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1 Completeness

1.1 Henkin’s Theorem

Recall that we fix a set Φ of S-formulas.

Definition 1.1. (i) Φ is negation complete if for every S-formula ϕ

Φ ` ϕ or Φ ` ¬ϕ.

(ii) Φ contains witnesses if for every S-formula ϕ and every variable x there is a term t ∈ TS
with

Φ `
(
∃xϕ→ ϕ

t

x

)
. a

Theorem 1.2 (Henkin’s Theorem). Let Φ ⊆ LS be consistent, negation complete, and contain wit-
nesses. Then for every S-formula ϕ

IΦ |= ϕ ⇐⇒ Φ ` ϕ.

Corollary 1.3. Let Φ ⊆ LS be consistent, negation complete, and contain witnesses. Then

IΦ |= Φ.

In particular, Φ is satisfiable.

1.2 The countable case

We fix a symbol set S which is at most countable. As a consequence, both TS and LS are countable.
Let Φ ⊆ LS we define

free(Φ) :=
⋃
ϕ∈Φ

free(ϕ).

We will prove the following two lemmas.

Lemma 1.4. Let Φ ⊆ LS be consistent with finite free(Φ). Then there is a consistent Ψ with
Φ ⊆ Ψ ⊆ LS such that Ψ contains witnesses.

Lemma 1.5. Let Ψ ⊆ LS be consistent. Then there is a consistent Θ with Ψ ⊆ Θ ⊆ LS such that Θ is
negation complete.

Corollary 1.6. Let Φ ⊆ LS be consistent with finite free(Φ). Then there is a Θ such that

• Φ ⊆ Θ ⊆ LS;

• Θ is consistent, negation complete, and contains witnesses.
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Corollary 1.7. Let Φ ⊆ LS be consistent with finite free(Φ). Then Φ is satisfiable.

Proof: By Corollary 1.6 and Corollary 1.3. 2

Proof of Lemma 1.4: Recall LS is countable, thus we can enumerate all S-formulas

∃x0ϕ0,∃x1ϕ1, . . . ,

which start with an existential quantifier. Then we define inductively for every n ∈ N an S-formula
ψn as follows. Assume that ψm has been defined for all m < n. Let

in := min
{
i ∈ N

∣∣ vi 6∈ free
(
Φ ∪ {ψm | m < n} ∪ {∃xnϕn}

)}
.

That is, in is the smallest index i such that vi is not free in Φ∪ {ψm | m < n}∪ {∃xnϕn}. Then we
set

ψn :=

(
∃xnϕn → ϕn

vin
xn

)
.

Next, let
Φn := Φ ∪

{
ψm

∣∣ m < n
}

,

and Ψ :=
⋃
n∈NΦn. It should be clear that Φ contains witness. So what remains is to show that Ψ

is consistent, or equivalently every Φn is consistent.

Recall that Φ0 = Φ is consistent by our assumption. Towards a contradiction, assume that Φn
is consistent, but Φn+1 is not. Therefore, for every χ with vin /∈ free(χ) there is a finite Γ ⊆ Φn
with the following deduction.

...

m. Γ
(
¬∃xnϕn ∨ϕn

vin
xn

)
χ

(m+ 1). Γ ¬∃xnϕn ¬∃xnϕn (assumption)

(m+ 2). Γ ¬∃xnϕn
(
¬∃xnϕn ∨ϕn

vin
xn

)
(V-introduction in the
succedent)

(m+ 3). Γ ¬∃xnϕn χ (chain rule)
...

(`). Γ ϕn
vin
xn

χ (similarly)
(`+ 1). Γ ∃xnϕn χ (∃-introduction in the

antecedent)
(`+ 2). Γ χ (case analysis).

Now by taking χ := ∃v0v0 ≡ v0 and χ := ¬∃v0v0 ≡ v0 we conclude that Φn is inconsistent, which
contradicts our assumption. 2

Proof of Lemma 1.5: Let ϕ0,ϕ1, . . . be an enumeration of LS. For every n ∈ N we define Θn by
induction. First Θ0 := Ψ. Then,

Θn+1 :=

{
Θn ∪ {ϕn} if Θn ∪ {ϕn} is consistent,
Θn otherwise.

It is immediate that every Θn is consistent, and the consistency of

Θ :=
⋃
n∈N

Θn

2



follows. To see that Θ is negation complete, let ϕ ∈ LS, in particular ϕ = ϕn for some n ∈ N.
Assuming Θ 6` ¬ϕn, we conclude Θn 6` ¬ϕn by Θn ⊆ Θ. Therefore, Θn ∪ {ϕ} is consistent. It
follows that ϕ ∈ Θn+1 ⊆ Θ, and thus Θ ` ϕ. 2

In the next step we eliminate the condition free(Φ) being finite.

Corollary 1.8. Let S be countable and Φ ⊆ LS consistent. Then Φ is satisfiable.

Proof: First, we let
S ′ := S ∪ {c0, c1, . . .}.

For every ϕ ∈ LS we define

n(ϕ) := min
{
n
∣∣ free(ϕ) ⊆ {v0, . . . , vn−1}, i.e., ϕ ∈ LSn

}
,

and let
ϕ ′ := ϕ

c0 . . . cn(ϕ)−1

v0 . . . vn(ϕ)−1
.

Then we set
Φ ′ :=

{
ϕ ′ ∣∣ ϕ ∈ Φ}

⊆ LS′

Note free(Φ ′) = ∅.

Claim. Φ ′ is consistent.

Once we establish the claim, together with free(Φ ′) = ∅, Corollary 1.6 implies that there is an S ′-
interpretation I ′ = (A ′,β ′) such that I ′ |= Φ ′. Applying the Coincidence Lemma with free(Φ ′) =
∅, we can assume without loss of generality that

β ′(vi) = c
A′

i = I ′(ci). (1)

It follows that for every ϕ ∈ Φ

I ′ |= ϕ ′ ⇐⇒ I ′ |= ϕ
c0 . . . cn(ϕ)−1

v0 . . . vn(ϕ)−1

⇐⇒ I ′ I
′(c0) . . . I ′(cn(ϕ)−1)

v0 . . . vn(ϕ)−1
|= ϕ (by the Substitution Lemma)

⇐⇒ I ′β
′(v0) . . .β ′(vn(ϕ)−1)

v0 . . . vn(ϕ)−1
|= ϕ (by (1))

i.e., I ′ |= ϕ.

That is, I ′ is a model for every ϕ ∈ Φ. We conclude that Φ is satisfiable.

Now we prove the claim. It suffices to show that every finite subset of Φ ′ is satisfiable. To that
end, let

Φ ′
0 :=

{
ϕ ′

1, . . . ,ϕ ′
n

}
,

where ϕ1, . . . ,ϕn ∈ Φ. Clearly free
(
{ϕ1, . . . ,ϕn}

)
is finite, and {ϕ1, . . . ,ϕn} is consistent by the

consistency of Φ. By Corollary 1.6 there is an S-interpretation I = (A,β) such that for every
i ∈ [n]

I |= ϕi. (2)

We expand the S-structure A to an S ′-structure A ′ by setting for every i ∈ N

cA
′

i := β(vi). (3)
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Then for the S ′-interpretation I ′ := (A ′,β) and any ϕ ∈ LS

I ′ |= ϕ ′ ⇐⇒ I ′ |= ϕ
c0 . . . cn(ϕ)−1

v0 . . . vn(ϕ)−1

⇐⇒ I ′ I
′(c0) . . . I ′(cn(ϕ)−1)

v0 . . . vn(ϕ)−1
|= ϕ (by the Substitution Lemma)

⇐⇒ I ′
cA

′

0 . . . cA
′

n(ϕ)−1

v0 . . . vn(ϕ)−1
|= ϕ

⇐⇒ I ′β(v0) . . .β(vn(ϕ)−1)

v0 . . . vn(ϕ)−1
|= ϕ (by (3))

⇐⇒ I ′ |= ϕ

⇐⇒ I |= ϕ (by the Coincidence Lemma).

It follows that I ′ |= Φ ′
0 by (2). Thus Φ ′

0 is satisfiable. 2
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