Mathematical Logic (VI)

Yijia Chen

1 Sequent Calculus

1.1 Basic Rules

Antecedent

$$
\frac{\Gamma\quad \phi}{\Gamma'\quad \phi}\,\Gamma\subseteq \Gamma'
$$

Assumption

$$
\overline{\Gamma\quad\phi}\ \phi\in\Gamma
$$

Case Analysis

$$
\begin{array}{ccc}\n\Gamma & \psi & \phi \\
\Gamma & \neg \psi & \phi \\
\hline\n\Gamma & \phi\n\end{array}
$$

Contradiction

$$
\begin{array}{ccc}\n\Gamma & \neg \phi & \psi \\
\Gamma & \neg \phi & \neg \psi \\
\hline\n\Gamma & \varphi\n\end{array}
$$

∨**-introduction in antecedent**

$$
\begin{array}{c}\n\Gamma \varphi \chi \\
\Gamma \psi \chi \\
\Gamma \varphi \lor \psi \chi\n\end{array}
$$

∨**-introduction in succedent**

(a)
$$
\frac{\Gamma \varphi}{\Gamma (\varphi \vee \psi)}
$$
 (b) $\frac{\Gamma \varphi}{\Gamma (\psi \vee \varphi)}$

∃**-introduction in succedent**

$$
\frac{\Gamma-\phi\frac{t}{x}}{\Gamma-\exists x\phi}
$$

∃**-introduction in antecedent**

$$
\frac{\Gamma-\phi\frac{y}{x}-\psi}{\Gamma-\exists x\phi-\psi}\text{ if }y\notin\text{free}\big(\Gamma\cup\{\exists x\phi,\psi\}\big)
$$

Equality

$$
\overline{t\equiv t}
$$

Substitution

$$
\frac{\Gamma \varphi \frac{t}{x}}{\Gamma \hspace{0.2cm} t \equiv t' \hspace{0.2cm} \phi \frac{t'}{x}}
$$

1.2 Some Derived Rules

Example 1.1 (The law of excluded middle)**.**

Therefore $\vdash (\varphi \lor \neg \varphi)$.

Example 1.2 (The modified contradiction)**.**

$$
\begin{array}{ccc}\Gamma & \psi \\
\frac{\Gamma & \neg \psi}{\Gamma & \phi}\n\end{array}
$$

We argue as follows.

Example 1.3 (The chain deduction)**.**

$$
\begin{array}{cc}\n\Gamma & \phi \\
\Gamma & \phi & \psi \\
\hline\n\Gamma & \psi\n\end{array}
$$

We have the following deduction.

 $\overline{}$

 \overline{a}

Definition 1.4. Let Φ be a set of S-formulas and ϕ an S-formula. Then ϕ is **derivable from** Φ , denoted by $\Phi \vdash \varphi$, if there exists an $n \in \mathbb{N}$ and $\varphi_1, \ldots, \varphi_n \in \Phi$ such that

$$
\vdash \phi_1 \ldots \phi_n \; \phi.
$$

Let Φ be a set of S-sentences and φ an S-formula.

Lemma 1.5. $\Phi \vdash \varphi$ *if and only if there exists a finite* $\Phi_0 \subseteq \Phi$ *such that* $\Phi_0 \vdash \varphi$.

Theorem 1.6 (Soundness). *If* $\Phi \vdash \varphi$ *, then* $\Phi \models \varphi$.

2 Consistency

Definition 2.1. Φ is **consistent**, written cons(Φ), if there is no ϕ such that both $\Phi \vdash \phi$ and Φ ` ¬ϕ. Otherwise, Φ is **inconsistent**.

Lemma 2.2. Φ *is inconsistent if and only if* $\Phi \vdash \varphi$ *for any formula* φ *.*

Proof: The direction from right to left is by Definition 2.1. For the converse direction, assume that there is a ψ such that $\Phi \vdash \psi$ and $\Phi \vdash \neg \psi$. Then there exist two finite sequences of formulas, Γ₁ and Γ_2 , such that we have derivation

$$
\vdots \quad \text{and} \quad \vdots
$$

$$
\Gamma_1 \quad \psi \qquad \Gamma_2 \quad \neg \psi.
$$

Then for every φ we can obtain the derivation of Γ_1 Γ_2 φ as below.

$$
\vdots
$$
\n
\n
$$
\vdots
$$
\n
\

Corollary 2.3. Φ *is consistent if and only if there is a* ϕ *such that* $\Phi \nvdash \phi$ *.*

Lemma 2.4. Φ *is consistent if and only if every finite* $\Phi_0 \subseteq \Phi$ *is consistent.*

Lemma 2.5. *Every satisfiable* Φ *is consistent.*

Proof: Assume that Φ is inconsistent. Then there is a φ such that $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. By the Soundness Theorem, i.e., Theorem 1.6, we conclude $\Phi \models \varphi$ and $\Phi \models \neg \varphi$. Thus, Φ cannot be satisfiable. \Box

Lemma 2.6. *(a)* $\Phi \vdash \varphi$ *if and only if* $\Phi \cup \{\neg \varphi\}$ *is inconsistent.*

- *(b)* $Φ \vdash \neg φ$ *if and only if* $Φ \cup \{φ\}$ *is inconsistent.*
- *(c) If* cons(Φ)*, then either* cons($\Phi \cup {\phi}$ *) or* cons($\Phi \cup {\neg \phi}$ *).*

 \Box

3 Completeness

The goal of this section is to show:

Theorem 3.1 (Completeness). If $\Phi \models \varphi$, then $\Phi \vdash \varphi$.

We observe that the contrapositive of Theorem 3.1 is:

 $\Phi \not\models \varphi$ implies $\Phi \not\models \varphi$ \iff if $\Phi \cup {\neg \varphi}$ is consistent, then $\Phi \cup {\neg \varphi}$ is satisfiable.

As a matter of fact, we actually will prove the following general statement.

Theorem 3.2. $\text{cons}(\Phi)$ *implies that* Φ *is satisfiable.* \Box

3.1 Henkin's Theorem

We fix a set Φ of S-formulas and will construct an S-interpretation out of Φ. To that end, we first define a binary relation over the set T^S of S-terms.

Definition 3.3. Let
$$
t_1, t_2 \in T^S
$$
. Then $t_1 \sim t_2$ if $\Phi \vdash t_1 \equiv t_2$.

Lemma 3.4. *(i)* ∼ *is an equivalence relation.*

- *(ii)* ∼ *is a congruence relation. That is:*
	- **•** *For every n-ary function symbol* $f \in S$ *and* $2 \cdot n$ *S-terms* $t_1 \sim t'_1$, ..., $t_n \sim t'_n$, we have

$$
ft_1\cdots t_n \sim ft'_1\cdots t'_n.
$$

• *For every* n-ary relation symbol R ∈ S and $2 \cdot n$ S-terms $t_1 \sim t'_1, \ldots, t_n \sim t'_n$, we have

$$
\Phi \vdash \mathsf{R} t_1 \cdots t_n \quad \Longleftrightarrow \quad \Phi \vdash \mathsf{R} t'_1 \cdots t'_n.
$$

 \dashv

Proof: By the equality rule and the substitution rule. \Box

Now for every $\mathsf{t}\in\mathsf{T}^\mathsf{S}$ we define

$$
\overline{t}:=\big\{t'\in T^S\ \big|\ t'\sim t\big\},
$$

i.e., the equivalence class of t.

Definition 3.5. The **term structure for** Φ, denoted by \mathfrak{T}^{Φ} , is defined as follows.

- (i) The universe is $T^{\Phi} := {\{\overline{t} \mid t \in T^S\}}.$
- (ii) For every n-ary relation symbol $R \in S$, and $\bar{t}_1, \ldots, \bar{t}_n \in T^{\Phi}$

$$
(\overline{t}_1,\ldots,\overline{t}_n)\in R^{\mathfrak{T}^\Phi}\quad\text{if}\quad \Phi\vdash \text{R} t_1\ldots t_n.
$$

(iii) For every n-ary function symbol $f \in S$, and $\overline{t}_1, \ldots, \overline{t}_n \in T^{\Phi}$

$$
f^{\mathfrak{T}^{\Phi}}(\overline{t}_1,\ldots,\overline{t}_n):=\overline{ft_1\cdots t_n}.
$$

(iv) For every constant $c \in S$

$$
c^{\mathfrak{T}^\Phi}:=\bar{c}.
$$

This finishes the construction of \mathfrak{T}^{Φ} . Φ .

Using Lemma 3.4, in particular (ii), it is easy to verify that:

Lemma 3.6. \mathfrak{T}^{Φ} is well-defined. \Box

To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_0, v_1, \ldots in \mathfrak{T}^Φ .

Definition 3.7. For every variable v_i we let

$$
\beta^{\Phi}(v_i) := \bar{v}_i.
$$

Finally we let

$$
\mathfrak{I}^{\Phi} := (\mathfrak{I}^{\Phi}, \beta^{\Phi}).
$$

Lemma 3.8. *(i)* For any $t \in T^S$

(ii) For every atomic ϕ

$$
\mathfrak{I}^{\Phi} \models \phi \iff \Phi \vdash \phi.
$$

 $\mathfrak{I}^{\Phi}(\mathsf{t}) = \overline{\mathfrak{t}}.$

Proof: (i) We proceed by induction on t.

• $t = v_i$ is a variable. Then

$$
\mathfrak{I}^{\Phi}(\nu_i) = \beta^{\Phi}(\nu_i) = \bar{\nu}_i.
$$

• $t = c$ is a constant. Then

$$
\mathfrak{I}^{\Phi}(\mathfrak{c}) = \mathfrak{c}^{\mathfrak{T}^{\Phi}} = \bar{\mathfrak{c}}
$$

• $t = ft_1 \cdots t_n$. Then

$$
\mathfrak{I}^{\Phi}(\mathsf{ft}_{1} \cdots \mathsf{t}_{n}) = f^{\mathfrak{I}^{\Phi}}(\mathfrak{I}^{\Phi}(\mathsf{t}_{1}), \dots, \mathfrak{I}^{\Phi}(\mathsf{t}_{n}))
$$
\n
$$
= f^{\mathfrak{I}^{\Phi}}(\bar{\mathsf{t}}_{1}, \dots, \bar{\mathsf{t}}_{n})
$$
\n
$$
= \overline{\mathsf{ft}_{1} \cdots \mathsf{t}_{n}}.
$$
\n(by induction hypothesis)

(ii) Recall that there are two types of atomic formulas. For the first type, let $\varphi = t_1 \equiv t_2$. Then

$$
\mathfrak{I}^{\Phi} \models t_1 \equiv t_2 \iff \mathfrak{I}^{\Phi}(t_1) = \mathfrak{I}^{\Phi}(t_2)
$$

\n
$$
\iff \overline{t}_1 = \overline{t}_2
$$

\n
$$
\iff t_1 \sim t_2
$$

\n
$$
\iff \Phi \vdash t_1 \equiv t_2.
$$

\n(by (i))

Second, let $\varphi = \text{Rt}_1 \cdots \text{t}_n$. We deduce

$$
\mathfrak{I}^{\Phi} \models \mathsf{Rt}_{1} \cdots \mathsf{t}_{n} \iff (\mathfrak{I}^{\Phi}(\mathsf{t}_{1}), \ldots, \mathfrak{I}^{\Phi}(\mathsf{t}_{n})) \in \mathsf{R}^{\mathfrak{T}^{\Phi}}
$$

\n
$$
\iff (\overline{\mathsf{t}}_{1}, \ldots, \overline{\mathsf{t}}_{n}) \in \mathsf{R}^{\mathfrak{T}^{\Phi}}
$$

\n
$$
\iff \Phi \vdash \mathsf{Rt}_{1} \cdots \mathsf{t}_{n}.
$$

\n(by (i))

