
Implementing image de-raining by ID-CGAN 

Jintao Wu 

515021910117 

Ⅰ. Introduction 
Generative adversarial networks (GANs) are deep neural net architectures comprised of two 

nets, pitting one against the other (thus the “adversarial”). It was introduced in a paper by Ian 

Goodfellow and other researchers at the University of Montreal, including Yoshua Bengio, in 

2014. GANs’ potential is huge, because they can learn to mimic any distribution of data. 

The GAN consists of two parts, the generator as well as the discriminator. One neural network, 

called the generator, generates new data instances, while the other, the discriminator, evaluates 

them for authenticity; i.e. the discriminator decides whether each instance of data it reviews be-

longs to the actual training dataset or not. 

As shown in Figure 1, there are mainly four steps for GAN to take. First, the generator takes in 

random numbers and returns an image. Second, this generated image is fed into the discrimina-

tor alongside a stream of images taken from the actual dataset. Third, the discriminator takes in 

both real and fake images and returns probabilities, a number between 0 and 1, with 1 repre-

senting a prediction of authenticity and 0 representing fake.[1] 

 

Figure 1. The procedure of GAN 

The success of GANs in synthesizing realistic images has led to researchers exploring the GAN 

framework for numerous applications such as style transfer, image inpainting, text to image 

translation, image to image translation, texture synthesis and generating outdoor scenes from 

attributes [2]. In the paper “Image De-raining Using a Conditional Generative Adversarial Net-

work”, the author proposed to realizing the image de-raining using a improved GAN, that is ID-

CGAN (Image De-raining Conditional General Adversarial Network). 

 

Ⅱ. Completed work 
  The project is based on the paper “Image De-raining Using a Conditional Generative Adversar-

ial Network”. The aim of the project is to implementing the Image De-raining proposed in the pa-

per. During the project, I have researched different structures of GAN and different types of loss 

function. The work completed is shown below. 

  (1) Implementing Image De-raining using torch7 

  (2) Training and testing ID-CGAN 

  (3) Performing evaluation experiment 



  The following report is organized as follows. Section Ⅲ describe the network ID-CGAN pro-

posed by the paper. Section Ⅳ shows the implementation of ID-CGAN. Section Ⅴ display the 

simulation results of the network. Section Ⅵ summarize the final conclusion of the project. 

 

Ⅲ. The proposed network 
The proposed network ID-CGAN is composed of three important parts (generator, discrimina-

tor and perceptual loss function) that serve distinct purposes. Similar to traditional GANs, the au-

thor have two subnetworks: a generator sub-network G and a discriminator subnetwork D. The 

generator sub-network G is a symmetric deep CNN network with appropriate skip connections as 

shown in the top part in Figure 2. Its primary goal is to synthesize a de-rained image from an im-

age that is degraded by rain (input rainy image). The discriminator sub-network D, as shown in 

the bottom part in Figure 2, serves to distinguish ”fake” de-rained image synthesized by the gen-

erators from corresponding ground truth ‘real’ image. It can also be viewed as a guidance for the 

generator G. Since GANs are known to be unstable to train which results in artifacts in the output 

image synthesized by G, the author define a refined perceptual loss functions to address this is-

sue. 

 

A. GAN objective function 

In order to learn a good generator 𝐺 so as to fool the learned discriminator 𝐷 and to make 

the discriminator 𝐷 good enough to distinguish synthesized de-rained image from real ground 

truth, the proposed method alternatively updates 𝐺 and 𝐷 following the structure proposed in 

[3], [4]. Given an input rainy image 𝑥 and a random noise vector 𝑧, conditional GAN aims to 

learn a mapping function to generate output image 𝑦 by solving the following optimization 

problem:  

 

 

B. Generator with symmetric structure 

  As the goal of single image de-raining is to generate pixel level de-rained image, the generator 

should be able to remove rain streaks as much as possible without loosing any detail information 

of the background image. So the key part lies in designing a good structure to generate de-rained 

image.  

  Existing methods, such as sparse coding based methods [5], [6], neural network-based meth-

ods [7] and CNN-based methods [8] have all adopted a symmetric structure. For example, sparse 

coding-based methods use a learned or pre-defined synthesis dictionaries to decode the input 

noisy image into sparse coefficient map. Then another set of analysis dictionaries are used to 

transfer the coefficients to desired clear output. Usually, the input rainy image is transferred to a 

specific domain for effective separation of background image and undesired component (rain-

streak). After separation, the background image (in the new domain) has to be transferred back 

to the original domain which requires the use of a symmetric process. Therefore, the author also 

adopt a symmetric structure to form our generator subnetwork. Similar to traditional low-level 

vision CNN frameworks, the generator G directly learns an end-to-end mapping from input rainy 

image to its corresponding ground truth.  



 
Figure 2. An overview of the proposed ID-CGAN method 

  The proposed generator G with a symmetric structure is shown in the top part of Figure 2. A 

set of convolutional layers (along with batch normalization and PReLU activation) are stacked in 

the front which act as a learned feature extractor or semantic attributes extractor. Then, three 

shrinking layers are stacked in the middle part serving for better computational efficiency. These 

three shrinking layers can be also regarded as performing linear combination within the learned 

features [9]. These are followed by a stack of deconvolutional layers (along with batch normaliza-

tion and ReLU activation function). Note that the deconvolutional layers are a mirrored version of 

the forward convolutional layers. For all layers,  the author use a stride of 1 and pad appropriate 

zeros to maintain the dimension of each feature map to be the same as that of the input. To 

make the network efficient in training and have better convergence performance, the author in-

volve symmetric skip connections into the proposed generator sub-network, similar to [8]. The 

generator network is as follows: 

 

  where 𝐶𝐵𝑃(𝐾) is a set of 𝐾-channel convolutional layers followed by batch normalization and 

PReLU activation, 𝐷𝐵𝑅(𝐾) is a set of 𝐾-channel deconvolutional layers followed by batch nor-

malization and ReLU activation. Skip connections are added via every two skips, as shown in Figure 

2. 

 

C. Discriminator 

Following the structure that was proposed in [10], the author use convolutional layer with batch 

normalization and PReLU activation as a basis throughout the discriminator network. Once calcu-

late the learned feature from a set of these Conv-BN-PReLU, a sigmoid function is stacked at the 

end to map the output to a probability score normalized to [0,1]. The proposed discriminator sub-

network D is shown in the bottom part of Figure 2. The structure of the discriminator sub-network 

is as follows: 

 

where, 𝐶𝐵(𝐾2) is a set of 𝐾2 channel convolutional layers followed by batch normalization 

and 𝐶(1) is a set of 1-channel convolutional layers. 

 



D. Redefined perceptual loss 

To ensure that the results have good visual and quantitative scores along with good discrimina-

tory performance, the author propose a new refined loss function. Specifically, the author com-

bine pixel-to-pixel Euclidean loss, perceptual loss [11] and adversarial loss together with appro-

priate weights to form our new refined loss function. The new loss function is then defined as fol-

lows:  

 

where 𝐿𝐴 represents adversarial loss (loss from the discriminator 𝐷), 𝐿𝑃 is perceptual loss 

and 𝐿𝐸 is normal per-pixel loss function such as Euclidean loss. Here, 𝜆𝑝 and 𝜆𝑎 are pre-de-

fined weights for perceptual loss and adversarial loss, respectively. If both 𝜆𝑝 and 𝜆𝑎 are set to 

be 0, then the network reduces to a normal CNN configuration, which aims to minimize only the 

Euclidean loss between output image and ground truth. If 𝜆𝑝 is set to 0, then the network re-

duces to a normal GAN. If 𝜆𝑎 set to 0, then the network reduces to the structure proposed in 

[11]. 

  The three loss functions 𝐿𝑃 , 𝐿𝐸 and 𝐿𝐴 are defined as follows. Given an image pair {𝑥, 𝑦𝑏} 

with 𝐶 channels, width 𝑊 and height 𝐻 (i.e. 𝐶 × 𝑊 × 𝐻), where 𝑥 is the input image and 

𝑦𝑏 is the corresponding ground truth, the per-pixel Euclidean loss is defined as: 

 

where 𝜙𝐸 is the learned network 𝐺 for generating the de-rained output. Suppose the outputs 

of certain high-level layer are with size 𝐶𝑖  × 𝑊𝑖  × 𝐻𝑖. Similarly, the perceptual loss is defined as: 

 

where 𝑉 represents a non-linear CNN transformation. Similar to the idea proposed in [11], 

the author aim to minimize the distance between high-level features. In the proposed method, 

the author compute the feature loss at layer relu2_2 in VGG-16 model [12]. 

Given a set of 𝑁 de-rained images generated from the generator {𝑦𝑖}𝑖=1
𝑁 , the entropy loss 

from the discriminator to guide the generator is defined as: 

 

 

Ⅳ. The implementation of ID-CGAN 

The proposed network is implemented by torch7 using cuda8.0 and cudnn5.0. The parameters 

of training ID-CGAN is shown in Table 1. 

Generator Filters in the First Conv Layer 64 

Discriminator Filters in the First Conv Layer 48 

Iteration 2000 

Initial Learning Rate for Adam 0.0002 

Momentum Term of Adam 0.5 



Batch Size 7 

Weight on Perceptual Loss Term in Objective 150 

weight on MSE Term in Objective 150 

Table 1. Parameters for training 

 

Ⅴ. Experiment Results 
A. Datasets 

The training set consists of a total of 500 images, where 300 images are randomly chosen from 

the first 800 images in the UCID dataset [13] and 200 images are randomly chosen from the BSD-

500’s training set [14]. The test set consists of a total of 100 images, where 50 images are randomly 

chosen from the last 500 images in the UCID dataset [13] and 50 images are randomly chosen from 

the test-set of the BSD-500 dataset [14]. After the train and test sets are created, rain-streaks are 

added to these images by following the guidelines mentioned in [15] using Photoshop4. The ex-

ample is shown in Figure 3. It is ensured that rain pixels of different intensities and orientations are 

added to generate a diverse training and test set. Note that the images with rain form the set of 

observed images and the corresponding clean images form the set of ground truth images. All the 

training and test samples are resized to 256 × 256. 

 
Figure 3. The original image and image added rain 

In order to demonstrate the effectiveness of the proposed method on real-world data, a dataset 

of 50 rainy images was downloaded from the Internet. The images are chosen carefully to ensure 

that the images collected were diverse in terms of content as well as intensity and orientation of 

the rain pixels. 

B. Results 

  Some of the tested images are chosen to show the effect of ID-CGAN, as shown in Figure 4 and 

Figure 5. 



 

Figure 4. The original image and image after de-raining 

 

Figure 4. The original image and image after de-raining 

  From the example, we can see that most of the rain streak is removed from the image. How-

ever, some large rain streaks are still remained in the image. It shows that ID-CGAN is   more 

capable of removing scattered and small rain streaks. There are mainly two reasons causing this 

drawback. First, the dataset is limited, so it does not contain various types and sizes of rain 

streaks. Second, the loss function remained to be improved to take large rain streaks into consid-

eration. Therefore, future research would focused on the improvement of loss function as well as 

the structure of network. 

Ⅵ. Conclusions 

  In the project, the proposed ID-CGAN is implemented. For improved stability in training 

and reducing artifacts introduced by GANs in the output images, the use of a new refined 

loss function is introduced in the GAN optimization framework. By performing the experi-

ment of image de-raining, the results shows that ID-CGAN is capable of removing most of 

rain streaks, while some large streaks are remained, which is the focus of future research. 

  During this project, I have the chance to have a deeper understanding of GAN, such as its 



different structures, different loss functions and their effects on the results. Meanwhile, I 

have learned the use of torch and other deep learning platforms, which is essential for deep 

learning researches. Thanks the professors and teaching assistants for providing such an op-

portunity. 
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