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Abstract

Blockchain technology aplied in Mobile Bitcoin
Networks(MBNs) brings high security performance but
leads to a long time delay at the same time. In this pa-
per, we design and analyze a algorithm to build multi-
cast trees in MBNs so as to reduce the cost and time
delay while verifying the authenticity of the transac-
tion. Because the network is a distributed one, the con-
struction of a multicast tree in it is clearly a NP-hard
problem. We analyze the efficiency of our algorithm by
two performances including tree length and time com-
plexity. We demonstrate the total tree length is upper
bounded by O(

√
n) which is in the same order as Steiner

tree. We prove that the running time of the construction
is O(
√

nlogn), also the best among all solutions by now.
We will also prove our algorithm by simulation and real
data of the bitcoin network.

1. INTRODUCTION

In block chain modal, a transaction has to be buried
into a block waiting for a kind of special nodes called
miner to dig it out. By solving some difficult math prob-
lems, a miner can dig the block out and get its bonus.
If a block contained thousands of transaction is digged
out by a miner, the miner has to broadcast it to the entire
network so that all the other nodes can varify the au-
thenticity of the transactions in this block. This process
is very time conssuming because the number of nodes in
the network is really big and the process of virification
brings long delay. As a result, both parties of the trans-
action have to wait for a long time until the varification
process is finished.

Mobile Bitcoin Network(MBN) is a network of
wireless nodes, in which every node is a bitcoin user’s
mobile terminal. That’s to say the cost of connecting
two nodes is directly influenced by the distance between
them. This network is also distributed because it is de-
centralized and each node only has a limited knowledge
of network. Multicast tree is topological structure of

a one-to-many group communication where data trans-
mission is addressed to a group of destinations simu-
laneously. In this paper, the message is multicasted by
miner which is also the source node of the multicast tree
to multiple receivers in MBNs.

A number of algorithms of the construction of mul-
ticast tree have already be designed by researchers so as
to minimize the routing and time complexity. However,
none of these algorithms fits the environment of MBNs
based on the fact that they didn’t consider the influences
of block chain characteristics. Furthermore, we reduce
the total tree length by nearly a half of what it was with
the help of polar coordinate calculation.

Steiner Tree Problem aims to find a tree in a given
network that spans a set of terminals with the least total
weight. This problrm has been proved to be NP-hard A
new algorithm insprired by taking the advantage of the
Steiner tree property called Toward Source Tree (TST)
[1] is proposed recently to construct multicast tree in
Wireless Sensor Networks. The tree length of this algo-
rithm is proved to be proportional to

√
m while m is the

number of receivers in the network. And the running
time is O(

√
nlogn) which is the best of all.

In this paper, we design a new algorithm based on
TST to construct an approximate minimun-length mul-
ticast tree in Mobile Bitcoin network to reduce the cost
and delay of the conmmunication among the nodes. In
this way, we can approximately minimize the delay of
the transaction while using bitcoin. We demonstrate
that the total tree length of our algorithm is in the same
order as Steiner tree and TST, but we reduce the coeffi-
cient by nearly a half. And the running time of it can be
proven to also be O(

√
nlogn), the best among all exist-

ing solutions for large multicast groups.

In the rest of this paper, we introduce our network
model in section 2. In section 3, we discuss our algo-
rithm in details. We analyze the total tree length of our
algorithm in section 4 and compare it with existing al-
gorithms. In section 5, we continue to analyze the ruun-
ing time coplexity. Finally, we conclude this paper and
discuss the future works in section 6.



2. NETWORK MODEL

We abstract the problem of the construction of the
tree under bitcoin network into a mathematical model
through some assumptions. Firstly, we assume that ev-
ery node in the network has a coordinate (r,θ) which is
used to calculate the distance between it and the source.
The coordinate is determined by the geographic loca-
tion of the node. For ease of calculation, we consider
the coordinate of the source(S) is (0,0) and the entire
area is normalized, which means the farest node from
S has a coordinate r = 1. In this way, every node can
be represented by a unique coordinate. Because these
coordinates are only an abstraction of the geographical
locations of nodes, they do not destroy the anonymity
of the entire network.

Then we assume that each node has a weight (0 ≤
Wi ≤ 1) to indicate the authoritativeness of this node
when confirming the correctness of messages. This
weight is determined by the historical accuracy of the
node verification. For example, a node with Wi = 1
means this node i never made any mistake while verify-
ing the block. However, a node with Wj = 0 means this
node j is an interference node because it cannot correct
judgment at all.

In fact, we don’t need to broadcast the block to ev-
ery node in the network in order to minimize the delay
of verification. The number of nodes that S(miner who
digs to the block firstly) broadcasts the block to is de-
termined by how safe the parties to the transaction want
to insure. Before S broadcast the block into the net-
work, parties of transactions in this block will announce
a goal weight W0. If and only if the sum of weights of
the nodes that the source choose to verify the block is
larger than W0, the verification process is finished and
the transactions in this block are verified. In order to re-
duce the cost of tree construction, we select only a part
of the nodes whose weights are larger in contrast as our
receivers. This is because it doesn’t worth to contact if
a node has a weight of only 0.1 for example due to its
low contribution to the sum of weights but may lead to
a significant increase in tree length. Therefore, we only
choose nodes with a weight larger that Wc. Wc is the
critical value of weight which is determined by the dis-
tribution function of nodes weight. We assume the total
number of nodes is n while the number of receivers is
m. Therefore, the termination function of the tree con-
struction should be:

∑
Ni∈{T}

Wi ≥W0

Table 1. Notations and Definitions
n the total number of nodes in the network
m the number of receivers
Ni node i
{T} the collection of all nodes of the nulticast tree
Wi weight of node i
W0 goal weight of the tree construction

3. ALGORITHM

In this section, we discuss our algorithm in details.
The algorithm can be divided into four phases basicly.
In the first phase the source node(miner) broadcast a
message in an area with radius R1 and the first batch of
receivers are chosen in this phase. In the second phase,
every receiver choose another receiver that is closer to S
to connect to, and a temperary tree is formed. In phase
three, we eliminate cycles which may be formed in the
second phase in order to avoid redundant transmissions
and assure the topology is a tree. Finally, we calculate
the total weight of the nodes in R1 area and compare
it with W0. If W1 ≥W0 the process is finished, if not,
we expand the search radius to R2 and repeat the first
three phases, until the kth search satisfy the termination
function.

As mentioned before, our algorithm is based on an
algorithm called Toward Source Tree(TST). In fact, in
every search process, we use TST to construct a mul-
ticast tree first. However, because the number of re-
ceivers in our algorithm is unknown at the begining, we
can only expand the radius in turn until we find a suffi-
cient number of nodes.

A. Phase 1: Searching and Identifying Receivers
In this phase, the source broadcast its coordinate

and the cricial weight Wc in an area of radius R1. Ev-
ery node in this area received this message will firstly
comfirm if its weight is larger than Wc, if so it is chosen
as a receiver. This phase is necessary because before
it nodes don’t know whether they are receivers or not.
The broadcast information will notify the nodes who are
selected into the multicast group.

B. Phase 2: Building of temporary tree
In this phase, each receiver choose another receiver

that has a shorter Euclidean distances to the source than
itself to connect with. If no such receiver can be found,
the receiver connects with the source directly. Then
a temporary tree is formed which contains all the re-
ceivers in this area. Next we find the minimum-hop
path between each pair of members that are directly
connected in the temporary tree. Finally, the construc-



tion of multicast tree in this area is almost finished.(We
will guarantee the tree structure by eliminating cycles
in phase three.)

The node contact with each other by sending re-
quest message to ask for connection and respond mes-
sage to comfirm the connection. For energy saving,
each node only sends request message in an area of ra-
dius rc. The coverage range rc sets the range within
which the multicast member searches for its neigh-
boring members. The Euclidean distance between the
sender and current node can be calculated with sender
location, and messages will be discarded if the distance
is larger than rc. If no effectve relay can be found within
rc, the node will expand the searching radius so as to
find a suitable relay to connect with.

C. Phase 3: Eliminating Cycles
When a node received more than one request mes-

sages, cycles might be formed. Therefore, we can not
garantee the multicast tree constructed in phase 2 has a
topologic of tree. As a result, checking the existence of
cycles and eliminating them is necessary.

Suppose a node u acts as a relay for k(k ≥ 1)
pairs of receivers in the multicast group, which are
directly connected in the temporary tree, denoted as
(R11;R12),(R21;R22), ...,(Rk1;Rk2). Let us assume that
in each pair, Ri1 is closer to source than Ri2(1ik). A re-
lay stores its previous and the next hop of the path from
Ri1 to Ri2, and they are denoted as PHi and NHi respec-
tively. Then it chooses one pair randomly, (R j1;R j2)
and keeps the information: (R j1,R j2,PH j,NH j). For
other pairs (Ri1;Ri2) where Ri1 6= R j1, the relay modi-
fies their information as (R j1,Ri2,PH j,NHi). And then
the cycle is eliminated.

D. Phase 4: Weight Calculation and Expanding
Search Area

Because the number of receivers is determined by
the goal weight W0 and the distribution function of the
node weight in the network. Therefore, we may have
to repeat the first three phases several times until the
termination function is satisfied.

In this phase, we calculate the sum of weights of
all the members in multicast group and compare it with
W0. If the sum is larger, the construction of the mul-
ticast tree is finished. If not, however, we expand the
search radius and repeat the first three phases until the
kth search satisfy the termination function. Neverthe-
less, after the search area is expanded, the construction
has a little different. Because the construction of mul-
ticast tree is already finished within Ri−1, the nodes in
the area between Ri−1 and Ri only have connect with
any node in the area of Ri−1. So the we choose the leaf

nodes within Ri−1 as the source node to connect with,
because this is clearly the most cost-saving solution.

(a) Broadcast message in an area
of radius R1

(b) Connect with neighbouring
receivers

(c) Eliminating circles (d) Expand search radius and re-
peat phases 1 to 3

Figure 1. Four phases of the algorithm

4. PERFORMANCE ANALYSIS

The previous secton described our algorithm in de-
tails. In this section, we analyze the performance of our
algorithm in order to prove that the algorithm we pro-
posed has its advantages. And we mainly analyze the
total tree length and time complexity of the algorithm.

4.1. Length Analysis

The analysis of the total tree length is of great sig-
nificance because it influences the cost of costructing
the multicast tree directly. Furthermore, the total tree
length also has connection with the time delay while
multicasting messages in the tree. Firstlt, we calculate
the expected value of the temporary tree length under
the uniform distribution of nodes. Then we generalize
our results to the situation that nodes in the network is
distributed generally following a distribution function
f (r,θ).

A. Temporary Tree in Uniform Distribution
We fisrtly calaulate the temporary tree length in an

area with radius R1. And we assume the number of re-



ceivers in this area is m1. We divide the circle a into m
equal area rings. The ith ring’s radius is Ri. Then:

πR2
i =

πR2
1

m1
i⇒ Ri =

√
i

m1
R1

Figure 2. The average length of a receiver with
coordinate (Ri,θ) connecting with its neigh-
bour receiver

Because the nodes are uniformly distributed in a
circle area, the direction angle θ has nothing to do with
the average tree length. So the probability that a node is
in the ith ring is 1

m1
. As we can see from Figure 2, the

neighbouring receiver which could be chosen as the re-
lay of node A(Ri,0) must be located in the yellow area.
So we calculate the average of the tree length by sum
all the expected length between node A and the neigh-
bour node in yello area. We assume a node is chosen as
receiver if and only if there is no node in the grey area
in Figure 2. p j is the probability that a node in circle
j( j ≤ i) is chose as relay.

p j ≤ (1−
aR2

j

πR2
1
)m1−1

Where a= π

3 −
√

3
4 . Then we can calculate the expected

length as following:

E1{Lv}= m1 ·
1

m1

m1

∑
i=1

i

∑
j=1

[1− (1− 1
2m1

)m1−1]p j ·R j

Because m1 is a large number.

E1{Lv}=
m1

∑
i=1

i

∑
j=1

(1− e
m1−1
2m1 ) · e−

a j(m1−1)
πm1 ·

√
j

m1
R1

=
(1− e−

1
2 )R1√

m1

m1

∑
i=1

i

∑
j=1

e−
a j
π ·

√
j

Then we want to show the upper bound of E1{Lv}.
In order to get that, we first consider the sum:∑i

j=1 e−
a j
π ·

√
j with the function f (x) = e−

ax
π ·
√

x.

f ′(x) =
1
2
· e−

ax
π · x−

1
2 · (1− 2ax

π
) (1)

f ′′(x) =−((1
4

x−
3
2 +

a
2π

x−
1
2 )(1− 2a

π
x)+

a
π

x−
1
2 ) · e−

ax
π

(2)

Then we get that f (x) is monotone decreasing as
x ∈ (0, π

2a ) and is monotone increasing as x ∈ ( π

2a ,+∞).
Moreover we know f (x) is a concave function as x ∈
(0, π

2a ).( f ′(x) and f ′′(x) represent the first order deriva-
tive and the second derivative of the function f respec-
tively in the equation (1) and (2).) Now we can get the
upper bound of ∑

i
j=1 e−

a j
π ·
√

j as following:

i

∑
j=1

e−
a j
π ·

√
j =

i

∑
j=1

e−
a j
π ·

√
j ·1

<
∫ j

0
f (x)dx+

1
2
·
∫ π

2a

0
f (

π

2a
)dx

<
∫

∞

0
f (x)dx+

1
2
·
∫ π

2a

0
f (

π

2a
)dx

=
∫

∞

0
e−

ax
π ·
√

xdx+
1
2
·
∫ π

2a

0
f (

π

2a
)dx

=
π

a
·
√

π

a

∫
∞

0
e−t ·
√

tdt +
π

4a
·
√

π

2a
· e−

π
2a

=
π

a
·
√

π

a
Γ(

3
2
)+

π

4a
·
√

π

2a
· e−

π
2a

=
π

2a
·
√

π

a
Γ(

1
2
)+

π

4a
·
√

π

2a
· e−

π
2a

=
π2

2a
√

a
+

π

4a
·
√

π

2a
· e−

π
2a

(3)
In the process (3), we use the proporties of Γ func-

tion: (i)Γ(s) =
∫

∞

0 e−t · t(s−1)dt (ii) Γ(s+ 1) = s ·Γ(s)
(iii) Γ( 1

2 ) =
√

π .
Then it is easy for us to get the upper bound of

E1{Lv}. In fact:



E1{Lv}=
(1− e−

1
2 )R1√

m1

m1

∑
i=1

i

∑
j=1

e−
a j
π ·

√
j

<
(1− e−

1
2 )R1√

m1

m1

∑
i=1

(
π2

2a
√

a
+

π

4a
·
√

π

2a
· e−

π
2a )

=
(1− e−

1
2 )R1m1√
m1

(
π2

2a
√

a
+

π

4a
·
√

π

2a
· e−

π
2a )

<C ·R1
√

m1

where C = 4.096 is a constant. When we normalize
the area, R1 =

1√
π

. The expected tree length in the first
search process is upper bounded by

E1{Lv} ≤ 2.311
√

m

Since building a tree under multiple search pro-
cesses is a Markov process, that is to say, the expected
tree length while building a tree under multiple search
processes within a radius R is actually the same as
building a tree directly within this area. As a result,
if the area is a unit circle, phase 4 won’t increase the
expected tree length at all. That’s to say, the expected
tree length of the whole process is also upper bounded
by

E{Lv} ≤ 2.311
√

m

B.Temporary Tree in General Distribution
We divided the uniform circle into pieces small

enough each with an area of r · dr · dθ . As a result,
in each small area we can consider the nodes are uni-
formly distributed. Then we can calculate the expected
value od total tree length by integeal r and θ over the
whole region. Here we assume the density function of
the nodes is f (r,θ) which is a function of redius r and
the direction angle θ .

E{Lv}=
∫∫

[
dθ

2π
·C · r ·

√
f (r,θ)πr2−

dθ

2π
·C · (r−dr) ·

√
f (r,θ)π(r−dr)2]

=
C√
π

∫∫
[r2− (r−dr)2] ·

√
f (r,θ) ·dr ·dθ

=
C√
π

∫ 2π

0
dθ

∫ R

0
[r ·

√
f (r,θ)]dr

While C = 4.096 which is equal to the conclusion in
uniform distribution.

4.2. Running Time Analysis

Time efficiency is also important when evaluate the
quality of multicast routing algorithm. The lower the

time complexity, the shorter the delay in building this
tree. The time analysis of our algorithm is discussed
below.

The running time of one search process(phase 1 to
3) is proven in TST algorithm to be:

O(

√
n

logn
)≤ E(t)≤ O(

√
nlogn)

Therefore, we can focus on phase 4 while calculating
the running time. In phase 4, the search process is re-
peated k times until the last time of search the termi-
nation function is satisfied. So the upper bound of the
running time can be calculated as:

E(t)≤ O(
k

∑
i=1

√
nilogni)

Where k is a small quantity compared with n. Specially
k is constant when the nodes are uniformly diatributed
because the density of the nodes can be infered by the
first search process. And ni satisfy the following func-
tion:

k

∑
i=1

ni = n

Then we have:

k

∑
i=1

√
nilogni ≤

√√√√k(
k

∑
i=1

nilogni)

≤
√

k ·nlog(
n
k
)

Because k can be seen as a constant, the total run-
ning time is also in the same order of TST, which is one
of the best among all the algorithms. The total running
time is:

E(t)≤ O(
√

nlogn)

5. CONCLUSIONS & FUTURE WORK

In this paper, we propose a new algorithm to con-
struct distributed multicast tree in Mobile Bitcoin Net-
works. We analyze the performance of it to make sure
that this algorithm minimizes the time and cost while
multicasting a message. In this way, we prove that
our algorithm can reduce the delay while verifying the
authenticity of the block, which is one of the biggest
weakness of block chain model. We also prove that
the expected tree length of our algorithm is better than
that of TST, while we remain the time complexity at the
same order.

For future research, several directions worthy dis-
ussed are listed as follows.



• We only focus on tree length and running time
analysis in this paper. However, it is also inter-
esting to pay attention to the energy efficiency of
the algorithm. Because the mobile terminals like
mobile phones are supported by battery. The re-
duction in energy consumption is of great signifi-
cance.

• Real data of the bitcoin network is needed to ver-
ify the correctness of the theory proposed in this
paper. However, the real data of a mobile bitcoin
network seems hard to be found based on the fact
that the network is completely anonymized.

• The relationship between the distribution function
of node weight and the critical weight Wc is still
unclear. We only know that there must be some
kind of connection between the them, but this con-
nection has not been described quantitatively.
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