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1 Sequent Calculus

1.1 Basic Rules

Antecedent

Γ ϕ
Γ ⊆ Γ ′

Γ ′ ϕ

Assumption

ϕ ∈ Γ
Γ ϕ

Case Analysis

Γ ψ ϕ

Γ ¬ψ ϕ

Γ ϕ

Contradiction

Γ ¬ϕ ψ

Γ ¬ϕ ¬ψ

Γ ϕ

∨-introduction in antecedent

Γ ϕ χ

Γ ψ χ

Γ (ϕ∨ψ) χ

∨-introduction in succedent

Γ ϕ(a)
Γ (ϕ∨ψ)

Γ ϕ(b)
Γ (ψ∨ϕ)

∃-introduction in succedent

Γ ϕ t
x

Γ ∃xϕ

∃-introduction in antecedent

Γ ϕy
x

ψ
if y /∈ free

(
Γ ∪ {∃xϕ,ψ}

)
Γ ∃xϕ ψ
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Equality

t ≡ t

Substitution

Γ ϕ t
x

Γ t ≡ t ′ ϕ t
′

x

1.2 Some Derived Rules

Example 1.1 (The law of excluded middle).

1. ϕ ϕ (assumption)
2. ϕ (ϕ∨ ¬ϕ) (∨-introduction in succedent by 1)
3. ¬ϕ ¬ϕ (assumption)
4. ¬ϕ (ϕ∨ ¬ϕ) (∨-introduction in succedent by 3)
5. (ϕ∨ ¬ϕ) (case analysis by 2 and 4).

Therefore ` (ϕ∨ ¬ϕ). a

Example 1.2 (The modified contradiction).

Γ ψ

Γ ¬ψ

Γ ϕ

We argue as follows.

1. Γ ψ (premise)
2. Γ ¬ψ (premise)
3. Γ ¬ϕ ψ (antecedent by 1)
4. Γ ¬ϕ ¬ψ (antecedent by 2)
5. Γ ϕ (contradiction by 3 and 4).

a

Example 1.3 (The chain deduction).

Γ ϕ
Γ ϕ ψ

Γ ψ

We have the following deduction.

1. Γ ϕ (premise)
2. Γ ϕ ψ (premise)
3. Γ ¬ϕ ϕ (antecedent by 1)
4. Γ ¬ϕ ¬ϕ (assumption)
5. Γ ¬ϕ ψ (modified contradiction by 3 and 4)
6. Γ ψ (case analysis by 2 and 5).

a
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Definition 1.4. Let Φ be a set of S-formulas and ϕ an S-formula. Then ϕ is derivable from Φ,
denoted by Φ ` ϕ, if there exists an n ∈ N and ϕ1, . . . ,ϕn ∈ Φ such that

` ϕ1 . . .ϕn ϕ. a

Let Φ be a set of S-sentences and ϕ an S-formula.

Lemma 1.5. Φ ` ϕ if and only if there exists a finite Φ0 ⊆ Φ such that Φ0 ` ϕ. a

Theorem 1.6 (Soundness). If Φ ` ϕ, then Φ |= ϕ. a

2 Consistency

Definition 2.1. Φ is consistent, written cons(Φ), if there is no ϕ such that both Φ ` ϕ and
Φ ` ¬ϕ. Otherwise, Φ is inconsistent.

Lemma 2.2. Φ is inconsistent if and only if Φ ` ϕ for any formula ϕ.

Proof: The direction from right to left is by Definition 2.1. For the converse direction, assume that
there is a ψ such that Φ ` ψ and Φ ` ¬ψ. Then there exist two finite sequences of formulas, Γ1
and Γ2, such that we have derivation

... and
...

Γ1 ψ Γ2 ¬ψ.

Then for every ϕ we can obtain the derivation of Γ1 Γ2 ϕ as below.

...
m. Γ1 ψ

...
n. Γ2 ¬ψ

(n+ 1). Γ1 Γ2 ψ (antecedent by m)
(n+ 2). Γ1 Γ2 ¬ψ (antecedent by n)
(n+ 3). Γ1 Γ2 ϕ (modified contradiction by n+ 1 and n+ 2).
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Corollary 2.3. Φ is consistent if and only if there is a ϕ such that Φ 6` ϕ.

Lemma 2.4. Φ is consistent if and only if every finite Φ0 ⊆ Φ is consistent.

Lemma 2.5. Every satisfiable Φ is consistent.

Proof: Assume that Φ is inconsistent. Then there is a ϕ such that Φ ` ϕ and Φ ` ¬ϕ. By the
Soundness Theorem, i.e., Theorem 1.6, we conclude Φ |= ϕ and Φ |= ¬ϕ. Thus, Φ cannot be
satisfiable. 2

Lemma 2.6. (a) Φ ` ϕ if and only if Φ ∪ {¬ϕ} is inconsistent.

(b) Φ ` ¬ϕ if and only if Φ ∪ {ϕ} is inconsistent.

(c) If cons(Φ), then either cons
(
Φ ∪ {ϕ}) or cons(Φ ∪ {¬ϕ}).
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3 Completeness

The goal of this section is to show:

Theorem 3.1 (Completeness). If Φ |= ϕ, then Φ ` ϕ. a

We observe that the contrapositive of Theorem 3.1 is:

Φ 6` ϕ implies Φ 6|= ϕ

⇐⇒ if Φ ∪ {¬ϕ} is consistent, then Φ ∪ {¬ϕ} is satisfiable.

As a matter of fact, we actually will prove the following general statement.

Theorem 3.2. cons(Φ) implies that Φ is satisfiable. a

3.1 Henkin’s Theorem

We fix a set Φ of S-formulas and will construct an S-interpretation out of Φ. To that end, we first
define a binary relation over the set TS of S-terms.

Definition 3.3. Let t1, t2 ∈ TS. Then t1 ∼ t2 if Φ ` t1 ≡ t2. a

Lemma 3.4. (i) ∼ is an equivalence relation.

(ii) ∼ is a congruence relation. That is:

• For every n-ary function symbol f ∈ S and 2 · n S-terms t1 ∼ t ′1, . . . , tn ∼ t ′n, we have

ft1 · · · tn ∼ ft ′1 · · · t ′n.

• For every n-ary relation symbol R ∈ S and 2 · n S-terms t1 ∼ t ′1, . . . , tn ∼ t ′n, we have

Φ ` Rt1 · · · tn ⇐⇒ Φ ` Rt ′1 · · · t ′n.

a

Proof: By the equality rule and the substitution rule. 2

Now for every t ∈ TS we define

t̄ :=
{
t ′ ∈ TS

∣∣ t ′ ∼ t},

i.e., the equivalence class of t.

Definition 3.5. The term structure for Φ, denoted by TΦ, is defined as follows.

(i) The universe is TΦ :=
{
t̄
∣∣ t ∈ TS}.

(ii) For every n-ary relation symbol R ∈ S, and t̄1, . . . , t̄n ∈ TΦ

(t̄1, . . . , t̄n) ∈ RT
Φ

if Φ ` Rt1 . . . tn.

(iii) For every n-ary function symbol f ∈ S, and t̄1, . . . , t̄n ∈ TΦ

fT
Φ

(t̄1, . . . , t̄n) := ft1 · · · tn.

(iv) For every constant c ∈ S
cT

Φ

:= c̄.
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This finishes the construction of TΦ. a

Using Lemma 3.4, in particular (ii), it is easy to verify that:

Lemma 3.6. TΦ is well-defined. a

To complete the definition of an S-interpretation, we still need to provide an assignment of the
variables v0, v1, . . . in TΦ.

Definition 3.7. For every variable vi we let

βΦ(vi) := v̄i. a

Finally we let
IΦ :=

(
TΦ,βΦ

)
.

Lemma 3.8. (i) For any t ∈ TS
IΦ(t) = t̄.

(ii) For every atomic ϕ

IΦ |= ϕ ⇐⇒ Φ ` ϕ.

Proof: (i) We proceed by induction on t.

• t = vi is a variable. Then
IΦ(vi) = β

Φ(vi) = v̄i.

• t = c is a constant. Then
IΦ(c) = cT

Φ

= c̄

• t = ft1 · · · tn. Then

IΦ(ft1 · · · tn) = fT
Φ

(IΦ(t1), . . . ,IΦ(tn))

= fT
Φ

(t̄1, . . . , t̄n) (by induction hypothesis)

= ft1 · · · tn.

(ii) Recall that there are two types of atomic formulas. For the first type, let ϕ = t1 ≡ t2. Then

IΦ |= t1 ≡ t2 ⇐⇒ IΦ(t1) = IΦ(t2)

⇐⇒ t̄1 = t̄2 (by (i))

⇐⇒ t1 ∼ t2

⇐⇒ Φ ` t1 ≡ t2.

Second, let ϕ = Rt1 · · · tn. We deduce

IΦ |= Rt1 · · · tn ⇐⇒
(
IΦ(t1), . . . ,IΦ(tn)

)
∈ RTΦ

⇐⇒
(
t̄1, . . . , t̄n

)
∈ RTΦ

(by (i))

⇐⇒ Φ ` Rt1 · · · tn.

2
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