
Chapter 7
2D Geometric Transformations

Computer Graphics

Chapter 7
Two-Dimensional Geometric
Transformations

2

Part III.
• OpenGL Functions for Two-Dimensional Geometric Transformations

• OpenGL Geometric Transformation Programming Examples

OpenGL Geometric Transformation Functions

 Be careful of manipulating the matrix in OpenGL
 OpenGL uses 4X4 matrix for transformation.
 The 16 elements are stored as 1D in column-major order

 C and C++ store matrices in row-major order
 If you declare a matrix to be used in OpenGL as

GLfloat M[4][4]; to access the element in row i and column j, you
need to refer to it by M[j][i]; or, as
GLfloat M[16]; and then you need to convert it to conventional row-
major order.

OpenGL transform matrix

3

OpenGL Transformations

 Three types
 Modeling, Viewing and Projection

4 (From OpenGL Super Bible)

Standard 2D Viewing Pipeline

MC (Local Coor.)

Normalization
Transformation

Modeling
Transformation

WC VC

NC

DC

Viewing
Transformation

 To make the viewing process
independent of any output device,
viewing coordinates is converted
to normalized coordinates.

 Clipping is usually performed in
normalized coordinates.

5

Modeling Transformations

 Modeling transformations: to manipulate/create your
model and the particular objects within it.
 Move objects into place, rotates them, and scales them, etc.
 The final appearance of your scene or object can depend greatly

on the order in which the modeling transformations are
applied.

6

Viewing Transformation

 Viewing transformation: to place & point a camera to view
the scene.
 By default, the point of observation is at the origin (0,0,0)

looking down the negative z-axis (“into” the monitor screen).
 Objects drawn with positive z values would be behind the observer.

 You can put the point of observation anywhere you want, and
looking in any direction.

7

Transformation demo - Nate

Projection and Viewport Transformations

 Projection transformation: applied to your final Modelview
orientation in which way to project.
 Defines how a constructed scene (after all the modeling is

done) is translated to the final 2D image on the viewing plane.
 Defines the viewing volume and establishes clipping planes.
 Two types
 Orthographic

 Perspective

 Viewport transformation: maps the 2D projection result of
your scene to a window somewhere on your screen.8

OpenGL Transformations
 In OpenGL, all the transformations are described as a

multiplication of matrices.
 The mathematics behind these transformations are greatly

simplified by the mathematical notation of the matrix.
 Each of the transformations can be achieved by multiplying a

matrix that contains the vertices, by a matrix that describes
the transformation.

9

OpenGL Geometric Transformation Functions

 OpenGL matrix operation function
void glMatrixMode(Glenum mode);
 Specify which matrix is the current matrix

 mode: GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE;

GL_COLOR (if ARB_imaging extension is supported).

e.g.: glMatrixMode (GL_MODELVIEW);

OpenGL matrix operations
glMatrixMode (GL_MODELVIEW);

glLoadIdentity (); // assign identity matrix to the current matrix

//… to apply any transformation matrix to transform your scene …

Set up the matrix for
geometric transformations

10

Model-View Matrix: GL_MODELVIEW
 GL_MODELVIEW

 Store and combine the geometric transformations to models and viewing-coordinate
system
 Combine viewing matrix and modeling matrix into one matrix

 Viewing transformation
 For example: gluLookAt()

 Modeling transformation: OpenGL transformation functions
 Translation transformation: m12, m13, m14

 Other Euclidean/affine transformations, such as rotation or scaling: (m0, m1, m2), (m4, m5,
m6) and (m8, m9, m10)

11

Model-View Matrix: GL_MODELVIEW
 GL_MODELVIEW

glMatrixMode (GL_MODELVIEW);

glLoadIdentity (); // assign identity matrix to the current matrix

These 3 sets
 (m0, m1, m2) : +X axis, left vector, (1, 0, 0) by default

 (m4, m5, m6) : +Y axis, up vector, (0, 1, 0) by default

 (m8, m9, m10) : +Z axis, forward vector, (0, 0, 1) by default

are actually representing 3 orthogonal axes.

glLoadMatrix* (elements16); // replace the current matrix by your own





















0.1 0.0 0.0 0.0
0.0 0.1 0.0 0.0
0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.1

M

12

Model-View Matrix: GL_MODELVIEW
Example

glMatrixMode (GL_MODELVIEW);

glLoadIdentity ();

GLfloat elems [16];

GLint k;

for (k = 0; k < 16; k++)

elems [k] = float (k);

glLoadMatrixf (elems);





















0.15 0.11 0.7 0.3
0.14 0.10 0.6 0.2
0.13 0.9 0.5 0.1
0.12 0.8 0.4 0.0

M

glMatrixMode()
http://www.opengl.org/sdk/docs/man/

13

OpenGL Geometric Transformation Functions
 Basic OpenGL geometric transformations on the matrix:

glTranslate* (tx, ty, tz);

[glTranslatef (25.0, -10.0, 0.0);] for 2D, set tz = 0.

- Post-multiplies the current matrix by a matrix that moves the object by the given x-, y-,
and z-values

glScale* (sx, sy, sz);
[glScalef (2.0, -3.0, 1.0);]
- Post-multiplies the current matrix by a matrix that scales an object about the origin.

None of sx, sy or sz is zero.

glRotate* (theta, vx, vy, vz);
[glRotatef (90.0, 0.0, 0.0, 1.0);]
- Post-multiplies the current matrix by a matrix that rotates the object in a

counterclockwise direction. vector v=(vx, vy, vz) defines the orientation for the
rotation axis that passes though the coordinate origin. (the rotation center is (0, 0, 0))

14

OpenGL: Order in Matrix Multiplication
glMatrixMode (GL_MODELVIEW);
glLoadIdentity (); //Set current matrix to the identity.
glMultMatrixf (elemsM2); //Post-multiply identity by matrix M2.
glMultMatrixf (elemsM1); //Post-multiply M2 by matrix M1.
glBegin (GL_POINTS)

glVertex3f (vertex);

glEnd();



Modelview matrix successively contains:
I(identity), M2, M2 M1

The concatenated matrix is:
M=M2 M1

The transformed vertex is:
M2 (M1 vertex)







In OpenGL, a transformation sequence is applied in reverse
order of which it is specified.

15

OpenGL: Order in Matrix Multiplication
 Example

// rotate object 30 degrees around Z-axis

glRotatef(30.0, 0.0, 0.0, 1.0);

// move object to (2.0, 3.0, 0.0)

glTranslatef(2.0, 3.0, 0.0);

drawObject();

The object will be translated first then rotated.

16

OpenGL Geometric Trans. Programming Examples
glMatrixMode (GL_MODELVIEW); //Identity matrix

glColor3f (0.0, 0.0, 1.0); // Set current color to blue

glRecti (50, 100, 200, 150); // Display blue rectangle.

glColor3f (1.0, 0.0, 0.0); // Red

glTranslatef (-200.0, -50.0, 0.0); // Set translation parameters.

glRecti (50, 100, 200, 150); // Display red, translated rectangle.

glLoadIdentity (); // Reset current matrix to identity.

glRotatef (90.0, 0.0, 0.0, 1.0); // Set 90-deg, rotation about z axis.

glRecti (50, 100, 200, 150); // Display red, rotated rectangle.

glLoadIdentity (); // Reset current matrix to identity.

glScalef (-0.5, 1.0, 1.0); // Set scale-reflection parameters.

glRecti (50, 100, 200, 150); // Display red, transformed rectangle.

17

Summary
 Basic 2D geometric transformations

 Translation

 Rotation

 Scaling

 Reflection, shearing…

 Combination of these transformations

 Homogeneous coordinate representation

 OpenGL geometric transformation functions
 GL_MODELVIEW matrix

 Order in multiple matrix multiplication

 Example

18

