Mathematical Logic (VI)

Yijia Chen

Sequent Calculus

1.1 Basic Rules

Antecedent

$$\frac{-\Gamma-\phi}{-\Gamma'-\phi}\,\Gamma\subseteq\Gamma'$$

Assumption

$$\overline{\ \Gamma \ \phi} \ \phi \in \Gamma$$

Case Analysis

$$\begin{array}{ccc} \Gamma & \psi & \phi \\ \hline \Gamma \neg \psi & \phi \\ \hline \Gamma & \phi \end{array}$$

Contradiction

$$\begin{array}{ccc} \Gamma & \neg \phi & \psi \\ \hline \Gamma & \neg \phi & \neg \psi \\ \hline \Gamma & & \phi \end{array}$$

 \vee -introduction in antecedent

$$\begin{array}{c|cccc} & \Gamma & \phi & \chi \\ & \Gamma & \psi & \chi \\ \hline \Gamma & (\phi \lor \psi) & \chi \end{array}$$

∨-introduction in succedent

(a)
$$\frac{\Gamma \quad \varphi}{\Gamma \quad (\varphi \lor \psi)}$$

(a)
$$\frac{\Gamma - \phi}{\Gamma - (\phi \lor \psi)}$$
 (b) $\frac{\Gamma - \phi}{\Gamma - (\psi \lor \phi)}$

∃-introduction in succedent

$$\frac{\Gamma \quad \phi \frac{t}{x}}{\Gamma \quad \exists x \phi}$$

∃-introduction in antecedent

$$\begin{array}{ccc} \frac{\Gamma & \phi \frac{y}{x} & \psi}{\Gamma & \exists x \phi & \psi} \text{ if } y \notin free \big(\Gamma \cup \{\exists x \phi, \psi\}\big) \end{array}$$

Equality

$$t \equiv t$$

Substitution

$$\frac{\Gamma \quad \phi \frac{t}{x}}{\Gamma \quad t \equiv t' \quad \phi \frac{t'}{x}}$$

1.2 **Some Derived Rules**

Example 1.1 (The law of excluded middle).

Therefore $\vdash (\phi \lor \neg \phi)$.

Example 1.2 (The modified contradiction).

$$\begin{array}{cc} \Gamma & \psi \\ \Gamma & \neg \psi \\ \hline \Gamma & \phi \end{array}$$

We argue as follows.

Example 1.3 (The chain deduction).

$$\begin{array}{ccc} & \Gamma & \phi \\ \hline \Gamma & \phi & \psi \\ \hline & \Gamma & \psi \end{array}$$

We have the following deduction.

(premise)

 \dashv

Definition 1.4. Let Φ be a set of S-formulas and φ an S-formula. Then φ is **derivable from** Φ , denoted by $\Phi \vdash \varphi$, if there exists an $n \in \mathbb{N}$ and $\varphi_1, \ldots, \varphi_n \in \Phi$ such that

$$\vdash \varphi_1 \dots \varphi_n \varphi$$
.

Let Φ be a set of S-sentences and φ an S-formula.

Lemma 1.5.
$$\Phi \vdash \varphi$$
 if and only if there exists a **finite** $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \vdash \varphi$.

Theorem 1.6 (Soundness). *If*
$$\Phi \vdash \varphi$$
, then $\Phi \models \varphi$.

2 Consistency

Definition 2.1. Φ is **consistent**, written $cons(\Phi)$, if there is no φ such that both $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. Otherwise, Φ is **inconsistent**.

Lemma 2.2. Φ is inconsistent if and only if $\Phi \vdash \varphi$ for any formula φ .

Proof: The direction from right to left is by Definition 2.1. For the converse direction, assume that there is a ψ such that $\Phi \vdash \psi$ and $\Phi \vdash \neg \psi$. Then there exist two finite sequences of formulas, Γ_1 and Γ_2 , such that we have derivation

Then for every φ we can obtain the derivation of Γ_1 Γ_2 φ as below.

Corollary 2.3. Φ is consistent if and only if there is a ϕ such that $\Phi \not\vdash \phi$.

Lemma 2.4. Φ is consistent if and only if every finite $\Phi_0 \subseteq \Phi$ is consistent.

Lemma 2.5. Every satisfiable Φ is consistent.

Proof: Assume that Φ is inconsistent. Then there is a φ such that $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$. By the Soundness Theorem, i.e., Theorem 1.6, we conclude $\Phi \models \varphi$ and $\Phi \models \neg \varphi$. Thus, Φ cannot be satisfiable.

Lemma 2.6. (a) $\Phi \vdash \varphi$ if and only if $\Phi \cup \{\neg \varphi\}$ is inconsistent.

- *(b)* $\Phi \vdash \neg \varphi$ *if and only if* $\Phi \cup \{\varphi\}$ *is inconsistent.*
- (c) If $cons(\Phi)$, then either $cons(\Phi \cup \{\varphi\})$ or $cons(\Phi \cup \{\neg\varphi\})$.

3 Completeness

The goal of this section is to show:

Theorem 3.1 (Completeness). *If* $\Phi \models \varphi$, then $\Phi \vdash \varphi$.

We observe that the contrapositive of Theorem 3.1 is:

$$\Phi \not\vdash \phi$$
 implies $\Phi \not\models \phi$

 \Longleftrightarrow if $\Phi \cup \{\neg \phi\}$ is consistent, then $\Phi \cup \{\neg \phi\}$ is satisfiable.

 \dashv

 \dashv

 \dashv

As a matter of fact, we actually will prove the following general statement.

Theorem 3.2. $cons(\Phi)$ *implies that* Φ *is satisfiable.*

3.1 Henkin's Theorem

We fix a set Φ of S-formulas and will construct an S-interpretation out of Φ . To that end, we first define a binary relation over the set T^S of S-terms.

Definition 3.3. Let $t_1, t_2 \in T^S$. Then $t_1 \sim t_2$ if $\Phi \vdash t_1 \equiv t_2$.

Lemma 3.4. (i) \sim is an **equivalence** relation.

- (ii) \sim is a **congruence** relation. That is:
 - For every n-ary function symbol $f \in S$ and $2 \cdot n$ S-terms $t_1 \sim t_1', \ldots, t_n \sim t_n'$, we have

$$ft_1 \cdots t_n \sim ft'_1 \cdots t'_n$$
.

• For every n-ary relation symbol $R \in S$ and $2 \cdot n$ S-terms $t_1 \sim t_1', \ldots, t_n \sim t_n'$, we have

$$\Phi \vdash Rt_1 \cdots t_n \quad \Longleftrightarrow \quad \Phi \vdash Rt_1' \cdots t_n'.$$

Proof: By the equality rule and the substitution rule.

Now for every $t \in \mathsf{T}^S$ we define

$$\overline{t}:=\big\{t'\in T^S\ \big|\ t'\sim t\big\},$$

i.e., the equivalence class of t.

Definition 3.5. The **term structure for** Φ , denoted by \mathfrak{T}^{Φ} , is defined as follows.

- (i) The universe is $T^{\Phi} := \{\bar{t} \mid t \in T^S\}.$
- (ii) For every n-ary relation symbol $R \in S,$ and $\overline{t}_1, \ldots, \overline{t}_n \in T^\Phi$

$$(\overline{t}_1,\ldots,\overline{t}_n)\in R^{\mathfrak{T}^\Phi}\quad \text{if}\quad \Phi\vdash Rt_1\ldots t_n.$$

(iii) For every n-ary function symbol $f \in S,$ and $\overline{t}_1, \ldots, \overline{t}_n \in T^{\Phi}$

$$f^{\mathfrak{T}^{\Phi}}(\overline{t}_1,\ldots,\overline{t}_n) := \overline{ft_1\cdots t_n}.$$

(iv) For every constant $c \in S$

$$c^{\mathfrak{T}^{\Phi}}:=\bar{c}.$$

This finishes the construction of \mathfrak{T}^{Φ} .

Using Lemma 3.4, in particular (ii), it is easy to verify that:

Lemma 3.6. \mathfrak{T}^{Φ} is well-defined.

To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_0, v_1, \ldots in \mathfrak{T}^{Φ} .

Definition 3.7. For every variable v_i we let

$$\beta^{\Phi}(\nu_i) := \bar{\nu}_i.$$

Finally we let

$$\mathfrak{I}^{\Phi} := (\mathfrak{T}^{\Phi}, \beta^{\Phi})$$
.

Lemma 3.8. (i) For any $t \in T^S$

$$\mathfrak{I}^{\Phi}(t) = \overline{t}.$$

(ii) For every atomic φ

$$\mathfrak{I}^{\Phi} \models \varphi \iff \Phi \vdash \varphi.$$

Proof: (i) We proceed by induction on t.

• $t = v_i$ is a variable. Then

$$\mathfrak{I}^{\Phi}(\nu_{\mathfrak{i}}) = \beta^{\Phi}(\nu_{\mathfrak{i}}) = \bar{\nu}_{\mathfrak{i}}.$$

• t = c is a constant. Then

$$\mathfrak{I}^{\Phi}(c) = c^{\mathfrak{T}^{\Phi}} = \bar{c}$$

• $t = ft_1 \cdots t_n$. Then

$$\begin{split} \mathfrak{I}^{\Phi}(\mathsf{f} t_1 \cdots t_n) &= \mathsf{f}^{\mathfrak{T}^{\Phi}}(\mathfrak{I}^{\Phi}(t_1), \ldots, \mathfrak{I}^{\Phi}(t_n)) \\ &= \mathsf{f}^{\mathfrak{T}^{\Phi}}(\bar{t}_1, \ldots, \bar{t}_n) \\ &= \overline{\mathsf{f} t_1 \cdots t_n}. \end{split} \tag{by induction hypothesis)}$$

(ii) Recall that there are two types of atomic formulas. For the first type, let $\phi=t_1\equiv t_2$. Then

$$\begin{split} \mathfrak{I}^{\Phi} &\models t_1 \equiv t_2 \iff \mathfrak{I}^{\Phi}(t_1) = \mathfrak{I}^{\Phi}(t_2) \\ &\iff \bar{t}_1 = \bar{t}_2 \\ &\iff t_1 \sim t_2 \\ &\iff \Phi \vdash t_1 \equiv t_2. \end{split}$$
 (by (i))

Second, let $\varphi = Rt_1 \cdots t_n$. We deduce

$$\begin{split} \mathfrak{I}^{\Phi} &\models Rt_{1} \cdots t_{n} \iff \left(\mathfrak{I}^{\Phi}(t_{1}), \ldots, \mathfrak{I}^{\Phi}(t_{n})\right) \in R^{\mathfrak{T}^{\Phi}} \\ &\iff \left(\overline{t}_{1}, \ldots, \overline{t}_{n}\right) \in R^{\mathfrak{T}^{\Phi}} \\ &\iff \Phi \vdash Rt_{1} \cdots t_{n}. \end{split} \tag{by (i)}$$

 \dashv