Mathematical Logic (VII)

Yijia Chen

1 Completeness

The goal of this section is to show: **Theorem 1.1** (Completeness). If $\Phi \models \varphi$, then $\Phi \vdash \varphi$. \dashv We observe that the contrapositive of Theorem 1.1 is: $\Phi \nvDash \varphi$ implies $\Phi \nvDash \varphi$ \iff if $\Phi \cup \{\neg \varphi\}$ is consistent, then $\Phi \cup \{\neg \varphi\}$ is satisfiable. As a matter of fact, we actually will prove the following general statement. **Theorem 1.2.** $cons(\Phi)$ *implies that* Φ *is satisfiable.* \dashv **1.1 Henkin's Theorem** Recall that we fix a set Φ of S-formulas.

Definition 1.3. Let $t_1, t_2 \in T^S$. Then $t_1 \sim t_2$ if $\Phi \vdash t_1 \equiv t_2$.

Lemma 1.4. (i) ~ is an **equivalence** relation.

(ii) \sim is a **congruence** relation. That is:

- For every n-ary function symbol $R\in S$ and $2\cdot n$ S-terms $t_1\sim t_1',\,\ldots,\,t_n\sim t_n'$, we have

$$ft_1\cdots t_n\sim ft_1'\cdots t_n'$$

- For every n-ary relation symbol $R\in S$ and $2\cdot n$ S-terms $t_1\sim t_1',\,\ldots,\,t_n\sim t_n'$, we have

$$\Phi \vdash \mathsf{Rt}_1 \cdots t_n \quad \Longleftrightarrow \quad \Phi \vdash \mathsf{Rt}'_1 \cdots t'_n. \qquad \qquad \dashv$$

Proof: By the equality rule and the substitution rule.

Now for every $t\in\mathsf{T}^S$ we define

$$\overline{\mathfrak{t}} := \{\mathfrak{t}' \in \mathsf{T}^{\mathsf{S}} \mid \mathfrak{t}' \sim \mathfrak{t}\},\$$

i.e., the equivalence class of t.

Definition 1.5. The **term structure for** Φ , denoted by \mathfrak{T}^{Φ} , is defined as below.

- (i) The universe is $T^{\Phi} := \{ \overline{t} \mid t \in T^{S} \}.$
- (ii) For every n-ary relation symbol $R\in S,$ and $\bar{t}_1,\ldots,\bar{t}_n\in T^\Phi$

$$(\overline{t}_1,\ldots,\overline{t}_n)\in R^{\mathfrak{T}^{\Phi}}$$
 if $\Phi\vdash Rt_1\ldots t_n$.

 \dashv

(iii) For every n-ary function symbol $f\in S,$ and $\overline{t}_1,\ldots,\overline{t}_n\in \mathsf{T}^\Phi$

$$f^{\mathfrak{T}^{\Phi}}(\overline{t}_1,\ldots,\overline{t}_n):=\overline{ft_1\cdots t_n}.$$

(iv) For every constant $c \in S$

$$c^{\mathfrak{T}^{\Phi}} := \overline{c}.$$

This finishes the construction of \mathfrak{T}^{Φ} .

Using Lemma 1.4, in particular (ii), it is easy to verify that:

Lemma 1.6. \mathfrak{T}^{Φ} is well-defined.

To complete the definition of an S-interpretation, we still need to provide an assignment of the variables v_0, v_1, \ldots in \mathfrak{T}^{Φ} .

 $\mathfrak{I}^{\Phi} := \left(\mathfrak{T}^{\Phi}, \beta^{\Phi}\right).$

 $\mathfrak{I}^{\Phi}(\mathfrak{t}) = \overline{\mathfrak{t}}.$

 $\mathfrak{I}^{\Phi}(\nu_i)=\beta^{\Phi}(\nu_i)=\bar{\nu}_i.$

 $\mathfrak{I}^{\Phi}(\mathbf{c}) = \mathbf{c}^{\mathfrak{T}^{\Phi}} = \bar{\mathbf{c}}$

Definition 1.7. For every variable v_i we let

$$\beta^{\Phi}(v_i) := \bar{v}_i. \qquad \qquad \dashv$$

Finally we let

Lemma 1.8. (i) For any $t \in T^S$

(ii) For every **atomic** φ

$$\mathfrak{I}^{\Phi}\models\varphi\quad\Longleftrightarrow\quad\Phi\vdash\varphi.\qquad\qquad \dashv$$

Proof: (i) We proceed by induction on t.

- $t = v_i$ is a variable. Then
- t = c is a constant. Then
- $t = ft_1 \cdots t_n$. Then

$$\begin{split} \mathfrak{I}^{\Phi}(\mathsf{f} t_1 \cdots t_n) &= \mathsf{f}^{\mathfrak{T}^{\Phi}}(\mathfrak{I}^{\Phi}(t_1), \dots, \mathfrak{I}^{\Phi}(t_n)) \\ &= \mathsf{f}^{\mathfrak{T}^{\Phi}}(\bar{t}_1, \dots, \bar{t}_n) \\ &= \overline{\mathsf{f} t_1 \cdots t_n}. \end{split} \tag{by induction hypothesis}$$

(ii) Recall that there are two types of atomic formulas. For the first type, let $\phi = t_1 \equiv t_2$. Then

$$\begin{split} \mathfrak{I}^{\Phi} &\models t_1 \equiv t_2 \iff \mathfrak{I}^{\Phi}(t_1) = \mathfrak{I}^{\Phi}(t_2) \\ \iff \overline{t}_1 = \overline{t}_2 \qquad \qquad (by \ (i)) \\ \iff t_1 \sim t_2 \\ \iff \Phi \vdash t_1 \equiv t_2. \end{split}$$

Second, let $\phi = Rt_1 \cdots t_n$. We deduce

$$\begin{split} \mathfrak{I}^{\Phi} &\models \mathsf{R} t_1 \cdots t_n \iff \left(\mathfrak{I}^{\Phi}(t_1), \dots, \mathfrak{I}^{\Phi}(t_n) \right) \in \mathsf{R}^{\mathfrak{T}^{\Phi}} \\ \iff \left(\overline{t}_1, \dots, \overline{t}_n \right) \in \mathsf{R}^{\mathfrak{T}^{\Phi}} \\ \iff \Phi \vdash \mathsf{R} t_1 \cdots t_n. \end{split} \tag{by (i)}$$

-

 \dashv

Lemma 1.9. Let φ be an S-formula and x_1, \ldots, x_n pairwise distinct variables. Then

(i) $\mathfrak{I}^{\Phi} \models \exists x_1 \dots \exists x_n \phi$ if and only if there are S-terms t_1, \dots, t_n such that

$$\mathfrak{I}^{\Phi} \models \varphi \frac{\mathfrak{t}_1 \dots \mathfrak{t}_n}{\mathfrak{x}_1 \dots \mathfrak{x}_n}$$

(ii) $\mathfrak{I}^{\Phi} \models \forall x_1 \dots \forall x_n \varphi$ if and only if for all S-terms t_1, \dots, t_n we have

$$\mathfrak{I}^{\Phi} \models \varphi \frac{\mathfrak{t}_1 \dots \mathfrak{t}_n}{\mathfrak{x}_1 \dots \mathfrak{x}_n}.$$

Proof: We prove (i), then (ii) follows immediately.

$$\begin{split} \mathfrak{I}^{\Phi} &\models \exists x_{1} \ldots \exists x_{n} \varphi \\ &\iff \mathfrak{I}^{\Phi} \frac{a_{1} \ldots a_{n}}{x_{1} \ldots x_{n}} \models \varphi \text{ for some } a_{1}, \ldots, a_{n} \in \mathsf{T}^{\Phi}, \\ &\text{ i.e., } \mathfrak{I}^{\Phi} \frac{\tilde{t}_{1} \ldots \tilde{t}_{n}}{x_{1} \ldots x_{n}} \models \varphi \text{ for some } t_{1}, \ldots, t_{n} \in \mathsf{T}^{S}, \\ &\iff \mathfrak{I}^{\Phi} \frac{\mathfrak{I}^{\Phi}(t_{1}) \ldots \mathfrak{I}^{\Phi}(t_{n})}{x_{1} \ldots x_{n}} \models \varphi \text{ for some } t_{1}, \ldots, t_{n} \in \mathsf{T}^{S}, \\ &\iff \mathfrak{I}^{\Phi} \models \varphi \frac{t_{1} \ldots t_{n}}{x_{1} \ldots x_{n}} \text{ for some } t_{1}, \ldots, t_{n} \in \mathsf{T}^{S}, \\ &\iff \mathfrak{I}^{\Phi} \models \varphi \frac{t_{1} \ldots t_{n}}{x_{1} \ldots x_{n}} \text{ for some } t_{1}, \ldots, t_{n} \in \mathsf{T}^{S}, \\ & \Box \end{split}$$

Definition 1.10. (i) Φ is **negation complete** if for every S-formula φ

$$\Phi \vdash \varphi$$
 or $\Phi \vdash \neg \varphi$.

(ii) Φ contains witnesses if for every S-formula ϕ and every variable x there is a term $t\in T^S$ with

$$\Phi \vdash \left(\exists x \phi \to \phi \frac{t}{x}\right). \qquad \exists$$

Lemma 1.11. Assume that Φ is consistent, negation complete, and contains witnesses. Then for all S-formulas φ and ψ :

- (*i*) $\Phi \vdash \varphi$ *if and only if* $\Phi \not\vdash \neg \varphi$.
- (ii) $\Phi \vdash (\phi \lor \psi)$ if and only if $\Phi \vdash \phi$ or $\Phi \vdash \psi$.
- (iii) $\Phi \vdash \exists x \varphi$ if and only if there is a term $t \in T^s$ such that $\Phi \vdash \varphi \frac{t}{x}$.

Proof: (i) Assume that $\Phi \vdash \varphi$. Since Φ is consistent, we conclude that $\Phi \not\vdash \neg \varphi$. Conversely, if $\Phi \not\vdash \neg \varphi$, then $\Phi \vdash \varphi$ by the negation completeness.

(ii) The direction from right to left is trivial by \lor -introduction in succedent. For the other direction, assume that $\Phi \vdash (\phi \lor \psi)$ and $\Phi \not\vdash \phi$. By the negation completeness, $\Phi \vdash \neg \phi$. Then for some finite $\Gamma \subseteq \Phi$ we have the following sequent proof.

m.	: Γ ₁	$(\phi \lor \psi)$	
n.	Γ_2	$\neg \phi$	
(n + 1).	$\Gamma_1 \Gamma_2 \varphi$	$\neg \phi$	(antecedent by n)
(n + 2).	$\Gamma_1 \Gamma_2 \varphi$	φ	(assumption)
(n + 3).	$\Gamma_1 \Gamma_2 \varphi$	ψ	(modified contradiction by $n + 1$ and $n + 2$)
(n + 4).	$\Gamma_1 \Gamma_2 \psi$	ψ	(assumption)
(n + 5).	$\Gamma_1 \Gamma_2 (\phi \lor \psi)$	ψ	(V-introduction in antecedent)
(n + 6).	$\Gamma_1 \Gamma_2$	ψ	(chain rule by m and $n + 5$)

(iii) Let $\Phi \vdash \exists x \phi$ and Φ contain witnesses. Thus there is a term $t \in T^S$ such that

$$\Phi \vdash \left(\exists x \phi \to \phi \frac{t}{x}\right).$$

By Modus ponens¹, we conclude $\Phi \vdash \varphi \frac{t}{x}$. The converse is by the rule of the \exists -introduction in succedent. \Box

Theorem 1.12 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then for every S-formula ϕ

$$\mathfrak{I}^\Phi\models \phi\quad\Longleftrightarrow\quad\Phi\vdash \phi.$$

Proof: We proceed by induction on φ .

- φ is atomic. This is Lemma 1.8 (ii).
- $\phi = \neg \psi$. Then

$$\begin{split} \mathfrak{I}^{\Phi} &\models \neg \psi \iff \mathfrak{I}^{\Phi} \not\models \psi \\ & \Longleftrightarrow \Phi \not\vdash \psi \\ & \Leftrightarrow \Phi \vdash \neg \psi \end{split} (by induction hypothesis) \\ & \Leftrightarrow \Phi \vdash \neg \psi \qquad (by Lemma 1.11 (i)). \end{split}$$

• $\phi = (\psi_1 \lor \psi_2)$. We deduce

$$\begin{split} \mathfrak{I}^{\Phi} &\models (\psi_1 \lor \psi_2) \iff \mathfrak{I}^{\Phi} \models \psi_1 \text{ or } \mathfrak{I}^{\Phi} \models \psi_2 \\ \iff \Phi \vdash \psi_1 \text{ or } \Phi \vdash \psi_2 \\ \iff \Phi \vdash (\psi_1 \lor \psi_2) \end{split} \tag{by induction hypothesis)}$$

• $\varphi = \exists x \psi$.

$$\mathfrak{I}^{\Phi} \models \exists x \psi \iff \mathfrak{I}^{\Phi} \models \psi \frac{t}{x} \text{ for some } t \in \mathsf{T}^{\mathsf{S}}$$
 (by Lemma 1.9)
$$\Leftrightarrow \Phi \vdash \psi \frac{t}{x} \text{ for some } t \in \mathsf{T}^{\mathsf{S}}$$
 (by induction hypothesis)
$$\Leftrightarrow \Phi \vdash \exists x \psi$$
 (by Lemma 1.11 (iii)).

Here, note that the length of $\psi \frac{t}{x}$ could be well larger than that $\exists x\psi$. Thus, our induction is on the so-called **connective rank** of ψ , denoted by $rk(\varphi)$, which is defined as follows:

$$\label{eq:rk} rk(\phi) := \begin{cases} 0 & \text{if ϕ is atomic,} \\ 1 + rk(\psi) & \text{if $\phi = \neg \psi$,} \\ 1 + rk(\psi_1) + rk(\psi_2) & \text{if $\phi = (\psi_1 \lor \psi_2)$,} \\ 1 + rk(\psi) & \text{if $\phi = \exists x \psi$.} \end{cases}$$

Corollary 1.13. Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then

$$\mathfrak{I}^{\Phi} \models \Phi.$$

In particular, Φ is satisfiable.

¹That is, if $\Phi \vdash \varphi$ and $\Phi \vdash \varphi \rightarrow \psi$, then $\Phi \vdash \psi$.