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Abstract—Influence maximization is the problem of choosing
a small set of seed users within a large social network in order to
maximize the spread of influence under certain diffusion models.
Models and processes have been widely studied on the diffusion
and propagation of influence in social networks. Specifically,
a typical application is advertising products from enterprises.
Previous work in this domain generally adopt data mining on
the categories and historical behaviors of customers. Nevertheless,
the above methods treated consumers as individual entities and
omitted their relational bonds and mutual interactions. In fact,
humans naturally pass experiences and options to each other.
The long observed phenomenon is regarded as the Word of
Mouth effect, i.e., oral communication from person to person.
In social networks, users tend to share what articles they read
and what products they purchase, or even what candidates they
support in presidential elections. A fraction of neighbors are
likely to adopt the same opinions and/or behaviors from the
source and the same process may repeat for their neighbors as
well. The aim is to determine a specific initial set so that the final
influence is maximized when the propagation finishes. A variety
of models already exist for applying to social networks, each with
their own characteristics and functionalities. Since the issue of
influence maximization is proved to be NP-hard, we here provide
approximate solutions for efficient optimization. Additionally,
new approaches to reduce cost and further enhance performance
simultaneously are proposed. Corresponding algorithms illustrate
a noticeable improvement of influence spread on social network
data sets of various scales.

I. INTRODUCTION

The rapid growth of online social networks in the past
twenty years facilitated the spread of opinions and behaviors
from individual to individual. Influence maximization aims to
trigger the a large cascading diffusion by seeding an initial
group of users. The allocation of this seed set is thus the
critical focus of relevant research work.

The practical value of influence maximization can be best
exemplified by companies in an attempt to promote their
merchandise to clients. Traditionally, data mining and machine
learning methods are employed to identify consumers with
tags and labels thus predict the corresponding attitude and
orders on the promoted products. Abundant work has already
been accomplished to achieve applicable results in retailing
and online shopping. Nonetheless, the previous solutions
judged the users only on their own statistical information.
The interactions between them, however, is absent from con-
sideration. In reality, users are dependent of each other and
may be influenced by the ideas and actions of their friends.
If a consumer has purchased some specific products, it is
reasonable that a number of neighbors tend to focus their
attention and buy corresponding goods eventually.

The exhibition of influence diffusion exists not only in
this scenario but in hugh amounts of other aspects in life
as well. The phenomenon is denoted as the Word of Mouth
effect, literally meaning the passing of information by oral
communication.

Fig. 1. the Word of Mouth effect

Upon feeling satisfied with what he has bought, a cus-
tomer would probably recommend it to his intimate friends.
The recommendation is usually more effective than directly
advertising to the target people themselves, thus enterprises
have made up the solution of Free Trials: Send samples of
products free of charge to specific targets and hope they
will share their thoughts and opinions with social neighbors.
Another plausible approach is to invite influential individuals
for endorsement of the products, i.e., to star in the cor-
responding advertisements. Practical options usually include
celebrities like singers, actors, businessmen, etc. Regardless of
which method to employ, the critical issue is to determine the
selection of initial adopters. This problem of targeting groups
of individuals to maximize the eventual influence originated
from [1].

Another essential problem is limited access to the network
topology. Previous work basically analyze the entire social
network to exploit delicate bonds and relationships, while on
the contrary retailers are only able to reach to those who
previously subscribed as members or purchased some kind
of products beforehand. Thus the possible range for selecting
early adopters is limited to a small fraction of the nodes.

II. MODEL

Models are the basic components of influence spread.
Previous work have proposed abundant available models for



representation of networks and diffusions. Basically, a social
network is represented as a directed graph G(V,E) with
V nodes and E directed edges, the former denotes each
user and the latter the social relationships between them.
Upon advertising the products to a selected set of nodes, a
fraction of the users accept it, i.e., they are activated. The
activated nodes are hereby denoted as seeds, thus forming
a seed set. As for the diffusion process, active nodes exert
their influence on neighbors and the inactive ones among
them will have a tendency to become active. Naturally con-
sidering, it is not hard to imagine that in a practical model
resembling real world social networks the tendency for an
inactive node to be activated is monotonically increasing with
the number of neighbors that are already active. A typical
model featuring the above characteristics is the Susceptible-
Infected model widely adopted in medical and commer-
cial affairs. Susceptible-Infected-Recovered and Susceptible-
Infected-Recovered-Susceptible are models derived on the for-
mer one. These models approximate the ground truth well, but
they fail to grab the minute changes concerning a small neigh-
borhood. In order to capture the interactions between users
rather than simply illustrating the gradual change of numbers
of different types of nodes, we here adopt the following
two models with each exhibiting different characteristics and
functionalities [2]: Linear Threshold Model and Independent
Cascade Model.

A. Linear Threshold Model

Any arbitrary edge w connecting two nodes u and v in a
network consists of a weight and the sum of weights of the
edges pointing to all nodes equals to 1.

Σu∈pred(v)w(u, v) = 1 (1)

where pred(v) is the set of nodes with edges pointing to
node v, i.e., the predecessors of node v. Correspondingly, an
inactive node v is activated when the sum of weights from its
active predecessors exceeds a certain value Θ

Σu∈pred(v)w(u, v) ≥ Θ (2)

The threshold Θ for each node varies from individual
to individual, which to some extent represents the level of
activities and sensitivities for them. Once a node is activated,
the same operations will be performed on its successors, i.e.,
the destiny nodes its edges are pointing to. Fig.2 illustrates a
typical diffusion process for Linear Threshold Model where
the thresholds of all nodes are equal to 50%. The influence
spread of Linear Threshold Model has a stable solution, i.e.,
There is only one final stage. The weakness of it is bad
adaptation to large scale networks as the effect of activated
nodes may have to be taken into consideration for multiple
steps when there exist remaining inactive successors.

B. Independent Cascade Model

In this model, there are no longer thresholds for individual
nodes. Instead, each edge itself consists of an activation

Fig. 2. Linear Threshold Model

probability p(u,v). When a node u is activated at the end
of a time slot, it will attempt to activate its successors at the
beginning of next time slot where each successor v is activated
with probability p(u,v) at the end of the time slot. The same
operations are then performed again on the newly activated
nodes.

Fig. 3. Independent Cascade Model

The figure above illustrates an example of the influence dif-
fusion for Independent Cascade Model. The effect of activated
nodes will only be calculated once, so its performance fits well
with large scale data sets The shortcomings of this model is the
unpredictability of final stages, i.e., there could be numerous
results. Due to the activation probability of each edge, it is
random whether a node is activated or not. The figures 4 and
5 exemplify this randomness by showing two different final
stages.

C. Applied Model

It is difficult to utilize the benefits of both Linear Threshold
Model and Independent Cascade Model while deprecating
their shortcomings. A compromise is accomplished as follows:
In the social network graph G(V,E), any arbitrary edge con-
necting two nodes u and v consists of a probability p(u,v),
and the sum of probabilities of all edges pointing to a node u
is 1.



Fig. 4. A possible final stage for influence spread

Fig. 5. Another possible final stage for influence spread

Σu∈pred(v)p(u, v) = 1 (3)

For simplicity, the probabilities of these edges are hereby
set to equal values

p(u, v) =
1

di(v)
(4)

where di(v) denotes the in degree of node v, i.e., the number
of predecessors of this node.

D. Continuous and discrete influence maximization

Sending sample products to consumers is a risky operation
as the possibility that a target refuses the promotion exists,
in which case a lot of investment is actually wasted with
no feedback. An improved solution is to provide discount
coupons so that consumers can purchase products with a
cheaper price. Thus when someone not interested ignored
the coupons there is little loss for the enterprise. Apart from
reducing the advertising budget, the company is now able to
promote the products to more potential targets as well.

By changing free samples into discount coupons, the issue
of influence maximization is now more flexible and leaves
more space for optimization. Previously a target node can only
be configured to be a seed, but now the discount can be of
any value ranging from 0 to 1. The allocation can be further

categorized into two subclasses: continuous allocation where
the local optimal is achievable and discrete allocation imple-
menting greedy algorithm at a little sacrifice of performance.
Correspondingly, for a discrete approach where allocation can
be selected from a set S, the optimal solution lies in one of the
|V ||S| choices, which greatly reduces the complexity of this
problem. Under this configuration, the optimization procedure
is similar to the 0/1 selection in some ways.

E. Two stage seeding

Due to the limited access of nodes in the network, opti-
mization within this range would probably render poor per-
formance. Denote by X the nodes reachable in the beginning
and N(S) the successors of group S, it is natural that some
nodes in N(x) are likely to increase the influence spread at the
final stage. An illustration of this mechanism is users inviting
friends to clubs or websites. Only by activating corresponding
nodes in X can nodes in N(X) become reachable. By applying
this procedure in an attempt to reach nodes previously unac-
cessible, the seeding process can now be categorized into two
stages: seeding in X and seeding in the reachable N(X).

Fig. 6. Two stage seeding

The above figure illustrates a typical two stage seeding
process where we:

1) Select seed nodes in the initial reachable set X.
2) Promote discount coupons to the corresponding users.
3) The users make their own decisions to accept or refuse

the promotion.
4) For users who accept the promotion S, their successors

in the social network N(S) are now accessible.
5) Perform influence maximization in N(S) to select a

number of initial seed set.
6) Begin the diffusion process based on the early adopters

given.



F. NP-hardness of influence maximization

Much work is already done to exploit the issue of influence
maximization. Nevertheless, since the procedure can be proved
to be NP-hard [2], the most plausible optimization mechanism
is still nonexistent.

THEOREM 1. The influence maximization problem is NP-
hard for the Independent Cascade Model.

Proof. Consider an instance of the NP-complete Set Cover
problem, defined by a collection of subsets S1, S2, ...Sm of a
ground set U = (u1, u2, ..., un); we wish to know whether
there exist k of the subsets whose union is equal to U .
Assuming k < n < m, we show that this can be viewed
as a special case of the influence maximization problem.

Given an arbitrary instance of the Set Cover problem, we
define a corresponding directed bipartite graph with n + m
nodes: there is a node i corresponding to each set Si, a node
j corresponding to each element uj , and a directed edge (i, j)
with activation probability p(i, j) = 1 whenever uj ∈ Si. The
Set Cover problem is equivalent to deciding if there is a set
A of k nodes in this graph with δ(A) ≥ n + k. Note that
for the instance we have defined, activation is a deterministic
process, as all probabilities are 0 or 1. Initially activating the
k nodes corresponding to sets in a Set Cover solution results
in activating all n nodes corresponding to the ground set U ,
and if any set A of k nodes has δ(A) ≥ n + k, then the Set
Cover problem must be solvable.

THEOREM 2. The influence maximization problem is NP-
hard for the Linear Threshold Model.

Proof. Consider an instance of NP-complete Vertex Cover
problem defined by an undirected n-node graph G = (V,E)
and an integer k; we want to know if there is a set S of k
nodes in G so that every edge has at least one endpoint in
S. We show that this can be viewed as a special case of the
influence maximization problem.

Given an instance of the Vertex Cover problem involving a
graph G, we define a corresponding instance of the influence
maximization problem by directing all edges of G in both
directions. If there is a vertex cover S of size k in G, then
one can deterministically make δ(A) = n by targeting the
nodes in the set A = S; conversely, this is the only way to
get a set A with δ(A) = n.

III. PROBLEM FORMULATION

With the collection of models mentioned in the previous
section, we are now able to optimize the expected influence
spread denoted as UI(C), we will derive the representation of
UI(C) and prove its monotonicity [4], facilitating our proposal
of solution in the next section.

Assume that different targets are activated with individual
probabilities. Denote by C = (c1, c2, ..., cn) a configuration
of discounts to all reachable nodes V . It is thus natural that
the probability of a subset S ∈ V of nodes become the seed
set is

Pr(S;V,C) = Πu∈Spu(cu)Πv∈V−S(1− pv(cv)) (5)

Now we define the influence maximization problem as
follows. Given a social network G = (V,E), a budget B,
an activation probability function pu(cu) for every user u,
and a diffusion model with influence function I(S), find the
configuration C that is the optimal solution to the following
optimization problem:

maximize UI(C)

s.t. 0 ≤ cu ≤ 1,∀u ∈ V
Σuv

cu ≤ B

A configuration satisfying the above constraints is denoted
as a feasible configuration.

The traditional influence maximization employing the 0/1
selection can be simplified to the following expression:

maximize UI(C)

s.t. cu = 0 orcu = 1,∀u ∈ V

Assume that pu(cu) is monotonic with respect to cu, it is
now hard to figure out that the inequality constraint Σu∈V cv ≤
B can be replaced by an equation Σu∈V cu = B. Apparently,
an optimal C for influence maximization uses up the budget
B. Thus the influence maximization uses up the budget B.
Thus the influence maximization problem is now expressed as
follows:

maximize UI(C)

s.t. 0 ≤ cu ≤ 1,∀u ∈ V
Σuv

cu = B

IV. COORDINATE DESCENT ALGORITHM

Based on the problem formulated above, we now deploy a
coordinate decent algorithm to solve the influence maximiza-
tion problem.

Upon allocating discount to target users in X and waiting
for them to accept it, a new set of users are now reachable.

1) Coordinate Descent in Stage 2: Denote by S the seed
set in stage 1 and B2 the budget for resource allocation in
this stage. The initial allocation in N(S) can be arbitrary,
e.g. equally split between all nodes. The coordinate descent
now aims to optimize the allocation of discount C2 in N(S),
denoting the target function as Q(C2;N(S)). The process
iterates a fixed amount of times or carries on until convergence.
The optimization in each iteration is a random selection of two
users u and v with allocated discounts cu and cv . They are
rearranged to improve the performance of Q(C2;N(S)) while
those of the others are fixed.



Denote by B
′

2 = cu + cv , the target function Q(C2;N(S))
can now be rewritten with regard to cu:

Q(C2;N(S)) = ΣT⊆N(S)\{u,v}Pr(T ;C2, N(S))\{u, v})
{[1− pu(cu)][1− pv(B

′

2 − cu)]I(T )

+ [1− pu(cu)]pv(B
′

2 − cu)I(T ∪ {v})
+ pu(cu)[1− pv(B

′

2 − cu)]I(T ∪ {u})
+ pu(cu)pv(B

′

2 − cu)I(T ∪ {u, v})}

Which is a function of cu. Since the discounts of nodes
0 ≤ cu ≤ 1 and 0 ≤ cv ≤ 1, the constraints on cu is
max(0, B

′

2) ≤ cu ≤ min(B
′

2, 1). Thus each iteration renders
the new discount of u and v. The optimization problem is
formulated as follows:

max Q(cu)

s.t. max(0, B
′

2 − 1) ≤ ci ≤ min(B
′

2, 1)

The optimization over this single variable in a close in-
terval is guaranteed to achieve a close form solution. Since
pu(·) and pv(·) are both continuous and differentiable, the
optimal solution of cu is either a stationary point in the range
(max(0, B

′

2 − 1),min(B
′

2, 1)) or one of the above border
points.

2) Coordinate Descent in Stage 1: The coordinate descent
in the stage is quite similar to the former one. The initial
allocation can be arbitrary on the reachable set of nodes X ,
and the objective function f(C1;X) is optimized iteratively.
In each iteration two random users i and j are selected. Denote
by B

′

1 = ci + cj and the discount of the rest of the nodes are
fixed. Now f(C1;X) can be expressed as follows.

f(C1;X) = ΣS⊆X\{i,j}Pr(S;C1, X\{i, j})
{[1− pi(ci)][1− pj(B

′

1)− ci]maxQ(C2;N(S))

+ [1− pi(ci)]pj(B
′

1 − ci)maxQ(C2;N(S ∪ {j})
+ pi(ci)[1− pj(B

′

1)]maxQ(C2;N(S ∪ {i}))}
+ pi(ci)pj(B

′

1 − ci)maxQ(C2;N(S ∪ {i, j}))}

For each S ⊆ X\{i, j},maxQ(C2;N(S)) is derived by
performing coordinate descent in stage 2. Similar to the
expressions of stage 2, f(C1;X) is only dependent on ci, so
the optimization in each iteration can be formulated as follows:

max f(ci)

s.t. max(0, B
′

1 − 1) ≤ ci ≤ min(B
′

1, 1)

Similar to the previous proposals, the optimization problem
here is guaranteed to have a closed form solution. It is also
natural that the values of f(·) and Q(·) are upper bounded by
the number of nodes in the corresponding seed set. As long
as the optimization iteration exhibits a monotonic increase in
the performance, the proposed algorithm is bound to converge.
However, the possibility that this optimization procedure falls

into a local optimum exists. A plausible solution is to adopt
several random initial allocations.

V. EXPERIMENTS

The performance of the above proposed algorithms are
assured to be non-decreasing during the optimization process,
but its scalability and efficiency in practical scenarios have not
yet been validated.

The data sets for experimental simulations are obtained
from SNAP[5]. Wiki-Vote is the information of voting in
public discussions for Wikipedia. Ca-CondMat covers the
scientific collaborations between authors who submit papers
to Condense Matter category. The scales of the two data sets
are provided as follows.

TABLE I
STATISTICAL DATA OF DATA SETS WIKI-VOTE AND CA-CONDMAT

Data set Nodes Edges

wiki-Vote 7115 103689
ca-CondMat 23133 93497

Note that the former one is a directed graph while the
later is undirected. The solution for converting to a directed
network is replacing every undirected edge (u, v) into two
directed ones (u, v) and (v, u). For simplicity, we randomly
select 100 nodes as the initially reachable nodes denoted as
X . The information diffusion model, as proposed before, is
adopted from the Independent Cascade Model. Each directed
edge (u, v) consists of an activation probability

puv =
1

di(v)
(6)

where di(v) denotes the in degree of node v.

Fig. 7. Results on wiki-Vote

Results of the experiments are shown in the two figures
above. It can be observed that coordinate descent algorithm
provides a significant improvement on the performance of
influence spread in the final stage for both data sets.



Fig. 8. Results on ca-CondMat

VI. CONCLUSION

The influence maximization problem is addressed with
limited access to the users in a social network. The main
contribution is to establish a two stage seeding model and
design the corresponding coordinate descent algorithms to
optimize the resource allocation. Experiments carried out on
real-world data sets indicate the improvement of performance
and thus verify the practicability of proposed algorithms.
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