
Picture Crawling and Recognition Report

包家豪 515030910264

1. Background

Acemap is an academic large database and visual academic map system. It can provide

some useful information of famous authors by the visual interface, such as affiliations, fields,

impact factors. In this project, my purpose is to search and select suitable photos of the

authors on the Internet.

 The simple method is to download the photos on the authors’ homepage. However, it’s

found that some authors did not put their photos on the homepage. Therefore, we decide

to search and collect photos through google, then select the suitable photo. It’s easy to find

a lot of photos of the authors on the Internet. However, they may be group photos of full-

size photos that are not suitable to be put on the personal homepage. In addition, the same

keyword may find photos of several people, in which case we need to determine which

photo is the right person. These are two major problems that I need to solve.

 There is some related work. The acemap group can provide the basic information of

the authors, including names, affiliations and impact factors. In addition, they have already

searched some photos on the authors’ homepage and these photos will be used as ground

truth.

Figure 1. We want to search photos of author through google with some keywords and

then select the suitable one. The right photo is a group photo and not suitable to be

put on the homepage, while the left is what we want.

2. Experiment methods

2.1 Picture crawling

 At first, I used the crawler tool to download the photos of the authors and create a

database. The python module is called google-images-download. People can set the

keyword, number and type of photos and download the photos they need through google

image using this module. I chose one thousand famous authors in computer science and

downloaded fifteen photos for every author. Actually, I obtained a 5-G database with 15000

photos in total.

Figure 2. The python module: google-images-download

2.2 Face recognition

 In this part, my purpose is to find how many faces in one download photo. If the photo

has no face in it, it must be useless and should be removes. However, if the photo has

several faces, it may be a group photo which also can’t meet our requirement. In fact, only

the photo has one face in it is what we need since the photo is used to be put on the

authors’ homepage. I used the python module called face-recognition. The module can

output the number of faces in the input photos. Using this module, I traversed the entire

database and removed all the useless and unsuitable photos.

Figure 3. Through detecting the faces in the photo, we can easily judge if the photo is

a group photo.

Figure 4. The python module: face-recognition. The face-location will return the

number of faces in the detected photos. If the face-location doesn’t equal one, then

remove the photo.

2.3 Clustering

 Now we want to pick the suitable photo for each author from the database.

Considering that photos downloaded with the same keyword may contain several people, I

first cluster photos and choose the suitable one in the category that contains the most

photos. This part includes three steps.

2.3.1 Feature points

 First, detect the feature points of faces. Using the python module called dlib, I select 64

feature points in one face.

Figure 5. Feature points

2.3.2 Vector space

 Second, map the feature points to a vector space. Using the pre-train model, I map the

feature points to 128 dimensional vector space. the figure below shows the result of one

vector in the space.

Figure 6. Vector space

2.3.3 Distance

 Third, calculate the distance between two faces in the vector space. If the distance is

smaller than 0.6, then consider the two faces belong to the same person. I use Euclidean

distance and the formula is shown below.

Figure 7. Euclidean distance

Figure 8. The distance between the two faces is 0.48, so the model will classify them

together.

3. Result and analysis

 Through this project, I figure out a feasible method of searching and selecting photos

for authors from google. Using the basic information of authors provided by the acemap

group, I obtained one thousand authors’ photos at last.

 By comparison with photos provided by the acemap group, I roughly estimated the

accuracy of this method. The result is shown in the table below.

Table 1. Experiment result

keyword total correct wrong

name 50 44 6

name + affiliation 50 47 3

 As we can see, when we use name as keyword, the accuracy is about 88%, while when

we use name and affiliation as keyword, the accuracy is increasing and reach 94%. This is

because the affiliation can solve the duplicate name problem. Take the author michael i

jordan for example. If we using his name as keyword, the downloaded photos will mostly

belong to the famous basketball player Jordan. When we search his name and affiliation in

google, the result becomes much better. What’s more, there are many author have the

same name and using name as keyword cannot distinguish them. However, they basically

will not be in the same affiliation. So, using affiliation as keyword, we can effectively

download the photos we want. In actual operation, I used name as keyword to download 9

photos and used name and affiliation to download 6 photos.

Appendix

Python scripts

downloads.py

-*- coding: UTF-8 -*-

from google_images_download import google_images_download

import csv

import os

reader = csv.reader(open('csTopAuthor.csv'))

response = google_images_download.googleimagesdownload()

for i,row in enumerate(reader):

 if i ==1000:break

 author = row[0]

 ID = row[1]

arguments = {"keywords":author,"limit":20,"print_urls":True}

paths = response.download(arguments)

 oldname = './downloads/'+author

 newname = './downloads/'+ID

os.rename(oldname,newname)

face_recognition.py

-*- coding: utf-8 -*-

import face_recognition

import os

from PIL import Image

from PIL import ImageFile

ImageFile.LOAD_TRUNCATED_IMAGES = True

downloads_dir = "./downloads"

author_ID_list = os.listdir(downloads_dir)

err = 0

for author_ID in author_ID_list:

 photolist = os.listdir(downloads_dir+'/'+author_ID)

 print author_ID+'\n'

 for photo in photolist:

 try:

 image =

face_recognition.load_image_file(downloads_dir+'/'+author_ID+'/'+photo)

 face_locations = face_recognition.face_locations(image)

 print len(face_locations)

 if len(face_locations) != 1:

 os.remove(downloads_dir+'/'+author_ID+'/'+photo)

 except:

 os.remove(downloads_dir+'/'+author_ID+'/'+photo)

 print 'error'

 err += 1

print err

clustering.py

coding: utf-8

import sys

import os

import dlib

import glob

import cv2

current_path = '.'

model_path = current_path + '/model/'

shape_predictor_model = model_path + '/shape_predictor_5_face_landmarks.dat'

face_rec_model = model_path + '/dlib_face_recognition_resnet_model_v1.dat'

namelist = os.listdir(current_path+'/downloads')

for name in namelist:

 face_folder = current_path+'/downloads' + '/'+ name

 output_folder = current_path+ '/output'+'/'+ name

 if not os.path.isdir(output_folder):

 os.makedirs(output_folder)

 detector = dlib.get_frontal_face_detector()

 shape_detector = dlib.shape_predictor(shape_predictor_model)

 face_recognizer = dlib.face_recognition_model_v1(face_rec_model)

 descriptors = []

 images = []

 facelist = os.listdir(face_folder)

 for f in facelist:

 print('Processing file：{}'.format(f))

 img = cv2.imread(face_folder+'/'+f)

 if img is None:continue

 img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 dets = detector(img2, 1)

 print("Number of faces detected: {}".format(len(dets)))

 for index, face in enumerate(dets):

 shape = shape_detector(img2, face)

 face_descriptor = face_recognizer.compute_face_descriptor(img2, shape)

 descriptors.append(face_descriptor)

 images.append((img2, shape))

 labels = dlib.chinese_whispers_clustering(descriptors, 0.5)

 print("labels: {}".format(labels))

 num_classes = len(set(labels))

 print("Number of clusters: {}".format(num_classes))

 face_dict = {}

 for i in range(num_classes):

 face_dict[i] = []

 for i in range(len(labels)):

 face_dict[labels[i]].append(images[i])

 for key in face_dict.keys():

 file_dir = os.path.join(output_folder, str(key))

 if not os.path.isdir(file_dir):

 os.makedirs(file_dir)

 for index, (image, shape) in enumerate(face_dict[key]):

 file_path = os.path.join(file_dir, 'face_' + str(index))

 print file_path

 dlib.save_image(image, file_path+'.jpg')

