

Who is more likely to gain a large number of citations?

513030946 5孙元璞

Idea&Method

EXPERIMENTS&EVALUATION

Background

The cited rate

Reflect the value of a papr to some extent.

Need to be increased instead of the paper number.

Meaning of this project

-for searching

high cited rate # high quality

to find the more useful one

-for writing

taking example by their writting skills

Analyze the motivation

Find the key component

Summarize the peculiarities

Correlation analysis

Predictive Model

Analyze the motivation

Provides a new direction

Use of formula

Supplements information

Practice of method

For comparison

New method of proof

Innovative topic

Innovative researching method

Annual Review

Published on high influenced periodical

The researcher has his own website of research group

Title

Co-authors

Abstract

Quotation

Key words

Published time

Chart analysis

Correlation index analysis

Covariance analysis

Comentropy&Mutual information analysis

H-index

h- means high citations

h-index means a researcher has at most h papers that are cited at list h times

Rank	Name	h-index	Field	
1	Whitesides, G. M.	155	Organic	
2	Karplus, M.	139	Theoretical	
3	Corey, E. J.#	138	Organic	
4	Heeger, A. J.#	128	Organic	
5	Huber, R.#	122	Bio	
6	Wüthrich, K.#	120	Bio	
7	Bax, A.	118	Bio	
8	Schleyer, P. v.	117	Organic	
9	Lehn, J. M. #	114	Organic	
10	Bard, A. J.	113	Analytical	
10	Gratzel, M.	113	Physical	
10	Hoffmann, R.#	113	Theoretical	
13	Schreiber, S. L.	112	Bio	
14	Scheraga, H. A.	111	Bio	
15	Fersht, A. R.	Fersht, A. R. 105		
15	Frechet, J. M.	105	Inorganic	
15	Truhlar, D. G.	105	Theoretical	
18	Marks, T. J.	104	Inorganic	
18	Trost, B. M.	104	Organic	
20	Gray, H. B.	103	Inorganic	

Predictive Model 5

Statistical Learning Theory has provided a very effective framework for classification and regression tasks involving features. Support Vector Machines (SVM) are directly derived from this framework and they work by solving a constrained quadratic problem where the convex objective function for minimization is given by the combination of a loss function with a regularization term (the norm of the weights). There are two main categories for support vector machines: support vector classification (SVC) and support vector regression (SVR). SVM is a learning system using a high dimensional feature space. It yields prediction functions that are expanded on a subset of support vectors.

The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close to the model prediction. Support Vector Regression is the most common application form of SVMs.

EXPERIMENTS

5

Randomly choose 1000 papers from the MAG

Predict 8 papers from 8 different researchers

Train the SVM model

EVALUATION

Name	Yong Yu	Jiawei Han	Kai Li	Yuanyua n Zhou	Dina Katabi	Garth Gibson	Michael I Jordan	Tom Mitchell
Paper count	66	283	131	39	79	51	186	73
H-index	53	159	80	56	64	63	146	76
Citation Count(2017)	1801	13025	4124	1071	2347	1170	14146	2941
Predict Count	1635	14353	4527	779	2420	937	16323	3466

More Features to Improve the Predict Model

Topic Rank

Productivity

Diversity

Sociality

