) Let f ∈ S be an n-ary function symbol. Then a(f) : An → A.

(c) a(c) ∈ A for every constant c ∈ S.

For better readability, we write RA, fA, and cA, or even RA, fA, and cA, instead of a(R), a(f), and
a(c). Thus for S = {R, f, c} we might write an S-structure as

A =
(
A,RA, fA, cA

)
=
(
A,RA, fA, cA

)
. a

Examples 2.2. 1. For SAr :=
{
+, ·, 0, 1} the SAr-structure

N =
(
N,+N, ·N, 0N, 1N)

is the standard model of natural numbers with addition, multiplication, and constants 0 and
1.

2. For S<Ar :=
{
+, ·, 0, 1,<} we have an S<Ar-structure

N< =
(
N,+N, ·N, 0N, 1N,<N) ,

i.e., the standard model of N with the natural ordering <. a

Definition 2.3. An assignment in an S-structure A is a mapping

β :
{
vi
∣∣ i ∈ N

}
→ A. a

Definition 2.4. An S-interpretation I is a pair (A,β) where A is an S-structure and β is an
assignment in A. a

Definition 2.5. Let β be an assignment in A, a ∈ A, and x a variable. Then βa
x

is the assignment
defined by

β
a

x
(y) :=

{
a, if y = x,
β(y), otherwise.

Then, for the S-interpretation I = (A,β) we use Ia
x

to denote the S-interpretation
(
A,βa

x

)
. a

2.2 The satisfaction relation I |= ϕ

We fix an S-interpretation I = (A,β).

Definition 2.6. For every S-term t we define its interpretation I(t) by induction on the construc-
tion of t.

(a) I(x) = β(x) for a variable x.
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(b) I(c) = cA for a constant c ∈ S.

(c) Let f ∈ S be an n-ary function symbol and t1, . . . , tn S-terms. Then

I
(
ft1 · · · tn

)
= fA

(
I(t1), . . . ,I(tn)

)
. a

Example 2.7. Let S := SGr = {◦, e} and I := (A,β) with A = (R,+, 0), β(v0) = 2, and β(v2) = 6.
Then

I
(
v0 ◦ (e ◦ v2)

)
= I(v0) + I(e ◦ v2)

= 2 +
(
I(e) + I(v2)

)
= 2 + (0 + 6) = 2 + 6 = 8. a

Definition 2.8. Let ϕ be an S-formula. We define I |= ϕ by induction on the construction of ϕ.

(a) I |= t1 ≡ t2 if I(t1) = I(t2).

(b) I |= Rt1 · · · tn if
(
I(t1), . . . ,I(tn)

)
∈ RA.

(c) I |= ¬ϕ if I 6|= ϕ (i.e., it is not the case that I |= ϕ).

(d) I |= (ϕ∧ψ) if I |= ϕ and I |= ψ.

(e) I |= (ϕ∨ψ) if I |= ϕ or I |= ψ.

(f) I |= (ϕ→ ψ) if I |= ϕ implies I |= ψ.

(g) I |= (ϕ↔ ψ) if
(
I |= ϕ if and only if I |= ψ

)
.

(h) I |= ∀xϕ if for all a ∈ A we have Ia
x
|= ϕ.

(i) I |= ∃xϕ if for some a ∈ A we have Ia
x
|= ϕ.

If I |= ϕ, then I is a model of ϕ, of I satisfies ϕ.

Let Φ be a set of S-formulas. Then I |= Φ if I |= ϕ for all ϕ ∈ Φ. Similarly as above, we say that
I is a model of Φ, or I satisfies Φ. a

Example 2.9. Let S := SGr and I := (A,β) with A = (R,+, 0) and β(x) = 9 for all variables x.
Then

I |= ∀v0 v0 ◦ e ≡ v0 ⇐⇒ for all r ∈ R we have I
r

v0
|= v0 ◦ e ≡ v0,

⇐⇒ for all r ∈ R we have r+ 0 = r. a

Definition 2.10. Let Φ be a set of S-formulas and ϕ an S-formula. Then ϕ is a consequence of
Φ, written Φ |= ϕ, if for any interpretation I it holds that I |= Φ implies I |= ϕ.

For simplicity, in case Φ = {ψ} we write ψ |= ϕ instead of {ψ} |= ϕ. a

Example 2.11. Let

ΦGr :=
{
∀v0∀v1∀v2 (v0 ◦ v1) ◦ v2 ≡ v0 ◦ (v1 ◦ v2),

∀v0 v0 ◦ e ≡ v0,∀v0∃v1 v0 ◦ v1 ≡ e
}

.

Then it can be shown that
ΦGr |= ∀v0 e ◦ v0 ≡ v0.

and
ΦGr |= ∀v0∃v1 v1 ◦ v0 ≡ e. a

Definition 2.12. An S-formula ϕ is valid, written |= ϕ, if ∅ |= ϕ. Or equivalently, I |= ϕ for any
I. a
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Definition 2.13. An S-formula ϕ is satisfiable, if there exists an S-interpretation I with I |= ϕ.
A set Φ of S-formulas is satisfiable if there exists an S-interpretation I such that I |= ϕ for every
ϕ ∈ Φ. a

The next lemma is essentially the method of proof by contradiction.

Lemma 2.14. Let Φ be a set of S-formulas and ϕ an S-formula. Then Φ |= ϕ if and only if Φ∪ {¬ϕ}
is not satisfiable. a

Proof:

Φ |= ϕ ⇐⇒ Every model of Φ is a model of ϕ,

⇐⇒ there is no model I with I |= Φ and I 6|= ϕ,

⇐⇒ there is no model I with I |= Φ ∪ {¬ϕ},

⇐⇒ Φ ∪ {¬ϕ} is not satisfiable. 2

Definition 2.15. Two S-formulas ϕ and ψ are logic equivalent if ϕ |= ψ and ψ |= ϕ. a

Example 2.16. Let ϕ be an S-formula. We define a logic equivalent ϕ∗ which does not contain
the logic symbols ∧,→,↔,∀.

ϕ∗ := ϕ if ϕ is atomic,

(¬ϕ)∗ := ¬ϕ∗,

(ϕ∧ψ)∗ := ¬(¬ϕ∗ ∨ ¬ψ∗),

(ϕ∨ψ)∗ := (ϕ∗ ∨ψ∗),

(ϕ→ ψ)∗ := (¬ϕ∗ ∨ψ∗),

(ϕ↔ ψ)∗ := ¬(ϕ∗ ∨ψ∗)∨ ¬(¬ϕ∗ ∨ ¬ψ∗),

(∀xϕ)∗ := ¬∃x¬ϕ∗,
(∃xϕ)∗ := ∃xϕ∗.

Thus, it suffices to consider ¬,∨,∃ as the only logic symbols in any given ϕ. a
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