Mathematical Logic (VIII)

Yijia Chen

1 Completeness

1.1 Henkin's Theorem

Recall that we fix a set Φ of S-formulas.

Definition 1.1. (i) Φ is **negation complete** if for every S-formula φ

$$
\Phi \vdash \phi \quad \text{or} \quad \Phi \vdash \neg \phi.
$$

(ii) Φ **contains witnesses** if for every S-formula φ and every variable x there is a term $t \in T^S$ with

$$
\Phi \vdash \left(\exists x \phi \rightarrow \phi \frac{t}{x} \right).
$$

Theorem 1.2 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain wit*nesses. Then for every* S*-formula* ϕ

$$
\mathfrak{I}^\Phi \models \phi \quad \Longleftrightarrow \quad \Phi \vdash \phi.
$$

Corollary 1.3. *Let* Φ ⊆ L ^S *be consistent, negation complete, and contain witnesses. Then*

$$
\mathfrak{I}^\Phi \models \Phi.
$$

In particular, Φ *is satisfiable.*

1.2 The countable case

We fix a symbol set S which is at most countable. As a consequence, both T^S and L^S are countable. Let $\Phi \subseteq \mathsf{L}^\mathsf{S}$ we define

$$
\text{free}(\Phi) := \bigcup_{\phi \in \Phi} \text{free}(\phi).
$$

We will prove the following two lemmas.

Lemma 1.4. *Let* Φ ⊆ L ^S *be consistent with finite* free(Φ)*. Then there is a consistent* Ψ *with* $\Phi \subseteq \Psi \subseteq L^S$ such that Ψ contains witnesses.

Lemma 1.5. Let $\Psi \subseteq \mathsf{L}^S$ be consistent. Then there is a consistent Θ with $\Psi \subseteq \Theta \subseteq \mathsf{L}^S$ such that Θ is *negation complete.*

Corollary 1.6. *Let* Φ ⊆ L ^S *be consistent with finite* free(Φ)*. Then there is a* Θ *such that*

- Φ ⊆ Θ ⊆ L S *;*
- Θ *is consistent, negation complete, and contains witnesses.*

Corollary 1.7. Let $\Phi \subseteq L^S$ be consistent with finite free(Φ). Then Φ is satisfiable.

Proof: By Corollary 1.6 and Corollary 1.3. ◯

Proof of Lemma 1.4: Recall L^S is countable, thus we can enumerate all S-formulas

$$
\exists x_0 \varphi_0, \exists x_1 \varphi_1, \ldots,
$$

which start with an existential quantifier. Then we define inductively for every $n \in \mathbb{N}$ an S-formula ψ_n as follows. Assume that ψ_m has been defined for all $m < n$. Let

$$
\mathfrak{i}_n:=min\bigl\{ \mathfrak{i}\in\mathbb{N} \bigm| \nu_\mathfrak{i}\not\in free\bigl(\Phi\cup\{\psi_m\mid m< n\}\cup\{\exists x_n\phi_n\}\bigr)\bigr\}.
$$

That is, i_n is the smallest index i such that v_i is not free in $\Phi \cup {\psi_m \mid m < n} \cup {\exists x_n \varphi_n}$. Then we set

$$
\psi_n:=\left(\exists x_n\phi_n\to\phi_n\frac{\nu_{i_n}}{x_n}\right)
$$

.

Next, let

 $\Phi_n := \Phi \cup \{\psi_m \mid m < n\},\$

and $\Psi:=\bigcup_{n\in\mathbb{N}}\Phi_n.$ It should be clear that Φ contains witness. So what remains is to show that Ψ is consistent, or equivalently every Φ_n is consistent.

Recall that $\Phi_0 = \Phi$ is consistent by our assumption. Towards a contradiction, assume that Φ_n is consistent, but Φ_{n+1} is not. Therefore, for every χ with $v_{i,n} \notin free(\chi)$ there is a finite $\Gamma \subseteq \Phi_n$ with the following deduction.

Now by taking $\chi := \exists v_0 v_0 \equiv v_0$ and $\chi := \neg \exists v_0 v_0 \equiv v_0$ we conclude that Φ_n is inconsistent, which contradicts our assumption. \Box

Proof of Lemma 1.5: Let $\varphi_0, \varphi_1, \ldots$ be an enumeration of L^s. For every $n \in \mathbb{N}$ we define Θ_n by induction. First $\Theta_0 := \Psi$. Then,

$$
\Theta_{n+1}:=\begin{cases} \Theta_n\cup\{\phi_n\} & \text{if } \Theta_n\cup\{\phi_n\} \text{ is consistent,} \\ \Theta_n & \text{otherwise.} \end{cases}
$$

It is immediate that every Θ_n is consistent, and the consistency of

$$
\Theta:=\bigcup_{n\in\mathbb{N}}\Theta_n
$$

follows. To see that Θ is negation complete, let $\varphi \in L^S$, in particular $\varphi = \varphi_n$ for some $n \in \mathbb{N}$. Assuming $\Theta \not\vdash \neg \varphi_n$, we conclude $\Theta_n \not\vdash \neg \varphi_n$ by $\Theta_n \subseteq \Theta$. Therefore, $\Theta_n \cup {\varphi}$ is consistent. It follows that $\varphi \in \Theta_{n+1} \subseteq \Theta$, and thus $\Theta \vdash \varphi$.

In the next step we eliminate the condition free(Φ) being finite.

Corollary 1.8. Let S be countable and $\Phi \subseteq L^S$ consistent. Then Φ is satisfiable.

Proof: First, we let

$$
S' := S \cup \{c_0, c_1, \ldots\}.
$$

For every $\varphi \in \mathsf{L}^\mathsf{S}$ we define

$$
\mathfrak{n}(\phi):=\textup{min}\big\{ \mathfrak{n} \ \big| \ \textup{free}(\phi)\subseteq \{\nu_0,\ldots,\nu_{n-1}\}, \textup{i.e., } \phi\in L^S_n\big\},
$$

and let

$$
\phi':=\phi\frac{c_0\ldots c_{n(\phi)-1}}{\nu_0\ldots\nu_{n(\phi)-1}}.
$$

Then we set

$$
\Phi' := \big\{ \phi' \bigm| \phi \in \Phi \big\} \subseteq L^{S'}
$$

Note free $(\Phi') = \emptyset$.

Claim. Φ' is consistent.

Once we establish the claim, together with free $(\Phi') = \emptyset$, Corollary 1.6 implies that there is an S'interpretation $\mathfrak{I}' = (\mathfrak{A}', \beta')$ such that $\mathfrak{I}' \models \Phi'$. Applying the Coincidence Lemma with free $(\Phi') =$ ∅, we can assume without loss of generality that

$$
\beta'(\nu_i) = c_i^{\mathfrak{A}'} = \mathfrak{I}'(c_i). \tag{1}
$$

It follows that for every $\varphi \in \Phi$

$$
3' \models \varphi' \iff 3' \models \varphi \frac{c_0 \dots c_{n(\varphi)-1}}{v_0 \dots v_{n(\varphi)-1}} \n\iff 3' \frac{3'(c_0) \dots 3'(c_{n(\varphi)-1})}{v_0 \dots v_{n(\varphi)-1}} \models \varphi \qquad \text{(by the Substitution Lemma)} \n\iff 3' \frac{\beta'(v_0) \dots \beta'(v_{n(\varphi)-1})}{v_0 \dots v_{n(\varphi)-1}} \models \varphi \qquad \text{(by (1))} \n\text{i.e., } 3' \models \varphi.
$$

That is, \mathfrak{I}' is a model for every $\varphi \in \Phi$. We conclude that Φ is satisfiable.

Now we prove the claim. It suffices to show that every finite subset of Φ' is satisfiable. To that end, let

$$
\Phi_0':=\big\{\phi_1',\ldots,\phi_n'\big\},
$$

where $\phi_1,\ldots,\phi_n\in\Phi.$ Clearly free $(\{\phi_1,\ldots,\phi_n\})$ is finite, and $\{\phi_1,\ldots,\phi_n\}$ is consistent by the consistency of Φ. By Corollary 1.6 there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that for every $i \in [n]$

$$
\mathfrak{I}\models\varphi_{i}.\tag{2}
$$

We expand the S-structure $\mathfrak A$ to an S'-structure $\mathfrak A'$ by setting for every $\mathfrak i\in\mathbb N$

$$
c_i^{\mathfrak{A}'} := \beta(v_i). \tag{3}
$$

Then for the S'-interpretation $\mathfrak{I}' := (\mathfrak{A}', \beta)$ and any $\varphi \in L^S$

$$
3' \models \varphi' \iff 3' \models \varphi \frac{c_0 \dots c_{n(\varphi)-1}}{v_0 \dots v_{n(\varphi)-1}} \\
\iff 3' \frac{3'(c_0) \dots 3'(c_{n(\varphi)-1})}{v_0 \dots v_{n(\varphi)-1}} \models \varphi \qquad \text{(by the Substitution Lemma)}
$$
\n
$$
\iff 3' \frac{c_0^{2l'} \dots c_{n(\varphi)-1}^{2l'}}{v_0 \dots v_{n(\varphi)-1}} \models \varphi
$$
\n
$$
\iff 3' \frac{\beta(v_0) \dots \beta(v_{n(\varphi)-1})}{v_0 \dots v_{n(\varphi)-1}} \models \varphi \qquad \text{(by (3))}
$$
\n
$$
\iff 3' \models \varphi \qquad \text{(by the Coincidence Lemma)}.
$$

It follows that $\mathfrak{I}' \models \Phi'_0$ by (2). Thus Φ'_0 is satisfiable.