
Project Report

Group 4

Feng Chang
Shufan Huang
Xiangyu Lin
Qingshan Yao

May 18, 2017

1 Introduction

This semester, our group successfully finished making an app named Gravity
Snake, which is a combination of traditional ”snake” game and acceleration
sensor.

It is a simple game that everyone can enjoy. As an implementation of the
classic Game Snake, you can control a serpent roaming around the starry sky
looking for stars.

We referred to existing codes on the Internet and made our own adjustments.
We will show some details of our work in the following parts of our report.

2 Basic Framework and Interface

2.1 Basic Framework

The app consists of two major activities: welcoming activity and game activity.
Welcoming activity contains a button leading to the game activity.

To make the game easier to play, we change the app to a landscape one.
The code for welcoming activity is shown below:

1



2



2.2 Interface

We made the game appear in a ”universe” style. To fit in with the style, we
made targeted designing on background and button styles.

The welcoming page looks like this:

The code is shown below:

3



4



We designed a new button style and all buttons are attached to it:

5



he beginning page of game activity looks like this:

6



Keep in mind that our layouts are all ”land”.

The following xml files are also used in this or other parts of this article.
@values/attrs.xml

7



@values/colors.xml

@values/strings.xml

3 Utilization of acceleration sensor

3.1 Basic utilization

Steps
getSystemService(SENSOR SERVICE);
getDefaultSensor(Sensor.TYPE ACCELEROMETER
SensorEventListener
onSensorChanged, onAccuracyChanged
Test to get some statics used in later function:

8



9



10



3.2 Sensor to main function

1. First step—obtain: Use tools above to get the measurable statics and store
them in the valuables in common.

2. Second step—manage: Manage the threshold values and other conditions
which control the movement of the snake to make it more fluent.

3. Third step—debug: According to the main function, adjust the values.

Two main problems:

(1)How to make the snake change the direction at certain condition.

(2)How to detect two directions when the phone is not at the right direc-
tion.

11



4 Codes

4.1 GameActivity

In GameActivity, we created an object mSnakeView, to execute the action de-
fined in SnakeView.java, and initialized the program.

This function will be called when activity is first created. Turns off the title
bar, sets up the content views, and fires up the SnakeView.

If the savedinstancestate is null, i,e, we were just launched, and this will create
a new game.

Else, we are being restored.

12



Pause the game.

Save the game.

4.2 TitleView

In TitleView.java, we defined specific parameters of the whole canvas:
Parameters controlling the size of tiles and their range within view,
Width/Height are in pixels, and Drawables will be scaled to file to these

dimensions.
X/Y tile counts are the number of tiles that will be drawn.

13



Then, define a array: bitmap[], which stores different kinds of bitmap.
During the game, kinds of bitmaps will be uploaded to this array through

the function restTiles and loadTile.

A two dimensional array of integers in which the number represents the index
of the tile that should be drawn at that locations.

It can be regarded as the canvas which we will operate on.

In this function, we can obtain the new attribute value of tileSize in attrs.xml.

And, finally, we can draws the canvas onto the mobile phone through onDraw.

14



4.3 SnakeView

The main action of the game is defined in SnakeView.java.

15



The code in this file is too long, so we can only introduce the function of all the
parts.

1. In initSnakeView, mSensor and mSensormanager is defined so that we can
get the data of sensors, including the accelerator sensor we needed in the
game. We also initialized some other variables we need later.

2. In initNewGame, we created a new snake, whose direction is North. And
we also set two random apples in the map.

3. coordArrayListToArray is used to convert a list of coordinates to an array
consists of integers only, in a pattern like [x1,y1,x2,y2,x3,y3...].

4. SaveState is used to save the state so that the game can continue after the
pause. The saved variables includes mAppleList,mDirection,mNextDirection,
mMoveDelay,mScore and mSnakeTrail.

5. ArrayList is the reverse of coordArrayListToArray, it converts an Arraylist
to coordArrayList.

6. In restorestate, the saved state is imported so that the game can continue.

7. setMode is used when the state is changed and the content of textview is
changed according to the condition.

8. addRandomApples are used when one apple is eaten. It will create a
new apple if there is one apple missing, and add a new coordinate to the
mAppleList

9. Update,updateWalls,updateSnake:these three functions are used to do the
action and judge whether the game has ended after handling.

10. onClick,onAccuracyChanged,and onSensorChanged monitors the action of
buttons and the state of sensors, after this the mdiretionnext is changed
so that the snake can change its direction.

5 Our Reflections

Beginning as new users of Android Studio, we met tons of difficulties and prob-
lems. We’re happy that we have gone through all these in the end. Though not
100 percent perfect, our app works well on the whole. I hope you’ll be satisfied
with our work.

During this process, we’ve learn much about Android Studio and have ob-
tained basic knowledge for making an app. I’m sure the benefits will reveal
themselves in our later study or in our future job.

Thanks to the professor and the teaching assistants!

16


