
Schorlar Photo Mining

Lv Ruiliang
515030910208

Abstract

The AceMap system is a novel academic system to ana-
lyze the big scholarly data and visualize the results through
a map approach. while it is still under construction. For
example, in the author profile pages, there are no scholar
photos. Mining scholar photos from the Internet could be a
challenging work, considering the large scale of image data
and the fact that there is no deterministic correspondence of
name and photo on the Internet. With the help of search en-
gine, Crawler and recently face recognition techniques, this
task could be tackled efficiently with a sounding accuracy.

1. Background
In recent years, the AceMap system [1] has made mean-

ingful achievements in presenting academic data. AceMap
integrates several algorithms in the field of network analy-
sis and data mining, and then displays the information in a
clear and intuitive way, aiming to help the researchers fa-
cilitate their work. By far, AceMap has implemented the
following functions: dynamic citation network display, pa-
per clustering, academic genealogy, author and conference
homepage, etc.

Figure 1: Previous author profile on AceMap

However, there is still much work to complete the sys-
tem. Take the author profile page as an example. For each
scholar in computer science related areas, there is a corre-
sponding author profile that shows basic information about

the author, including research interests, publication, citation
and affiliation, even the novel co-author map. Nevertheless,
there is no photo of the scholar on the system yet, as shown
in Figure 1. As we know, photo is probably the most rep-
resentative profile about a person. Thus it is worthwhile to
incorporate the scholar photos to the system. To the best
of my knowledge, this is the first project to mine scholar
photos from the Internet.

1.1. Introduction

The objective of this task is quite straightforward: Given
a list of CS top authors with their basic information, we
need to seek for the most representative photo for each
scholar, as shown in Figure 2. The basic information for
each scholar include its name, an unique id in Acemap sys-
tem (8-digit hexadecimal) and its affiliation. The given list
consists of 230,000 scholars in a csv file. The output for-
mat should indicate the mapping between scholar id and
corresponding photo. (Since there are exists lots of name
conflicts, it is unambiguous to use unique scholar id.)

Figure 2: Introduction of the task

1.2. Challenges

Although the task seems quite intuitive, there exist sev-
eral challenges.

• Large scale of data: There is more than 200,000
scholars in computer science related areas.

• Lack of ground-truth labels: There is no existing
dataset for training, making it unsuitable to use super-
vised learning approach.

• Name conflict: Scholars may share the same name
with famous stars or other scholars.

1



1.3. Related Work

Web image retrieval With the fast development of Web
technology, Web image searching has become a popular ap-
plication, which returns relevant images given certain query.
In the early days, Web images were manually labeled with
text based on which they could be indexed and retrieved [2].
However, with the burst of large-scale image data, manu-
ally labeling becomes impractical. Several image retrieval
techniques like content-based image retrieval (CBIR) were
introduced to overcome the difficulty ([3], [4]). However, it
is difficult and inefficient to extract semantic patterns from
images. Current practical commercial image search engine
exploit surrounding text aside images and corresponding
statistic data [5]. Those commercial image search engine
like Google does provide high quality results, but the accu-
racy still needs further technical processing for our task.

Face recognition Face recognition technologies has been
under intensive research, especially when recent deep learn-
ing technology emerges ([6], [7], [8]). The general structure
of face recognition is illustrated in Figure 3. Within this
pipeline, face detection is to count the number of faces and
locate all the faces in an image. The most difficult and tricky
part is feature extraction, where original RGB / Grayscale
images are projected in certain dimensions and mapped to
vectors. Those dimensions generated a space where the
similarity between faces could be measured by their geom-
etry distances. There are already several work accomplish
this mapping efficiently ([9], [10]), with an excellent per-
formance on widely acknowledged dataset. Different from
face detection, face recognition further typically uses the
extracted features to verify whether two faces are the same
person or not.

Figure 3: General structure of face recognition [11]

2. Approach

With the help of search engine, crawler and face recogni-
tion technique, my designed approach could be divided into

three steps: The first step is to build a photo library that con-
tains a set of photos for each scholar in the scholar list. The
second step is photo cleaning, which is to analyze whether
a photo is valid and remove invalid photos. The last step is
to select the best representative photo for each scholar and
build the final database.

2.1. Building Photo Library

As mentioned before, the objective for this step is to
download a set of photos for each scholar. There are sev-
eral technologies that helps to complete the objective, such
as search engine, Python crawler and remote server.

Figure 4: Overview pipeline to build photo library

The overview framework of this step is shown in Figure
4, which is quite intuitive and easy for understanding. After
extracting scholar information, keywords are combined and
sent to Google image search engine as search terms. For
each query, I use the Python urllib2 library to down-
load the raw Web page. Then image URLs are extracted by
analyzing the HTML source code using regular expression
techniques. For each image, I continue to use the urllib2
module to download images from the Web. Afterwards, im-
ages are checked whether they are in desired format (eg.
”.jpg”, ”.png” etc). Due to various unexpected events like
network broke down or time out, the download could fail
or the image format is invalid. For these cases, the pro-
gram divert to the next image and try downloading until
the downloaded number meets the requirements (typically
10 20 images for each scholar).

Figure 5: Setting the type tag to“photo”

There are some implementation details for this step that
needs to be mentioned. About the choice of search en-
gine, popular search engines include Google, Baidu, Bing
etc. Google could provide results with higher quality, but
using Google in mainland needs VPN or Shadowsocks set-
tings and could be quite unstable. Using Baidu or Bing has

2



lower latency, however, the results are obviously not as ac-
curate as Google and contain a lot of noise. My solution is
to deploy my program directly on a remote foreign server,
which could exploit Google at a much lower delay. Indeed
it enjoys a speed 10 times faster than downloading via my
local PC. One trick to improve the search quality is to set the
type of image to ”photo”, as shown in Figure 5. This trick
could greatly filter those uncorrelated noise out. To tackle
the name conflict problem, I combine name and affiliation
as search term, typically 10 images searched by name and 5
images searched by name + affiliation.

Figure 6: Handling various exceptions

Meanwhile, deploying the program on remote server re-
sults in more strict requirements of the robustness of the
code. For example, the program needs to handle various
kinds of exceptions automatically, as shown in Figure 6.
Every exception could cause break down of the running pro-
gram. Adding those exceptions indeed costs a lot of time to
test and configure.

(a) Define TimeoutError and handler

(b) set signal alarm

Figure 7: Setting timeout exception

Moreover, apart from those system build-in exceptions,
there are still some errors needs to be defined by myself.
For instance, there is no TimeOutError in Python2 and time-
out occurs frequently when downloading image (especially
when calling the read() function). Setting a timer to

restrict the download time could greatly improve the effi-
ciency of the program and avoid deadlock. However, im-
plementing this function could be quite tricky. After trying
several solutions, I use the signal module to set a timer in
the base of OS. As shown in Figure 7, I define a TimeoutEr-
ror, inherited from the Exception class, and a handler
function to raise the TimeoutError. In the image download-
ing block, set a alarm of 30 seconds using the signal.

2.2. Photo Cleaning

The objective of this step is to remove improper images
and crop those photos with single-face. As shown in Figure
8, improper images could be group photo or the cover photo
of the author’s book etc. Face detection is the typical tech-
nology used in this step. Specifically, first to count faces in
an image using the Python module face recognition,
which is based on a C++ library dlib with Python APIs. Af-
terwards, images with multiple faces or 0 face are removed,
left only single-face images. For the single-face photo, crop
the image for the convenience of further steps while keeping
the original photo.

Figure 8: Illustration of photo cleaning

The implementation was done by calling the function
face recognition.face locations(image) ,
which could list the coordinates of all faces in an image.
The function returns a list, with whose length we could
know the number of faces in an image.

2.3. Photo Selection

The objective of this step is to select the most represen-
tative photo from the remaining photos. The best photo ap-
parently need first be the scholar himself. For some factors
like name conflict, the search result may contain photos of
different person. We need to first verify the identity of each
face, i.e. whether they represent the same person. Then we
should find a photo from the largest cluster, which probably
the scholar himself.

The techniques used in this step is typically face recog-
nition (distinguished from face detection, as previously
mentioned). I still use the face recognition module
and use face recognition.face encodings()
to extract features of faces and map them to 128-dimension
vectors. Then I calculate the similarity between every pair

3



of images using the inner product of their corresponding
vectors

simij = Vi · Vj (1)

where Vi and Vj are corresponding mapped vector of two
image Ii and Ij . Afterwards, for each photo, calculate a
score based on its similarities between other images as

si =

N∑
j=1

simij · I(simij > τ) (2)

where N is the number of valid photos (left after photo
cleaning) and τ is a threshold that distinguish whether two
faces represent the same person or not, typically set 0.6. I(·)
is the indicator function, which is 1 when the corresponding
expression is true and 0 otherwise.

Finally I choose the photo with the highest score as
the best photo. The idea behind this design is quite intu-
itive since the metric prefers the centering photo among the
largest cluster.

3. Experimental Results

I implement and run my program under the environment
of Ubuntu 16.04.3 LTS and Python 2.7.12. I have down-
loaded photos of more than 6,000 scholars, up to 100,000
photos, 30+ GB. Data are formatted in id-photo mapping
by folder name, as shown in Figure 9. Generally, the results
seems quite satisfying, however, further quantitative evalu-
ation is needed. We could consider the photo on the home
page of the scholar to be ground truth. I compare my re-
sults with photos crawled from the home page of scholars
(if exists) and obtain an accuracy of 96%.

Figure 9: Results

Also, I have submitted more than 1,000 pho-
tos to the AceMap system and brought online
(http://acemap.sjtu.edu.cn/), as shown in Figure 10.

(a) Before

(b) After

Figure 10: Online demo (http://acemap.sjtu.edu.cn/)

Using score to select photo has some advantage in effi-
ciency than clustering algorithms. Typical clustering algo-
rithms like Chinese Whisper [12] needs first calculate the
similarity of every pair, then have several iterations to clus-
ter. Therefore, it is much slower than simply picking best
photo by score.

4. Conclusion

In this project, I design and implement all the program by
myself. Considering the large scale of data, I tried several
ways to improve the efficiency of the code. Considering the
lack of dataset and ground-truth labels, I use unsupervised
method to select the best photo. For name conflict problem,
I search by name combined with corresponding affiliations
and greatly reduce the conflict problem. With selection by
similarities, I achieve sounding accuracy as well as a fast
speed. For experiment, I downloaded more than 100, 000
images and selected photos for more than 6,000 scholars.
I also compared my results with photos crawled from the
home page of scholars and achieve an accuracy higher than
95%.

4



References
[1] Zhaowei Tan, Changfeng Liu, Yuning Mao, Yunqi

Guo, Jiaming Shen, and Xinbing Wang. Acemap:
A novel approach towards displaying relationship
among academic literatures. In Proceedings of the
25th International Conference Companion on World
Wide Web, WWW ’16 Companion, pages 437–442,
Republic and Canton of Geneva, Switzerland, 2016.
International World Wide Web Conferences Steering
Committee.

[2] S-K Chang and Arding Hsu. Image information sys-
tems: where do we go from here? IEEE transactions
on Knowledge and Data Engineering, 4(5):431–442,
1992.

[3] Yong Rui, Thomas S Huang, and Shih-Fu Chang. Im-
age retrieval: Current techniques, promising direc-
tions, and open issues. Journal of visual communi-
cation and image representation, 10(1):39–62, 1999.

[4] Arnold WM Smeulders, Marcel Worring, Simone
Santini, Amarnath Gupta, and Ramesh Jain. Content-
based image retrieval at the end of the early years.
IEEE Transactions on pattern analysis and machine
intelligence, 22(12):1349–1380, 2000.

[5] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. Computer
networks and ISDN systems, 30(1-7):107–117, 1998.

[6] Chaochao Lu and Xiaoou Tang. Surpassing human-
level face verification performance on lfw with gaus-
sianface. In AAAI, pages 3811–3819, 2015.

[7] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xi-
aoou Tang. Deep learning face representation by
joint identification-verification. In Advances in neu-
ral information processing systems, pages 1988–1996,
2014.

[8] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato,
and Lior Wolf. Deepface: Closing the gap to human-
level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 1701–1708, 2014.

[9] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 815–823, 2015.

[10] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
et al. Deep face recognition. In BMVC, volume 1,
page 6, 2015.

[11] Er Gurpreet Kaur, Er Harjot Kaur, and Er Manpreet
Kaur. A survey on face recognition techniques. Inter-
national Journal of Advanced Research in Computer
Science, 8(4), 2017.

[12] Chris Biemann. Chinese whispers: an efficient graph
clustering algorithm and its application to natural lan-
guage processing problems. In Proceedings of the first
workshop on graph based methods for natural lan-
guage processing, pages 73–80. Association for Com-
putational Linguistics, 2006.

5


