
Report for Lab 6

Group 1

May 21, 2017

Team Name: Smartboys
Team Leader: Wang Duo
Partners: Li Mingze

Chai Zhenghao
Jia Xiaosong

1

1 Prototype System Introduction

1.1 Function

Receiving users’ raw data of physical experiments from touch screens, and displaying final results of
experiments.

1.2 Running Environment

Windows 10

1.3 Developing Environment

Android Studio

2 Task Allocation

User Interface Component

- Adapter Design – Wang Duo

- Data Acquisition and Transmission – Jia Xiaosong

- Layout and Data Display – Li MingZe

User Interface Component

- Chai Zhenghao

2

3 System Architecture

3.1 User Interface Component

3.1.1 Adapter Design

The primary widget we choose for information display is ListView. ListView is an Android widget which
can organize all the subwidgets in the form of a list. It can create a series of assembly components
dynamically, as is shown below:

(a) Figure 1 (b) Figure 2

As in Figure 2, each row of the list serve as a single component, which consists of two TextViews: the
variable name and the value. The key function of ListView is to create a certain number of assembly
components repeatedly, and specify them with different contents.
The ListView widget requires an specially-designed object to specify the composition and layout of each
component, which is called Adapter. In our project, two different types of Adapters are used.
The first one is SimpleAdapter, which is provided by Android. The contents are assigned in the form
of key-value pairs, which is a parameter required to initiate a SimpleAdapter. Once the contents are
assigned, each TextView in this page will display different information, and eventually form a list.
SimpleAdapter is seemingly competent enough, but there are some underlying issues. Due to the item-
recycling mechanism of SimpleAdapter, some information may cannot be assigned dynamically to the
components. As is shown below, the characters in the EditTexts may be lost or altered when dragging
the scroll bar.

3

(c) Figure 3 (d) Figure 4

To solve the problem, we will need a self-defined Adapter, which we call as Custom Adapter. By using
this Adapter, any information typed in by users will immediately be stored in a container. Despite the
reusing of items, the contents wont be changed.

3.1.2 Data Acquisition and Transmission

First, in the Select Activity, user needs to choose the experiment and the activity will pass Experiment
ID to the SettingList Activity
In the SettingList Activity: user needs to input the number of measurement. It will pass it to the GetData
Activity.
In the GetData Activity: user needs to input the original data and it will be passed to the Result
Calculator(A function). The calculator will return the result to GetData Activity. And then the result

4

will be sent to the ResultShow Activity.
Thats the structure of the data acquisition and transmission in our app.

3.2 Calculation Component

The implementation of calculation processes the raw data and outputs results of the experiments and the
process of calculation, which users need to complete their experiment reports.
So far we have planned to finish the implementation of 4 experiments, so we design four classes and their
get result member functions to process and data, which are class Electron Charge Mass Ratio, class
Focal Distance, class Optical Angel Gauge and class Moment of Inertia. When someone needs to use the
classes to get result, they only need to call the get result function of these classes.
Then there are three parts of the implementation designing: input designing, data process and output
designing. For the input designing, we use a two-dimensional array data[][] with double type as input. In
the first dimension data[] we storage different kinds of raw data, and in the second dimension data[*][],
we storage data of the same kinds with different times of experiments. For the output designing, we use
a array res[] to output multiple results users need.

4 Algorithm Description

4.1 User Interface Component

4.1.1 Adapter Design

4.1.1.1 Simple Adaptor
SimpleAdapter is an easy-to-use Adapter provided by Android. It requires an XML file to define the
display format of each component and uses key-value pairs as parameters to specify all the contents of
each component.
The key function of ListView is to create a certain number of assembly components repeatedly, and
specify them with the given key-value pairs. To further explain this, Id like to quote a line of the source
code in our project:

SimpleAdapter l i s tAdapt e r = new SimpleAdapter (this , l i s t ,R. layout . s e t t i n g l i s t s u b ,
new St r ing [] { "variable_name" } , new int [] {R. id . s e t t i n g l i s t t e x t }) ;

As is shown above, the construction of SimpleAdapter requires 5 parameters. The first one is a pointer
of current activity, the third one is an object attached to the XML file which defines the format of each
component. The rest three tells the essential mechanism of SimpleAdapter. The second parameter is a
container which contains all the key-value pairs needed for the specification of components. The fourth
is an array containing all the keys and the last one is an array containing the ID of all the widgets in the
XML file. After such construction, the display pattern is specified by the parameters and the Adapter
will organize the information accordingly on the activity.
4.1.1.2 Custom Adapter
As is mentioned above, the mechanism of SimpleAdapter has certain shortcuts. Due to the item-recycling
mechanism of SimpleAdapter, some information may cannot be assigned dynamically to the components.
To solve this problem, we will have to store the information immediately after input and reassign it to
the components each time it is displayed. The definition of Custom Adapter is rather complicated, in
order to explain the overall algorithm, Ill quote some key lines.

5

public class Adapter extends BaseAdapter{
. . . .
private St r ing [] data ; //Container o f inpu t s
. . . .

@Override
public View getView (int pos i t i on , View convertView , ViewGroup parent) {

vh = new ViewHolder () ; // ge t the o b j e c t s a t tached to the widge t s
vh . textv iew = (TextView) convertView . findViewById (R. id . s e t t i n g l i s t t e x t) ;
vh . e d i t t e x t = (EditText) convertView . findViewById (R. id . s e t t i n g l i s t e d i t t e x t) ;

. . . .
vh . e d i t t e x t . setTag (po s i t i o n) ; // a t tach the widget with i t s p o s i t i on in the l i s t
. . . .
vh . e d i t t e x t . addTextChangedListener (new TextWatcher () {

@Override
public void onTextChanged (CharSequence s , int s t a r t , int before , int count) {

int po s i t i o n = (int) vh . e d i t t e x t . getTag () ;
data [p o s i t i o n] =s . t oS t r i ng () ; // s t o r e the in f o according to po s i t i on

}
}) ;
i f (! TextUt i l s . isEmpty (data [p o s i t i o n]+"")){

vh . e d i t t e x t . setText (data [p o s i t i o n]+"") ;
} else {

vh . e d i t t e x t . setText ("") ;
}

return convertView ;
}

As is shown above, we define a String array data for storing the inputs. In the getView method, we set
the position of the widgets as a tag. Then we set an TextChangedListener to the EditTexts to store the
information. And if the item is reused and the information is crashed, we reassign the stored information
to the component. By doing so, we can ensure that all the information wont get lost or altered when the
widgets are reused.

4.1.2 Data Acquisition and Transmission

Data Acquisition: we use a function called getdata to get the users data from the EditView to an array.
Then, we process it according to the experiment ID.
Data Transmission: we use intent to pass information between activity. We use the method of the intent
putExtra including the key-value pair to realize the transmission.
In this component, the main mission is to process the data into the right form other activities and
functions need.
Take the getdata activity for an example. It gets MEASUREMENT(the number of measurement),
SIZE(the number of the variable), NAMES(the names of the variable) and SELECTION(the experiment
ID) from the previous activity.
After processing these information, it will generate the view and then get original data from user.
After processing the original data, it will call the Calculator function and get the result.
Finally, it will pass the results and other important information to the next activity.
The following is part of the source codes of every step:

Get data from previous activity:

6

In tent i n t en t = ge t In t en t () ;
datas = in t en t . getIntArrayExtra ("DATA") ;
s i z e = in t en t . get IntExtra ("SIZE" , 0) ;
S t r ing [] names = in t en t . getStr ingArrayExtra ("NAMES") ;
r e s u l t i d = in t en t . get IntExtra ("SELECTION" , 0) ;

Process the data :

int t o t a l = 0 ;
for (int i = 0 ; i < s i z e ; ++i)

t o t a l += datas [i] ;
ArrayList<HashMap<Str ing , Str ing>> l i s t = new ArrayList<HashMap<Str ing , Str ing >>();
HashMap<Str ing , Str ing > [] maps = new HashMap [t o t a l] ;
int counter = 0 ;
for (int i = 0 ; i < s i z e ; i++)

for (int j = 0 ; j < datas [i] ; ++j) {
maps [counter] = new HashMap<Str ing , Str ing >() ;
i f (j == 0)

maps [counter] . put ("variable_name" , names [i]) ;
else

maps [counter] . put ("varible_name" , " ") ;
l i s t . add (maps [counter]) ;
counter++;

}

Calculate the results:

switch (r e s u l t i d) {
case 0 :

r e s u l t s = Electron Charge Mass Rat io . g e t r e s u l t (data) ;
re su l t name = resname0 ;
resu l t number = result num [0] ;
break ;

Pass the results:

In tent i n t en t = new In tent () ;
i n t en t . putExtra ("RESULTS" , r e s u l t s) ;
i n t en t . putExtra ("RESULTNAME" , r e su l t name) ;
i n t en t . putExtra ("RESULTNUMBER" , r e su l t number) ;
i n t en t . s e tC l a s s (ge t data . th i s , ShowActivity . c l a s s) ;
s t a r tA c t i v i t y (i n t en t) ;

4.2 Calculation Component

For processing the data, we design a class Math Cal to help me process the data and for further plan
of the project. The class Math Cal now includes members functions average(), significance digit() and

7

least square method(). In the further plan of our project, we would like to let users design their own
template of experiment data process. At that time, we will include more functions such as function to
get errors of the data and function to solve equations in this class to help users finish their own template
more conveniently.

5 Demo and Testing Result

(e) Figure 6 (f) Figure 7

6 Conclusion

Physics Lab is a compulsory course for every student in SJTU majoring in Natural Science or Engineering,
and the data operations are usually rather complicated in these laboratory works. We hope that our
project will help some of the students to deal with these data more efficiently.

8

