
Deep Learning with Differential Privacy

Chenhao Jiang

515021910104

Contents

1 Introduction 2

2 Background 2

2.1 Differential Privacy . 2

2.2 Deep Learning . 4

3 Related Work 4

3.1 Differentially Private SGD Algorithm 5

3.2 The Moments Accoutant . 8

3.3 Hyperparameter Tuning . 10

4 My Work 10

4.1 Tensorflow Installation . 10

4.2 Linear Regression with Differentially Privacy 11

4.2.1 Algorithm Design . 11

4.2.2 Algorithms Analysis . 13

4.2.3 Algorithm Performance Test 14

1

Abstract

Machine learning techniques based on neural networks are achieving

remarkable results in a wide variety of domains. Often, the training of

models requires large, representative datasets, which may be crowdsourced

and contain sensitive information. The models should not expose private

information in these datasets. However, neural networks algorithm with

differentially privacy is too difficult for me to design. Fortunately, I design

a linear regression algorithm with differentially privacy and study the

performance of the algorithm by experiment.

1 Introduction

Recent progress in neural networks has led to impressive successes in a wide

range of applications, including image classification, language representation

and many more. These advances are enabled, in part, by the availability of large

and representative datasets for training neural networks. These datasets are

often crowdsourced, and may contain sensitive information. Their use requires

techniques that meet the demands of the applications while offering principled

and rigorous privacy guarantees.

Some work has already been implemented, in order to combine deep learning

and differential privacy. I will explain the work of M. Adabi in the following

sections. Then I will introduce my linear regression algorithm with differentially

privacy, prove the reliability of this algorithm and study the performance of the

algorithm by experiment.

2 Background

2.1 Differential Privacy

Differential privacy constitutes a strong standard for privacy guarantees for

algorithms on aggregate databases. It is defined in terms of the application-

specific concept of adjacent databases. For instance, when each training dataset

is a set of image-label pairs; we say that two of these sets are adjacent if they

differ in a single entry, that is, if one image-label pair is present in one set and

absent in the other.

2

A randomized mechanism M : D → R with domain D and range R satisfies

(ε, δ)-differential privacy if for any two adjacent inputs d, d′ ∈ D and for any

subset of outputs S ⊆ R it hold that

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S] + δ

The original definition of ε-differential privacy does not include the additive term

δ, which allows for the probability that plain ε-differential privacy is broken with

probability δ (which is preferably smaller than 1/ |d|).

Differential privacy has several properties that make it particularly useful in

applications: composability, group privacy, and robustness to auxiliary infor-

mation. Composability enables modular design of mechanisms: if all the com-

ponents of a mechanism are differentially private, then so is their composition.

Group privacy implies graceful degradation of privacy guarantees if datasets

contain correlated inputs, such as the ones contributed by the same individu-

al. Robustness to auxiliary information means that privacy guarantees are not

affected by any side information available to the adversary.

A common paradigm for approximating a deterministic real-valued function

f : D → R with a differentially provate mechanism is via additive noise cali-

brated ro f’s sensitivity Sf , which is defined as the maximum of the absolute

distance |f(d)− f(d′)| where d and d′ are adjacent inputs. For instance, the

Gaussian noise mechanism is defined by

M(d)
∆
= f(d) +N (0, S2

f · σ2),

where N (0, S2
f ·σ2) is the normal (Gaussian) distribution with the mean 0 and s-

tandard deviation Sfσ. A single application of the Gaussian mechanism to func-

tion f of sensitivity Sf satisfies (ε, δ)-differential privacy if δ ≥ 4
5exp(−(σε)

2
/2)

and ε < 1.

The basic blueprint for designing a differentially private additive-noise mech-

anism that implements a given functionality consists of the following steps: ap-

proximating the functionality by a sequential composition of bounded-sensitivity

functions; choosing parameters of additive noise; and performing privacy anal-

ysis of the resulting mechanism.

3

2.2 Deep Learning

Deep neural networks, which are remarkably effective for many machine learn-

ing tasks, define parameterized functions from inputs to outputs as compositions

of many layers of basic building blocks, such as affine transformations and sim-

ple nonlinear functions. Commonly used examples of the latter are sigmoids

and rectified linear units (ReLUs). By varying parameters of these blocks, we

can/train0such a parameterized function with the goal of fitting any given

finite set of input/output examples.

More precisely, we define a loss function L that represents the penalty for

mismatching the training data. The loss L(θ) on parameters θ is the average

of the loss over the training examples {x1, . . . xN}, so L(θ) = 1
N

∑
i L(θ, xi).

Training consists in finding θ that yields an acceptably small loss, hopefully the

smallest loss (though in practice we seldom expect to reach an global minimum).

For complex networks, the loss function L is usually nonconvex and difficult to

minimize. In practice, the minimization is often done by the mini-batch stochas-

tic gradient descent (SGD) algorithm. In this algorithm, at each step, one forms

a batch B of random examples and computes gB = 1/|B|
∑
x∈B ∇θL(θ, x) as an

estimation to the gradient ∇θL(θ). Then θ is updated following the gradient

direction −gB towards a local minimum.

Several systems have been built to support the definition of neural networks,

to enable efficient training, and then to perform efficient inference. And Tensor-

Flow, an open-source dataflow engine released by Google, allows the program-

mer to define large computation graphs from basic operators, and to distribute

their execution across a heterogeneous distributed system. TensorFlow auto-

mates the creation of the computation graphs for gradients; it also makes it

easy to batch computation.

3 Related Work

In this section, I will introduce Martin Abadi and his partner’s approach

toward differential private training of netural networks from the following three

4

parts: a differentially private SGD algorithm, the moments accountant, and

hyperparameter tuning.

3.1 Differentially Private SGD Algorithm

Algorithm 1 outlines their basic method for training a model with parame-

ters θ by minimizing the empirical loss function L(θ). At each step of the SGD,

they compute the gradient ∇θL(θ, xi) for a random subset of examples, clip the

`2 norm of each gradient, compute the average, add noise in order to protect

privacy, and take a step in the opposite direction of this average noisy gradient.

At the end, in addition to outputting the model, it is also needed to compute

the privacy loss of the mechanism based on the information maintained by the

privacy accountant. Next I will describe in more detail each component of this

algorithm and our refinements.

Norm clipping: Proving the differential privacy guarantee of Algorithm 1 re-

quires bounding the influence of each individual example on g̃t. Since there is

5

no a priori bound on the size of the gradients, they clip each gradient in `2

norm; i.e., the gradient vector g is replaced by g/max(1, ‖g‖2C), for a clipping

threshold C. This clipping ensures that if ‖g‖2 ≤ C, then g is preserved, where-

as if ‖g‖2 > C, it gets scaled down to be of norm C. They remark that gradient

clipping of this norm is a popular ingredient of SGD for deep networks for non-

privacy reasons, though in that setting it usually suffices to clip after averaging.

Per-layer and time-dependent parameters: The pseudocode for Algorith-

m 1 groups all the parameters into a single input θ of the loss function L(·). For

multi-layer neural networks, they consider each layer separately, which allows

setting different clipping thresholds C and noise scales σ for different layers.

Additionally, the clipping and noise parameters may vary with the number of

training steps t.

Lots: Like the ordinary SGD algorithm, Algorithm 1 estimates the gradient

of L by computing the gradient of the loss on a group of examples and tak-

ing the average. This average provides an unbiased estimator, the variance of

which decreases quickly with the size of the group. We call such a group a lot,

to distinguish it from the computational grouping that is commonly called a

batch. In order to limit memory consumption, we may set the batch size much

smaller than the lot size L, which is a parameter of the algorithm. We perform

the computation in batches, then group several batches into a lot for adding

noise. In practice, for efficiency, the construction of batches and lots is done by

randomly per- muting the examples and then partitioning them into groups of

the appropriate sizes. For ease of analysis, however, we assume that each lot

is formed by independently picking each example with probability q = L/N ,

where N is the size of the input dataset.

As is common in the literature, we normalize the running time of a training

algorithm by expressing it as the number of epochs, where each epoch is the

(expected) number of batches required to process N examples. In our notation,

an epoch consists of N/L lots.

Privacy accounting: For differentially private SGD, an important issue is

computing the overall privacy cost of the training. The composability of dif-

ferential privacy allows them to implement an /accountant0procedure that

compute the privacy cost at each access to the training data, and accumulates

this cost as the training progresses. Each step of training typically requires

6

gradients at multiple layers, and the accountant accumulates the cost that cor-

responds to all of them.

Moments accountant: Much research has been devoted to studying the pri-

vacy loss for a particular noise distribution as well as the composition of privacy

losses. For the Gaussian noise that they use, if they choose σ in Algorithm 1

to be
√

2 log 1.25
δ /ε, then by standard arguments each step is (ε, δ)-differentially

private with respect to the lot. Since the lot itself is a random sample from the

database, the privacy amplification theorem implies that each step is (qε, qδ)-

differentially private with respect to the full database where q = L/N is the

sampling ratio per lot. The result in the literature that yields the best overall

bound is the strong composition theorem.

However, the strong composition theorem can be loose, and does not take in-

to account the particular noise distribution under consideration. In their work,

they invent a stronger accounting method, which they call the moments accoun-

tant. It allows them to prove that Algorithm 1 us O(qε
√
T), δ)-differentially

private for appropriately chosen settings of the noise scale and the clipping

threshold. Compared to what one would obtain by the strong composition the-

orem, their bound is tighter in two ways: it saves a
√

log(1/δ) factor in the

ε part and a Tq factor in the δ part. Since they expect δ to be small and

T � 1/q (i.e.,each example is examined multiple times), the saving provided by

our bound is quite significant. This result is one of their contributions.

Theorem 3.1.1. There exist constants c1 and c2 so that given the sampling

probability q = L/N and the number of steps T , for any ε < c1q
2T , Algorithm

1 is (ε, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε

They use the strong composition theorem, and then they need to choose

σ = Ω(q
√
T log(1/δ) log(T/δ)/ε). Note that they save a factor of

√
log(T/δ)

in their asymptotic bound. The moments accountant is beneficial in theory, as

this result indicates, and also in practice. For example, with L = 0.01N , σ = 4,

δ = 10−5, and T = 10000, we have ε ≈ 1.26 using the moments accountant. As

a comparison, we would get a much larger ε ≈ 9.34 using the strong composition

theorem.

7

3.2 The Moments Accoutant

The moments accountant keeps track of a bound on the moments of the

privacy loss random variable. It generalizes the standard approach of tracking

(ε, δ) and using the strong composition theorem. While such an improvement

was known previously for composing Gaussian mechanisms, they show that it

applies also for composing Gaussian mechanisms with random sampling and can

provide much tighter estimate of the privacy loss of Algorithm 1.

Privacy loss is a random variable dependent on the random noise added to

the algorithm. That a mechanismM is (ε, δ)-differentially private is equivalent

to a certain tail bound on M.s privacy loss random variable. While the tail

bound is very useful information on a distribution, composing directly from it

can result in quite loose bounds. They instead compute the log moments of

the privacy loss random variable, which compose linearly. They then use the

moments bound, together with the standard Markov inequality, to obtain the

tail bound, that is the privacy loss in the sense of differential privacy.

More specifically, for neighboring databases d, d′ ∈ Dn, a mechanism M,

auxiliary input aux, and an outcome o ∈ R , define the privacy loss at o as

c(o;M, aux, d, d′)
∆
= log

Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]

A common design pattern, which they use extensively in the paper, is to up-

date the state by sequentially applying differentially private mechanisms. This

is an instance of adaptive composition, which they model by letting the auxiliary

input of the kth mechanism Mk be the output of all the previous mechanisms.

For a given mechanism M, they define the λth moment αM(λ; aux, d, d′) as

the log of the moment generating function evaluated at the value λ:

αM(λ; aux, d, d′)
∆
= logEovM(aux,d)[exp(λc(o;M, aux, d, d′))].

In order to prove privacy guarantees of a mechanism, it is useful to bound all

possible αM(λ; aux, d, d′). We define

αM(λ)
∆
= max
aux,d,d′

αM(λ; aux, d, d′),

where the maximum is taken over all possible aux and all the neighboring

databases d, d′.

8

They state the properties of α that we use for the moments accountant.

Theorem 3.2.1. Let αM(λ) defined as above. Then

1.[Composability] Suppose that a mechanism M consists of a sequence of

adaptive mechanisms mathcalM1, . . . ,Mk where Mi :
∏i−1
j=1Rj × D → Ri.

Then for any λ

αM(λ) ≤
k∑
i=1

αMi
(λ).

2.[Tail bound] For any ε > 0, the mechanism M os (ε, δ)-differentially private

for

δ = min
λ
exp(αM(λ)− λε).

In particular, Theorem 3.2.1.1 holds when the mechanisms themselves are

chosen based on the (public) output of the previous mechanisms.

By Theorem 3.2.1, it suffices to compute, or bound, αMi
(λ) at each step and

sum them to bound the moments of the mechanism overall. They then use

the tail bound to convert the moments bound to the (ε, δ)-differential privacy

guarantee.

The main challenge that remains is to bound the value αMt(λ) for each step.

In the case of a Gaussian mechanism with random sampling, it suffices to esti-

mate the following moments. Let µ0 denote the probability density function of

N (0, σ2), and µ1 denote the pdf of N (1, σ2). Let µ be the mixture of two Gaus-

sian µ = (1 − q)µ0 + qµ1. Then we need to compute α(λ) = log max(E1, E2)

where

E1 = Ezvµ0
[(µ0(z)/µ(z))

λ
],

E2 = Ezvµ[(µ(z)/µ0(z))
λ
],

In the implemention of the moments accoutant, they carry out numerical

integration to compute α(λ). In addition, they show the asymptotic bound

α(λ) ≤ q2λ(λ+ 1)/(1− q)σ2 +O(q3/σ3)

9

Together with Theorem 3.2.1, the above bound implies our main Theorem

3.1.1.

3.3 Hyperparameter Tuning

They identify characteristics of models relevant for privacy and, specifical-

ly, hyperparameters that they tune in order to balance privacy, accuracy, and

performance. In particular, through experiments, they observe that model ac-

curacy is more sensitive to training parameters such as batch size and noise level

than to the structure of a neural network.

After they try several settings for the hyperparameters, they trivially add

up the privacy costs of all the settings, possibly via the moments accountant.

However, since they care only about the setting that gives us the most accurate

model, they can do better. They use insights from theory to reduce the number

of hyperparameter settings that need to be tried. While differentially private

optimization of convex objective functions is best achieved using batch sizes as

small as 1, non-convex learning, which is inherently less stable, benefits from

aggregation into larger batches. At the same time, Theorem 1 suggests that

making batches too large increases the privacy cost, and a reasonable tradeoff is

to take the number of batches per epoch to be of the same order as the desired

number of epochs. The learning rate in non-private train- ing is commonly

adjusted downwards carefully as the model converges to a local optimum. In

contrast, they never need to decrease the learning rate to a very small value,

because differentially private training never reaches a regime where it would

be justified. On the other hand, in their experiments, they do find that there

is a small benefit to starting with a relatively large learning rate, then linearly

decaying it to a smaller value in a few epochs, and keeping it constant afterwards.

4 My Work

4.1 Tensorflow Installation

TensorFlow is Google’s second-generation artificial intelligence learning sys-

tem based on DistBelief’s R&D. Its name comes from its own operating prin-

ciple. Tensor (Tension) means an N-dimensional array, Flow (Flow) implies

10

calculation based on a data flow graph, TensorFlow flows from one end of the

flow graph to the other. TensorFlow is a system that transmits complex data

structures to artificial intelligence neural networks for analysis and processing.

TensorFlow supports CNN, RNN, and LSTM algorithms, which are the most

popular deep neural network models currently used in Image, Speech, and NLP.

Therefore, TensorFlow can be used in many machine learning and deep learning

areas such as speech recognition or image recognition.

According to the guidance of a CSDN blog on the Internet, I completed

the installation of TensorFlow to facilitate the testing of code. And I learned

some of the TensorFlow programming methods so that I can understand the

predecessors’ codes. As we can see from the following figure, after testing, we

found that, we found that Tensorflow can be successfully applied.

Figure 1: Tensorflow can be applied

4.2 Linear Regression with Differentially Privacy

I try to write a differentially private SGD algorithm as M. Abadi, and I try

to write a deep learning algorithm with differential privacy. However, I failed.

At no choice, I decide to write a linear regression algorithm with differentially

privacy. What I do is writing a linear regression algorithm with differentially

privacy and studying the performance of this algorithm, compared to the linear

regression algorithm without differentially privacy.

4.2.1 Algorithm Design

We all know what is linear regression. In linear regression, we define loss

function as

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))

2
,

11

where m is number of training sets, x(i) = (x
(i)
0 , x

(i)
1 , . . . , x

(i)
d)

T
is features of ith

training example or ”input variable” of ith training example (there are d + 1

dimension features, x0 = 1), y(i) is target variable of ith training example, hθ(x)

is Hypothesis and hθ(x) = θ0 + θ1x1 + · · · + θdxd. What we want to do is to

determine θ = (θ0, . . . , θd)
T

which minimizes the loss function. We often use

gradient descent algorithm to determine θ.

We can use feature scale to process the data. We can make every x
(i)
k and

y(i) range from [-1,1].

However, directly posting θ will reveal private information and violate ε-

differential privacy. I first make the following derivation of loss funtion

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))

2

=
1

2m
[

∑
0≤j,k≤d

(

m∑
i=1

x
(i)
j x

(i)
k)θjθk − 2

d∑
j=0

(

m∑
i=1

y(i)x
(i)
j)θj +

m∑
i=1

y(i)2
]

We can regard loss function as θ’s quadratic function, it can be simplified to

J(θ) = aθ2 + bθ + c

I split the loss function into two child functions g(θ) and t(θ), where g(θ) =

aθ2, t(θ) = bθ. Let ∆1 indicates the sensitivity of g(θ), ∆2 indicates the sensitiv-

ity of b(θ). As for a quadratic function, the loss function has a value of 0 ideally,

the optimal θ is − b
2a , not related to c. Therefore, the algorithm can ignore c

when solving optimal model parameters θ̄. Assume that two adjacent dataset

are different in last training example. We can calculate ∆1,∆2 according to the

definition of sensitivity ∆f = maxD1,D2
‖f(D1)− f(D2)‖:

∆1 =
∑

0≤j,k≤d

‖x(n)
j x

(n)
k − x

′(n)
j x

′(n)
k ‖ ≤ 2(d+ 1)

2

∆2 =

d∑
j=0

‖(−2y(n)x
(n)
j − (−2y

′(n)x
′(n)
j ‖ ≤ 4(d+ 1)

According to function g(θ) and t(θ), we assign privacy budget ε1, ε2. Ac-

cording to the characteristics of the Laplace mechanism, the Laplacian noise is

12

proportional to the sensitivity of the function and inversely proportional to the

privacy budget. In order to reduce the added noise, we allocate a larger privacy

budget for the more sensitive functions. According to the computed ∆1,∆2,

when d is large, the sensitivity of g(θ) is larger than t(θ). Thus, we should

make ε1 ≥ ε2, i.e., for a fixed privacy budget ε, we can reduce noise by ratio-

nally allocating ε1 and ε2. And it is more accurate to predict linear regression

models.

In general, I want to summarize my algorithm. First, I assign privacy budget

ε1 and ε2. And then I split the loss function into two child functions g(θ) and

t(θ), where g(θ) = aθ2, t(θ) = bθ. After doing this, I add Laplacian noise to the

coefficient a and b as â = a + Lap(∆1

ε1
), b̂ = b + Lap(∆2

ε2
). And then optimize

the new loss function to get θ̂.

4.2.2 Algorithms Analysis

I first want to prove that function ĝ(θ) satisfies ε1-differentially privacy, where

ĝ(θ) = âθ2.

Proof: Given two adjacent datasets D1, D2 different in last training example.

We have

Pr{ĝ(θ)|D1}
Pr{ĝ(θ)|D2}

=

∏
0≤j,k≤d exp(

ε1‖
∑

D1
(x

(i)
j x

(i)
k −â‖

∆1
)∏

0≤j,k≤d exp(
ε1‖

∑
D2

(x
(i)
j x

(i)
k −â‖

∆1
)

≤
∏

0≤j,k≤d

exp(
ε1
∆1
‖(
∑
D1

x
(i)
j x

(i)
k)− (

∑
D2

x
(i)
j x

(i)
k)‖)

=
∏

0≤j,k≤d

exp(
ε1
∆1
‖x(n)

j x
(n)
k − x

′(n)
j x

′(n)
k ‖)

= exp(
ε1
∆1

∑
0≤j,k≤d

‖x(n)
j x

(n)
k − x

′(n)
j x

′(n)
k ‖)

≤ exp(ε1)

Also, we can prove that t̂(θ) satisfies ε2-differentially privacy. Therefore, the

algorithm satisfies ε-differentially privacy, where ε = ε1 + ε2.

13

4.2.3 Algorithm Performance Test

We use Matlab to test the algorithm, the dataset is US and Brazil from

Integrated Public Use Microdata, including 370000 examples and 190000. We

first use feature scale to process the data. And then we randomly take 80%

examples as training examples and 20% as test examples.

We perform experiments on datasets US and Brazil, respectively. For differ-

ent datasets and different privacy budget values ε, the experimental results of

our linear regression algorithm with differentially privacy, compared to linear

regression algorithm, are shown in the following figure.

Figure 2: Algorithm performance on dataset US

Figure 3: Algorithm performance on dataset Brazil

14

As we can see, the loss function of linear regression algorithm with differ-

entially privacy is larger than the loss function of linear regression algorithm

on both datasets. And the loss function of linear regression algorithm with

differentially privacy reduces with the increase of privacy budget.

15

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I.Mironov, K. Tal-

war, and L. Zhang. Deep learning with differential privacy. CoRR, ab-

s/1607.00133, 2016.

[2] CSDN Blog

https://blog.csdn.net/cs hnu scw/article/details/79695347

[3] TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

Software available from tensorflow.org.

[4] C. Dwork and J. Lei. Differential privacy and robust statistics. In STOC,

pages 371õ380. ACM, 2009.

[5] C. Dwork and G. N. Rothblum. Concentrated differential privacy. CoRR,

abs/1603.01887, 2016.

[6] Minnesota Population Center. Ingrated public use micodata series-inter-

nation: Version 5.0[OL].[2009]. https://internationnal.ipums.org.

16

