Mathematical Logic (IX)

Yijia Chen

1. Completeness

Recall that we have shown:

Lemma 1.1. Let $\Phi \subseteq L^S$ and \mathfrak{I}^{Φ} be the term interpretation of Φ . Then for every atomic ϕ

$$\mathfrak{I}^{\Phi}\models\varphi\iff\Phi\vdash\varphi.$$

Theorem 1.2 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then for every S-formula ϕ

$$\mathfrak{I}^{\Phi}\models \varphi \quad \Longleftrightarrow \quad \Phi\vdash \varphi. \qquad \qquad \dashv$$

Corollary 1.3. Let S be countable and $\Phi \subseteq L^S$ consistent with finite free (Φ) . Then there is a Θ such that

 $- \Phi \subseteq \Theta \subseteq L^{S};$

– Θ is consistent, negation complete, and contains witnesses.

Therefore by Theorem 1.2 for every $\phi \in L^S$

 $\mathfrak{I}^{\Theta}\models\phi\quad\Longleftrightarrow\quad\Theta\vdash\phi.$

In particular

$$\mathfrak{I}^{\Theta} \models \Phi,$$

thus Φ is satisfiable.

In the next step we eliminate the condition free(Φ) being finite.

Corollary 1.4. Let S be countable and $\Phi \subseteq L^S$ consistent. Then Φ is satisfiable.

1.1. The general case.

Lemma 1.5. Let $\Phi \subseteq L^S$ be consistent. Then there is a symbol set S' with $S \subseteq S'$ and a consistent Ψ with $\Phi \subseteq \Psi \subseteq L^{S'}$ such that Ψ contains witnesses.

Lemma 1.6. Let $\Psi \subseteq L^S$ be consistent. Then there is a consistent Θ with $\Psi \subseteq \Theta \subseteq L^S$ such that Θ is negation complete.

Then the next corollary follows from Lemmas 1.5 and 1.6 in the same fashion as that of Corollary 1.3.

Corollary 1.7. Let $\Phi \subseteq L^S$ be consistent. Then Φ is satisfiable.

Н

 \neg

We need some technical tools for proving Lemma 1.5. Let S be an arbitrary symbol set. For every $\varphi \in L^S$ we introduce a constant $c_{\varphi} \notin S$. In particular, $c_{\varphi} \neq c_{\psi}$ for any $\varphi \neq \psi$. Then we set

$$\begin{split} S^* &:= S \cup \big\{ c_{\exists x \phi} \ \big| \ \exists x \phi \in L^S \big\}, \\ W(S) &:= \Big\{ \exists x \phi \to \phi \frac{c_{\exists x \phi}}{x} \ \big| \ \exists x \phi \in L^S \Big\}. \end{split}$$

It is obvious that $c_{\exists x \phi}$ is introduced as a witness for $\exists x \phi$ as required by W(S). Nevertheless, we pay a price for expanding the symbol set S to S^{*}, i.e., there are formulas of the form $\exists x \varphi$ in $L^{S^*} \setminus L^S$, e.g.,

$$\exists v_7 c_{\exists x R x} \equiv v_7.$$

Lemma 1.8. Assume that $\Phi \subseteq L^S$ is consistent. Then

$$\Phi \cup W(S) \subseteq L^{S}$$

is consistent as well.

Proof: It suffices to show that every finite subset Φ_0^* of $\Phi \cup W(S) \subseteq L^{S^*}$ is satisfiable. Let

$$\Phi_0^* = \Phi_0 \cup \left\{ \exists x_1 \varphi_1 \to \varphi_1 \frac{c_1}{x_1}, \dots, \exists x_n \varphi_n \to \varphi_n \frac{c_n}{x_n} \right\}$$

where $\Phi_0 \subseteq \Phi$ is finite, every $\exists x_i \phi_i \in L^S$, and $c_i = c_{\exists x_i \phi_i}$ for $i \in [n]$. Choose a finite $S_0 \subseteq S$ such that $\Phi_0 \subseteq L^{S_0}$. Note that Φ_0 is consistent due to the consistency of Φ . Furthermore free (Φ_0) is finite¹. Therefore Φ_0 is satisfiable by Corollary 1.3, i.e., there is an S₀-interpretation $\mathfrak{I}_0 = (\mathfrak{A}_0, \beta)$ such that

$$\mathfrak{I}_0 \models \Phi_0$$

Note that \mathfrak{A}_0 is an S_0 -structure. By choosing some arbitrary interpretation of the symbols in $S \setminus S_0$ we obtain an S-structure a. Then the Coincidence Lemma guarantees that for the S-interpretation $\mathfrak{I} := (\mathfrak{A}, \beta)$

$$\mathfrak{I}\models\Phi_0$$

Next, we need to further expand \mathfrak{A} to an S^{*}-structure \mathfrak{A}^* by giving interpretation of all new constants $c_{\exists x \omega}$. Let $a \in A$ be an arbitrary but fixed element. Then for every $i \in [n]$ we set

$$c_{i}^{\mathfrak{A}^{*}} := \begin{cases} a_{i} & \text{if there is an } a_{i} \in A \text{ with } \mathfrak{I} \models \phi_{i} \frac{a_{i}}{x_{i}}, \\ & \text{(choose an arbitrary one, if there are more than one such } a_{i}) \\ a & \text{otherwise.} \end{cases}$$

For all the other new constants $c_{\exists x \varphi}$ we simply let $c_{\exists x \varphi}^{\mathfrak{A}^*} := \mathfrak{a}$. Then for the S*-interpretation $\mathfrak{I}^* := (\mathfrak{A}^*, \beta)$ we claim

$$\mathfrak{I}^* \models \Phi_0 \cup \left\{ \exists x_1 \varphi_1 \to \varphi_1 \frac{c_1}{x_1}, \dots, \exists x_n \varphi_n \to \varphi_n \frac{c_n}{x_n} \right\}.$$

 $\mathfrak{I}^* \models \Phi_0$ is immediate by $\mathfrak{I} \models \Phi_0$ and the Coincidence Lemma. Let $\mathfrak{i} \in [\mathfrak{n}]$ and assume $\mathfrak{I}^* \models \exists x_{\mathfrak{i}} \varphi_{\mathfrak{i}}$, or equivalently $\mathfrak{I} \models \exists x_i \varphi_i$. Then by our choice of $a_i \in A$

$$\Im \models \varphi_i \frac{a_i}{x_i},$$

hence

$$\mathfrak{I}^* \models \exists x_i \varphi_i \to \varphi_i \frac{c_i}{x_i},\tag{1}$$

by the Coincidence Lemma and by the Substitution Lemma. Note (1) trivially holds if $\mathfrak{I}^* \not\models \exists x_i \varphi_i$. This finishes the proof.

¹Here, we can also apply Corollary 1.4 without using the finiteness of free (Φ_0). But then this would introduce a further layer of construction as in the proof of Corollary 1.4.

Lemma 1.9. Let

$$S_0 \subseteq S_1 \subseteq \cdots \subseteq S_n \subseteq \cdots$$

be a sequence of symbol sets. Furthermore, for every $n \in \mathbb{N}$ let Φ_n be a set of S_n -formulas such that

$$\Phi_0 \subseteq \Phi_1 \subseteq \cdots \subseteq \Phi_n \subseteq \cdots$$

We set

$$S := \bigcup_{n \in \mathbb{N}} S_n$$
 and $\Phi := \bigcup_{n \in \mathbb{N}} \Phi_n$.

Then Φ is a consistent set of S-formulas if and only if every Φ_n is consistent.

Proof: We prove that

$$\Phi$$
 is inconsistent $\iff \Phi_n$ is inconsistent for some $n \in \mathbb{N}$.

The direction from right to left is trivial. So assume that Φ is inconsistent. In particular, for some $\varphi \in L^S$ there are proofs of φ and $\neg \varphi$ from Φ . Since proofs in sequent calculus are all finite, we can choose a finite $S' \subseteq S$ such that every formula used in the proofs of φ and $\neg \varphi$ is an S'-formula. For the same reason, for a sufficiently large $n \in \mathbb{N}$ we have

(i)
$$S' \subseteq S_n$$
,

(ii)
$$\Phi_n \vdash \varphi$$
 and $\Phi_n \vdash \neg \varphi$.

Thus Φ_n is inconsistent.

Remark 1.10. Note at this point we have not shown the following seemingly trivial result. Let S be an (infinite) set of symbols, a finite $\Phi \subseteq L^S$, and $\varphi \in L^S$ such that $\Phi \vdash \varphi$. Furthermore, let $S_0 \subseteq S$ be the set of symbols that occur in Φ and φ . Then there is a proof of sequence calculus for $\Phi \vdash \varphi$ such that every formula occurs in the proof is an S_0 -formula, i.e., only uses symbols in S_0 .

This is the reason in the proof of Lemma 1.9 we need to emphasize (i). \dashv

Proof of Lemma 1.5: Let

$$\begin{split} S_0 &:= S \quad \text{and} \quad S_{n+1} &:= (S_n)^*, \\ \Psi_0 &:= \Phi \quad \text{and} \quad \Psi_{n+1} &:= \Psi_n \cup W(S_n). \end{split}$$

Therefore

$$S = S_0 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots$$
$$\Phi = \Psi_0 \subseteq \cdots \subseteq \Psi_n \subseteq \Psi_{n+1} \subseteq \cdots$$

Then we set

$$S' := \bigcup_{n \in \mathbb{N}} S_n$$
 and $\Psi := \bigcup_{n \in \mathbb{N}} \Psi_n$.

By Lemma 1.8 and induction on n we conclude that every Ψ_n is consistent. Thus Lemma 1.9 implies that Ψ is a consistent set of S'-formulas.

By our construction of $W(S_n)$, the set Ψ trivially contains witnesses.

The proof of Lemma 1.6 relies on well-known Zorn's Lemma. Let M be a set and $\mathcal{U} \subseteq \mathscr{P}ow(M) = \{T \mid T \subseteq M\}$. We say that a *nonempty* subset $C \subseteq \mathcal{U}$ is a *chain* in \mathcal{U} if for every $T_1, T_2 \in C$ either $T_1 \subseteq T_2$ or $T_2 \subseteq T_1$.

Lemma 1.11 (Zorn's Lemma²). Assume that for every chain C in U we have

$$\bigcup C := \{ a \mid a \in T \text{ for some } T \in C \} \in U.$$

Then U has a maximal element T, i.e., there is no $T' \in U$ with $T \subsetneq T'$.

Proof of Lemma 1.6 In order to apply Zorn's Lemma we let $M := L^S$ and

 $\mathcal{U} := \{ \Theta \mid \Psi \subseteq \Theta \subseteq L^{S} \text{ and } \Theta \text{ is consistent} \}.$

Let C be a chain in \mathcal{U} . We set

$$\Theta_{\mathsf{C}} := \bigcup \mathsf{C} = \big\{ \varphi \mid \varphi \in \Theta \text{ for some } \Theta \in \mathsf{C} \big\}.$$

 $C \neq \emptyset$ implies $\Psi \subseteq \Theta_C$. To see that Θ_C is consistent, let $\{\varphi_1, \ldots, \varphi_n\}$ be a finite subset of Θ_C , in particular, there are $\Theta_i \in C$ such that $\varphi_i \in \Theta_i$. As C is a chain, without loss of generality, we can assume that every $\Theta_i \subseteq \Theta_n$. Since $\Theta_n \in C$ is consistent by the definition of \mathcal{U} , we conclude $\{\varphi_1, \ldots, \varphi_n\}$ is consistent as well.

Thus the condition in Zorn's Lemma is satisfied. It follows that \mathcal{U} has a maximal element Θ . We claim that Θ is negation complete. Otherwise, for some $\varphi \in L^S$ we have $\Theta \not\vdash \varphi$ and $\Theta \not\vdash \neg \varphi$. Therefore $\varphi \notin \Theta$ and $\Theta \cup \{\varphi\}$ is consistent. As a consequence $\Theta \subsetneq \Theta \cup \{\varphi\} \in \mathcal{U}$. This is a contradiction to the maximality of Θ .

Now we are ready to prove the completeness theorem.

Theorem 1.12. Let $\Phi \subseteq L^S$ and $\varphi \in L^S$. Then

 $\Phi \vdash \varphi \iff \Phi \models \varphi.$

Proof: The direction from left to right is easy by the soundness of sequent calculus. Conversely, assume that $\Phi \not\models \varphi$, then $\Phi \cup \{\neg \varphi\}$ is consistent. By Corollary 1.7, $\Phi \cup \{\neg \varphi\}$ is satisfiable. Then, there is an S-interpretation \Im with $\Im \models \Phi$ and $\Im \models \neg \varphi$ (i.e., $\Im \not\models \varphi$). But this means that $\Phi \not\models \varphi$. \Box

2. The Löwenheim-Skolem Theorem and the Compactness Theorem

Using the term-interpretation, it is routine to verify:

Theorem 2.1 (Löwenheim-Skolem). Let $\Phi \subseteq L^S$ be at most countable and satisfiable. Then there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that

– the universe A of \mathfrak{A} is at most countable,

- and
$$\mathfrak{I} \models \Phi$$
.

The following is a more general version.

Theorem 2.2 (Downward Löwenheim-Skolem). Let $\Phi \subseteq L^S$ be satisfiable. Then there is an Sinterpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that

 $- |A| \leqslant |T^S| = |L^S|,$

- and $\mathfrak{I} \models \Phi$.

Corollary 2.3. Let $S := \{+, \times, <, 0, 1\}$ with the usual meaning and

$$\Phi_{\mathbb{R}} := \big\{ \varphi \in \mathsf{L}^{\mathsf{S}}_{\mathsf{0}} \mid (\mathbb{R}, +, \cdot, <, \mathsf{0}, \mathsf{1}) \models \varphi \big\}.$$

Then there is a countable S-structure \mathfrak{A} with $\mathfrak{A} \models \Phi_{\mathbb{R}}$.

Н

 \dashv

 \dashv

 \dashv

²See Canvas for a proof of Zorn's Lemma.

Theorem 2.4 (Compactness). (a) $\Phi \models \varphi$ if and only if there is a finite $\Phi_0 \subseteq \Phi$ with $\Phi_0 \models \varphi$.

(b) Φ is satisfiable if and only if every finite $\Phi_0 \subseteq \Phi$ is satisfiable.

In fact, the "compactness" is a notion from topology. We can explain the topological perspective of Theorem 2.4 using *finite covers* from analysis. For every $\phi \in L^S$ we define

$$\operatorname{Mod}(\varphi) := \{ \mathfrak{I} \mid \mathfrak{I} \models \varphi \},\$$

and

$$\operatorname{Mod}(\Phi) := \left\{ \mathfrak{I} \mid \mathfrak{I} \models \Phi \right\} = \bigcap_{\psi \in \Phi} \operatorname{Mod}(\psi).$$

We show that Theorem 2.4 is equivalent to the following finite cover property.

Proposition 2.5. $Mod(\phi) \subseteq \bigcup_{\psi \in \Phi} Mod(\psi)$ if and only if for some finite $\Phi_0 \subseteq \Phi$ we have

$$\operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi_0} \operatorname{Mod}(\psi).$$
 \dashv

 \dashv

Proof of Theorem 2.4 using Proposition 2.5:

$$\begin{split} \Phi &\models \phi \iff \operatorname{Mod}(\Phi) \subseteq \operatorname{Mod}(\phi) \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\operatorname{Mod}(\Phi)} \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\bigcap_{\psi \in \Phi}} \operatorname{Mod}(\psi) \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \bigcup_{\psi \in \Phi} \overline{\operatorname{Mod}(\psi)} \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \bigcup_{\psi \in \Phi} \operatorname{Mod}(\neg \psi) \\ \Leftrightarrow \operatorname{Mod}(\neg \phi) \subseteq \bigcup_{\psi \in \Phi_0} \operatorname{Mod}(\neg \psi) \text{ for some finite } \Phi_0 \subseteq \Phi \quad \text{ (by Proposition 2.5)} \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \bigcup_{\psi \in \Phi_0} \overline{\operatorname{Mod}(\psi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\bigcap_{\psi \in \Phi_0}} \overline{\operatorname{Mod}(\psi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \overline{\bigcap_{\psi \in \Phi_0}} \overline{\operatorname{Mod}(\psi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\phi)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \operatorname{Mod}(\phi) \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \overline{\operatorname{Mod}(\phi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\ \Leftrightarrow \overline{\operatorname{Mod}(\Phi_0)} \subseteq \overline{\operatorname{Mod}(\phi)} \text{ for some finite } \Phi_0 \subseteq \Phi \\$$

Proof of Proposition 2.5 by Theorem 2.4: The direction from right to left is trivial. So we assume that

$$\operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi).$$

Claim. $\{\neg \psi \mid \psi \in \Phi\} \models \neg \varphi$.

Proof of the claim. Let \Im be an interpretation with

$$\mathfrak{I} \models \{\neg \psi \mid \psi \in \Phi\}.$$

That is, $\mathfrak{I} \models \neg \psi$ for every $\psi \in \Phi$. We can deduce that

$$\begin{split} \mathfrak{I} &\in \bigcap_{\psi \in \Phi} \operatorname{Mod}(\neg \psi) \iff \mathfrak{I} \in \bigcap_{\psi \in \Phi} \overline{\operatorname{Mod}(\psi)} \\ &\iff \mathfrak{I} \in \overline{\bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi)} \\ &\iff \mathfrak{I} \notin \bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi) \\ &\implies \mathfrak{I} \notin \operatorname{Mod}(\varphi) \\ &\iff \mathfrak{I} \notin \operatorname{Mod}(\varphi) \qquad \left(\operatorname{by} \operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi} \operatorname{Mod}(\psi) \right) \\ &\iff \mathfrak{I} \models \neg \varphi. \end{split}$$

This finishes the proof of the claim.

Now we apply Theorem 2.4 to the above claim. In particular, there is a finite $\Phi_0\subseteq\Phi$ such that

$$\{\neg \psi \mid \psi \in \Phi_0\} \models \neg \phi$$

Then arguing similarly as above, we obtain

$$\operatorname{Mod}(\varphi) \subseteq \bigcup_{\psi \in \Phi_0} \operatorname{Mod}(\psi).$$

Theorem 2.6. Let $\Phi \subseteq L^S$ such that for every $n \in \mathbb{N}$ there exists an S-interpretation $\mathfrak{I}_n = (\mathfrak{A}_n, \beta_n)$ with $|A_n| \ge n$ and $\mathfrak{I}_n \models \Phi$. Then there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ with infinite A and $\mathfrak{I} \models \Phi$.

Proof: For every $n \ge 2$ we define a sentence

$$\varphi_{\geq n} := \exists v_0 \cdots \exists v_{n-1} \bigwedge_{0 \leqslant i < j \leqslant n} \neg v_i \equiv v_j.$$

Clearly for any structure \mathfrak{A} (regardless of the symbol set S)

$$\mathfrak{A}\models \phi_{\geqslant \mathfrak{n}}\quad\Longleftrightarrow\quad |A|\geqslant \mathfrak{n}.$$

Now consider

$$\Psi := \Phi \cup \big\{ \phi_{\geqslant n} \mid n \geqslant 2 \big\}.$$

Of course every finite subset of Ψ is contained in

$$\Psi_{\mathfrak{n}_0} := \Phi \cup \left\{ \phi_{\geqslant \mathfrak{n}} \mid 2 \leqslant \mathfrak{n} \leqslant \mathfrak{n}_0 \right\}$$

for a *sufficiently large* $n_0 \in \mathbb{N}$. By assumption, \mathfrak{I}_{n_0} witnesses that Ψ_{n_0} is satisfiable. Therefore, by the Compactness Theorem, Ψ itself is satisfiable. The result follows immediately. \Box

Theorem 2.7 (Upward Löwenheim-Skolem). Let $\Phi \subseteq L^S$ and assume that there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that A is infinite and $\mathfrak{I} \models \Phi$. Then, for any set B there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ with $|A| \ge |B|$ and $\mathfrak{I} \models \Phi$.

Proof: For any $b \in B$ we introduce a new constant $c_b \notin S$. In particular, $c_b \neq c_{b'}$ for any $b, b' \in B$ with $b \neq b$. Then consider

$$\Psi := \Phi \cup \left\{ \neg c_b \equiv c_{b'} \mid b, b' \in B \text{ with } b \neq b' \right\}$$

Since Φ has an infinite interpretation, every finite subset of Ψ is satisfiable. By the Compactness Theorem, we conclude that Φ is satisfiable. Clearly the structure in any interpretation which satisfies Ψ must have size as large as |B|.

Corollary 2.8. Let $S = \{+, \times, <, 0, 1\}$ and

$$\Phi_{\mathbb{N}} := \left\{ \phi \in \mathsf{L}_0^{\mathsf{S}} \mid (\mathbb{N}, +, \cdot, <, 0, 1) \models \phi \right\}.$$

Then there is a uncountable S-structure \mathfrak{A} with $\mathfrak{A} \models \Phi_{\mathbb{N}}$.

 \dashv