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1 Completeness

The goal of this section is to show:

Theorem 1.1 (Completeness). If Φ |= ϕ, then Φ ` ϕ. a

We observe that the contrapositive of Theorem 1.1 is:

Φ 6` ϕ implies Φ 6|= ϕ

⇐⇒ if Φ ∪ {¬ϕ} is consistent, then Φ ∪ {¬ϕ} is satisfiable.

As a matter of fact, we actually will prove the following general statement.

Theorem 1.2. cons(Φ) implies that Φ is satisfiable. a

1.1 Henkin’s Theorem

Recall that we fix a set Φ of S-formulas.

Definition 1.3. Let t1, t2 ∈ TS. Then t1 ∼ t2 if Φ ` t1 ≡ t2. a

Lemma 1.4. (i) ∼ is an equivalence relation.

(ii) ∼ is a congruence relation. That is:

• For every n-ary function symbol R ∈ S and 2 · n S-terms t1 ∼ t ′1, . . . , tn ∼ t ′n, we have

ft1 · · · tn ∼ ft ′1 · · · t ′n.

• For every n-ary relation symbol R ∈ S and 2 · n S-terms t1 ∼ t ′1, . . . , tn ∼ t ′n, we have

Φ ` Rt1 · · · tn ⇐⇒ Φ ` Rt ′1 · · · t ′n. a

Proof: By the equality rule and the substitution rule. 2

Now for every t ∈ TS we define

t̄ :=
{
t ′ ∈ TS

∣∣ t ′ ∼ t},
i.e., the equivalence class of t.

Definition 1.5. The term structure for Φ, denoted by TΦ, is defined as below.

(i) The universe is TΦ :=
{
t̄
∣∣ t ∈ TS}.

(ii) For every n-ary relation symbol R ∈ S, and t̄1, . . . , t̄n ∈ TΦ

(t̄1, . . . , t̄n) ∈ RT
Φ

if Φ ` Rt1 . . . tn.
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(iii) For every n-ary function symbol f ∈ S, and t̄1, . . . , t̄n ∈ TΦ

fT
Φ

(t̄1, . . . , t̄n) := ft1 · · · tn.

(iv) For every constant c ∈ S
cT

Φ

:= c̄.

This finishes the construction of TΦ. a

Using Lemma 1.4, in particular (ii), it is easy to verify that:

Lemma 1.6. TΦ is well-defined. a

To complete the definition of an S-interpretation, we still need to provide an assignment of the
variables v0, v1, . . . in TΦ.

Definition 1.7. For every variable vi we let

βΦ(vi) := v̄i. a

Finally we let
IΦ :=

(
TΦ,βΦ

)
.

Lemma 1.8. (i) For any t ∈ TS
IΦ(t) = t̄.

(ii) For every atomic ϕ

IΦ |= ϕ ⇐⇒ Φ ` ϕ. a

Proof: (i) We proceed by induction on t.

• t = vi is a variable. Then
IΦ(vi) = β

Φ(vi) = v̄i.

• t = c is a constant. Then
IΦ(c) = cT

Φ

= c̄

• t = ft1 · · · tn. Then

IΦ(ft1 · · · tn) = fT
Φ

(IΦ(t1), . . . ,IΦ(tn))

= fT
Φ

(t̄1, . . . , t̄n) (by induction hypothesis)

= ft1 · · · tn.

(ii) Recall that there are two types of atomic formulas. For the first type, let ϕ = t1 ≡ t2. Then

IΦ |= t1 ≡ t2 ⇐⇒ IΦ(t1) = IΦ(t2)

⇐⇒ t̄1 = t̄2 (by (i))

⇐⇒ t1 ∼ t2

⇐⇒ Φ ` t1 ≡ t2.

Second, let ϕ = Rt1 · · · tn. We deduce

IΦ |= Rt1 · · · tn ⇐⇒
(
IΦ(t1), . . . ,IΦ(tn)

)
∈ RTΦ

⇐⇒
(
t̄1, . . . , t̄n

)
∈ RTΦ

(by (i))

⇐⇒ Φ ` Rt1 · · · tn.
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Lemma 1.9. Let ϕ be an S-formula and x1, . . . , xn pairwise distinct variables. Then

(i) IΦ |= ∃x1 . . . ∃xnϕ if and only if there are S-terms t1, . . . , tn such that

IΦ |= ϕ
t1 . . . tn
x1 . . . xn

.

(ii) IΦ |= ∀x1 . . . ∀xnϕ if and only if for all S-terms t1, . . . , tn we have

IΦ |= ϕ
t1 . . . tn
x1 . . . xn

.

Proof: We prove (i), then (ii) follows immediately.

IΦ |=∃x1 . . . ∃xnϕ

⇐⇒ IΦ
a1 . . .an
x1 . . . xn

|= ϕ for some a1, . . . ,an ∈ TΦ,

i.e., IΦ
t̄1 . . . t̄n
x1 . . . xn

|= ϕ for some t1, . . . , tn ∈ TS,

⇐⇒ IΦ
IΦ(t1) . . . IΦ(tn)

x1 . . . xn
|= ϕ for some t1, . . . , tn ∈ TS, (by Lemma 1.8 (i))

⇐⇒ IΦ |= ϕ
t1 . . . tn
x1 . . . xn

for some t1, . . . , tn ∈ TS, (by the Substitution Lemma).

2

Definition 1.10. (i) Φ is negation complete if for every S-formula ϕ

Φ ` ϕ or Φ ` ¬ϕ.

(ii) Φ contains witnesses if for every S-formula ϕ and every variable x there is a term t ∈ TS
with

Φ `
(
∃xϕ→ ϕ

t

x

)
. a

Lemma 1.11. Assume that Φ is consistent, negation complete, and contains witnesses. Then for all
S-formulas ϕ and ψ:

(i) Φ ` ϕ if and only if Φ 6` ¬ϕ.

(ii) Φ ` (ϕ∨ψ) if and only if Φ ` ϕ or Φ ` ψ.

(iii) Φ ` ∃xϕ if and only if there is a term t ∈ Ts such that Φ ` ϕ t
x

.

Proof: (i) Assume that Φ ` ϕ. Since Φ is consistent, we conclude that Φ 6` ¬ϕ. Conversely, if
Φ 6` ¬ϕ, then Φ ` ϕ by the negation completeness.

(ii) The direction from right to left is trivial by ∨-introduction in succedent. For the other direction,
assume that Φ ` (ϕ ∨ ψ) and Φ 6` ϕ. By the negation completeness, Φ ` ¬ϕ. Then for some
finite Γ ⊆ Φ we have the following sequent proof.

...
m. Γ1 (ϕ∨ψ)

...
n. Γ2 ¬ϕ

(n+ 1). Γ1 Γ2 ϕ ¬ϕ (antecedent by n)
(n+ 2). Γ1 Γ2 ϕ ϕ (assumption)
(n+ 3). Γ1 Γ2 ϕ ψ (modified contradiction by n+ 1 and n+ 2)
(n+ 4). Γ1 Γ2 ψ ψ (assumption)
(n+ 5). Γ1 Γ2 (ϕ∨ψ) ψ (V-introduction in antecedent)
(n+ 6). Γ1 Γ2 ψ (chain rule by m and n+ 5)
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(iii) Let Φ ` ∃xϕ and Φ contain witnesses. Thus there is a term t ∈ TS such that

Φ `
(
∃xϕ→ ϕ

t

x

)
.

By Modus ponens1, we conclude Φ ` ϕ t
x

. The converse is by the rule of the ∃-introduction in
succedent. 2

Theorem 1.12 (Henkin’s Theorem). Let Φ ⊆ LS be consistent, negation complete, and contain
witnesses. Then for every S-formula ϕ

IΦ |= ϕ ⇐⇒ Φ ` ϕ.

Proof: We proceed by induction on ϕ.

• ϕ is atomic. This is Lemma 1.8 (ii).

• ϕ = ¬ψ. Then

IΦ |= ¬ψ ⇐⇒ IΦ 6|= ψ
⇐⇒ Φ 6` ψ (by induction hypothesis)

⇐⇒ Φ ` ¬ψ (by Lemma 1.11 (i)).

• ϕ = (ψ1 ∨ψ2). We deduce

IΦ |= (ψ1 ∨ψ2) ⇐⇒ IΦ |= ψ1 or IΦ |= ψ2

⇐⇒ Φ ` ψ1 or Φ ` ψ2 (by induction hypothesis)

⇐⇒ Φ ` (ψ1 ∨ψ2) (by Lemma 1.11 (ii)).

• ϕ = ∃xψ.

IΦ |= ∃xψ ⇐⇒ IΦ |= ψ
t

x
for some t ∈ TS (by Lemma 1.9)

⇐⇒ Φ ` ψt
x

for some t ∈ TS (by induction hypothesis)

⇐⇒ Φ ` ∃xψ (by Lemma 1.11 (iii)).

Here, note that the length of ψ t
x

could be well larger than that ∃xψ. Thus, our induction is
on the so-called connective rank of ψ, denoted by rk(ϕ), which is defined as follows:

rk(ϕ) :=


0 if ϕ is atomic,
1 + rk(ψ) if ϕ = ¬ψ,
1 + rk(ψ1) + rk(ψ2) if ϕ = (ψ1 ∨ψ2),
1 + rk(ψ) if ϕ = ∃xψ.

2

Corollary 1.13. Let Φ ⊆ LS be consistent, negation complete, and contain witnesses. Then

IΦ |= Φ.

In particular, Φ is satisfiable.

1That is, ifΦ ` ϕ andΦ ` ϕ→ ψ, thenΦ ` ψ.
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