
Source Locating in Social Network

Linguo Li, Chaofei Wang, Bingkun Zhao

May 31, 2018

Abstract

The application of networks in daily life is very extensive, in which posi-
tioning the source of propagation is a very important technique. For example,
find the source of the disease in infectious diseases and finding the source of
rumors in the network. This article describes some methods of source locat-
ing in social network, including A Sample Path Based Approach and Gradient
Maximum Likelihood Algorithm, which are respectively studied by Chaofei
Wang and Linguo Li. Moreover, we also do some research on multiple sources
locating problem, which mainly studied by Bingkun Zhao.

1 Introduction

We live in network society. We interact with many networks every second to
collect, process, and transmit large amounts of information. The increase in the
interconnectedness of the world makes it easier for us to receive false information,
and it is also easier to be blinded by false information. For example, rumors on
Weibo often affect the entire community of netizens. Obviously, one of the major
challenges we face is to develop effective methods to detect the source, so that we
can effectively suppress the spread of rumors.

Many predecessors have studied in this area. For example, in a state where the
network is a regular tree, an irregular geometric tree, or the like, the rumor centrality
of a node is introduced, but it is necessary to know all the connections between the
nodes and the states of all the nodes. It was also suggested that only some of the
node states called as observers need to be known, but they need to be monitored.
However, these methods are very complicated and computationally expensive, so
they are difficult to apply. This paper proposes some methods reducing the number
of observers, which greatly reduces the complexity. In addition, most of the current
studies on source tracing are based on single-source networks, so we studied the
method of multiple source locating problem.

2 Sample Path Based Approach

2.1 Problem introduction

In real world, we will always come across the diffusion problem in networks, such
as outbreak of epidemics, rumors spreading online/social network, the spreading of
virus over network, the blackout of the grid, etc.

1

We need to use a fast method to detect the source to avoid more loss or influence.
So based on this situation, there are many researchers develop various methods to
help solve the problem.

Methods are based on the topology and the situation of the network. Or say
such problem can be abstract into a nodes-lines problem. Nodes represent the
users in social network or computers in infected networks, lines are the connections
between them. The diffusion spread from node to node via lines. Given a snapshot
of the diffusion process at time t, our aim is to find which node is the source of the
diffusion. We called this problem information source detection problem.

2.2 Models

SIR: Susceptible-Infected-Recovered model, a standard model of epidemics.
The network is assumed to be an undirected graph and each node in the network
has three possible states: susceptible (S), infected(I), and recovered (R). Nodes in
state S can be infected and change to state I, and nodes in state I can recover
and change to state R. Recovered nodes cannot be infected again. We assume that
initially all nodes are in the susceptible state except one infected node (called the
information source). The information source then infects its neighbors, and the
information starts to spread in the network. Now given a snapshot of the network,
in which we can identify infected nodes and healthy (susceptible and recovered)
nodes (we assume susceptible nodes and recovered nodes are indistinguishable), the
question is which node is the information source.

Also, there are other models like SIR, SIS, SIX, etc. We only discuss the
diffusion process and our technique under the SIR model.

2.3 Works

2.3.1 Previous works:

MLE: traverse all the possible diffusion path and select the one which is most
likely to lead to the final result (the snapshot we got).The solving process formulate
as:

v+ ∈ argmax
v∈υ

∑
X[0:t]:F (X(t))=Y

Pr(X[0, t]|v∗ = v) (1)

With the complexity of Ω(tN) , where N is the network size and t is the time
the snapshot is obtained. (It is difficult for us to solve the problem).

2.3.2 Ours:

Sample path based approach(one of the Jordan centers): Instead of
using the MLE, we propose to identify the sample path X∗[0, t∗] that most likely
leads to Y, ie.,

X∗[0, t∗] = argmax
t,X[0,t]∈χ(t)

Pr(X[0, t]), (2)

where χ(t) = {X[0, t]|F (X(t)) = Y }. The source node associated with X∗[0, t∗]is
then viewed as the information source.

2

On tree networks: It is diffucult to obtain the results on general graphs, so
we focus on tree networks and derive structure properties of the optimal sample
paths.

Figure 1: An Example Illustrating the Infection Eccentricity

First, we introduce the definition of eccentricity in graph theory. The eccen-
tricity e(v) of a vertex v is the maximum distance between v and any other vertex
in the graph. The Jordan centers of a graph are the nodes which have the minimum
eccentricity. For example, in Figure 2, the eccentricity of node v1 is 4 and the Jordan
center is v2; whose eccentricity is 3.

Following a similar terminology, we define the infection eccentricity ẽ(v) given
Y as the maximum distance between v and any infected nodes in the graph. Define
the Jordan infection centers of a graph to be the nodes with the minimum infection
eccentricity given Y: In Figure 2, nodes v3, v10, v13 and v14 are observed to be
infected. The infection eccentricities of v1, v2, v3, v4 are 2, 3, 4, 5, respectively, and
the Jordan infection center is v1.

We will show that the source associated with the optimal sample path is a node
with the minimum infection eccentricity.

Reverse infection algorithm: Since in tree networks with infinitely many
levels, the estimator based on the sample path approach is a Jordan infection cen-
ter, we view the Jordan infection centers as possible candidates of the information
source. We next present a simple algorithm to find the information source in general
networks. The algorithm is to first identify the Jordan infection centers, and then
break ties based on the sum of distances to infected nodes.

The key idea of the algorithm is to let every infected node broadcast a message
containing its identity (ID) to its neighbors. Each node, after receiving messages
from its neighbors, checks whether the ID in the message has been received. If not,
the node records the ID (say v), the time at which the message is received (say
tv), and then broadcasts the ID to its neighbors. When a node receives the IDs
of all infected nodes, it claims itself as the information source and the algorithm
terminates. If there are multiple nodes receiving all IDs at the same time, the tie is
broken by selecting the node with the smallest

∑
tv.

The tie-breaking rule we proposed is to choose the node with the maximum in-
fection closeness. The closeness measures the efficiency of a node to spread informa-

3

tion to all other nodes. The closeness of a node is the inverse of the sum of distances
from the node to any other nodes. In our model, we define the infectioncloseness as
the inverse of the sum of distances from a node to all infected nodes, which reflects
the efficiency to spread information to infected nodes. We select a Jordan infection
center with the largest infection closeness, breaking ties at random

Algorithm 1 Reverse Infection Algorithm
for i ∈ L do
i sends its ID ωi to its neighbors.

end for
while t ≥ 1 and STOP == 0 do

for u ∈ υ do
if u receives ωi for the first time then

Set tui = t and then broadcast the message ωi to its neighbors.
If there exists a node who received |L| distinct messages, then set STOP == 1.

end if
end for

end while
return u+ = argminu∈S

∑
i∈Ltui , where S is the set of nodes who receive|L|distinct messages

when the algorithm terminnates. Ties are broken at random.

It is easy to verify that the set S is the set of the Jordan infection centers. The
running time of the algorithm is equal to the minimum infection eccentricity and
the number of messages each node receives/sends during each time slot is bounded
by its degree.

2.4 Simulation and results analysis

In this section, I will give some simulate result of the methods on different
networks. Then, anlyze the results.

2.4.1 Tree Networks

In this section, we evaluate the performance of the reverse infection algorithm
on tree networks. We compare the reverse infection algorithm with the closeness
centrality heuristic, which selects the node with the maximum infection closeness as
the information source.

1. Small-size tree networks: We first studied the performance on small-size trees.
The infection probability q was chosen uniformly from (0,1) and the recovery
probability p was chosen uniformly from (0,q). The infection process propa-
gates ttime slots where t was uniformly chosen from [3,5]. To keep the size
of infection topology small, we restricted the total number of infected and
recovered nodes to be no more than 100. For small-size trees, we first calcu-
lated the MLE using dynamic programming for fixed t and then searching over
t ∈ [0, tmax] for a large value of tmax to find the optimal estimator. The detec-
tion rate is defined to be the fraction of experiments in which the estimator
coincides with the actual source. We varied g from 2 to 10 and the results are
shown in Figure 2. We can see that the detection rate of the reverse infection
algorithm is almost the same as that of the MLE, and is higher than that

4

of the closeness centrality heuristic by approximately 20% when the degree is
small and by 10% when the degree is large.

Figure 2: The Detection Rates of the Maximum Likelihood Estimator (MLE), Reverse Infection
(RI) and Closeness Centrality (CC) on Regular Trees

2. General g-regular tree networks:We further conducted our simulations on large-
size g-regular trees. The infection probability q was chosen uniformly from
(0, 1) and the recovery probability p was chosen uniformly from (0, q). The
infection process propagates t time slots where t was uniformly chosen from
[3,20]. We selected the networks in which the total number of infected and
recovered nodes is no more than 500. We varied g from 2 to 10. Figure 3 shows
the detection rate as a function of g. We can see the detection rates of both
the reverse infection and closeness centrality algorithms increase as the degree
increases and is higher than 60% when g > 6. However, he detection rate of
the reverse infection algorithm is higher than that of the closeness centrality
algorithm, and the average difference is 8.86%.

Figure 3: The Detection Rates of the Reverse Infection (RI) and Closeness Centrality (CC)
Algorithms on Regular Trees

2.4.2 Real World Networks

We next conducted experiments on three real world networks the Internet
Autonomous Systems network (IAS)3, the Wikipedia who-votes-on-whom network

5

(Wikipeida)4, and the power grid network (PG)4. We compare the reverse infection
algorithm with random guessing, which randomly selects a node and declares it as
the information source. In these networks, the infection probability q was chosen
uniformly from (0, 0.05) and the recovery probability p was chosen uniformly from
(0,q). Here we chose small infection probabilities since the network was of finite size
so the infection process should be controlled to make sure that not all nodes were
infected when the network was observed. The duration t was an integer uniformly
chosen from [3,200]. We selected the networks in which the total number of infected
and recovered nodes was in the range of [50, 500].

1. The Internet autonomous systems network:Figure 4 shows the results on the
the Internet autonomous systems network. An Internet autonomous system
is a collection of connected routers who use a common routing policy. The
Internet autonomous system network is obtained based on the recorded com-
munication between the Internet autonomous systems inferred from Oregon
route-views on March, 31st, 2001. The network consists of 10,670 nodes and
22,002 edges. According to Figure 3, more than 80% of the estimators identi-
fied by the reverse infection algorithm are no more than two hops away from
the actual sources, comparing to 10% under the random guessing.

Figure 4: The Performance of the Reverse Infection (RI) on the Internet Autonomous Systems
Network

2. The Wikipedia who-votes-on-whom network:Figure 5 shows results on the Wikipedia
who-votes-on-whom network, in which two nodes are connected if one user
voted on the other in the administrator promotion elections. The network has
100,736 links and 7,066 nodes. We have similar observations as for the In-
ternet autonomous systems network, the majority of the estimators produced
by the reverse infection algorithm are no more than two hops away from the
actual sources and only less than 20% of the estimators of random guessing
are within two hops from the actual sources.

3. The power grid network:Figure 6 shows the results on the power grid, which
has 4,941 nodes and 6,594 edges. As we can see, the reverse infection algorithm
performs better than the random guessing. The peak of the reverse infection
algorithm appears at the third hop versus the seventeenth hop under random
guessing.

6

Figure 5: The Performance of the Reverse Infection (RI) on the Wikipedia Who-Votes-on-Whom
Network

Figure 6: The Performance of the Reverse Infection (RI) on the Power Grid Network

2.5 Appendix:

If you want to kown more details about the technique and the model, you can
read this part.

2.5.1 SIR model details:

Consider an undirected graph G = {υ, ε}; where υ is the set of nodes and ε is
the set of (undirected) edges. Each node v ∈ υ has three possible states: susceptible
(S), infected (I), and recovered (R). We assume a time slotted system. Nodes change
their states at the beginning of each time slot, and the state of node υ in time slot
t is denoted by Xv(t).

Initially, all nodes are in state S except node v∗ which is in state I and is the
information source. At the beginning of each time slot, each infected node infects
each of its susceptible neighbors with probability q; independent of other nodes,
i.e., a susceptible node is infected with probability 1 − (1 − q)n if it has n infected
neighbors. Each infected node recovers with probability p, i.e., its state changes
from I to R with probability p: In addition, we assume a recovered node cannot be
infected again. Since whether a node gets infected only depends on the states of its
neighbors and whether a node becomes a recovered node only depends on its own
state in the previous time slot, the infection process can be modeled as a discrete
time Markov chain X(t) where X(t) = {Xv(t), v ∈ υ} is the states of all the nodes
at time slot t: The initial state of this Markov chain is Xv(0) = S for v 6= v∗ and
Xv∗(0) = I.

7

2.5.2 Diffusion process:

Figure 7: An Example of Information Propagation

We assume X(t) is not fully observable since we cannot distinguish susceptible
nodes and recovered ones. So at time t, we observe Y = {Yv, v ∈ υ}; such that:

Yv =

{
0 if v is in state I

1 if v is in state S or R
(3)

The information source detection problem is to identify v, given the graph G and
Y; where t is an unknown parameter. Figure 1 is an example of the infection
process. The left figure shows the information propagation over time. The nodes on
each dotted line are the nodes which are infected at that time slot, and the arrows
indicate where the infection comes from (e.g., node 4 is infected by node 2). The
figure on the right is the network we observe, where the shaded nodes are infected
nodes and others are susceptible or recovered nodes. The pair of numbers next to
each node are the corresponding infection time and recovery time. For example,
node 3 was infected at time slot 2 and recovered at time slot 3. −1 indicates that
the infection or recovery has yet occurred. Note that these two pieces of information
are not available to us, and we include them in the figure to illustrate the infection
and recovery processes. If we observe the network at the end of time slot 3; then
the snapshot of the network is Y = {0; 1; 0; 1; 0; 1; 1}; where the states are ordered
according to the indices of the nodes.

3 Gradient Maximum Likelihood Algorithm

This section describes a method that uses a limited number of nodes to act
as observers, and observers report the time at which information travels to them.
When the observers are selected, nodes that have a longer propagation time are
ignored. The method of finding the source is based on the observer’s likelihood gra-
dient. This method is called the gradient maximum likelihood algorithm (GMLA).
We performed numerical tests on synthetic networks and explore the relationship
between key parameter and the algorithm performance.

3.1 Model

We simulate the spread through the network using discrete Susceptible-Infected
(SI) model like Figure 8. In this model, each node can be in one of two states:

8

susceptible or infected. At t = 0 only one random node is infected. We called this
node the true source. At each subsequent time step each infected node has a chance
to pass the information to its neighbor. The number of chances per time step is
equal to the number of neighbors and for each neighbor the probability of success P
is the same. The parameter P is called the infection rate. In this article, P = 0.5.

Figure 8: SI Model

We use the following three indicators to measure the performance of the algo-
rithm:

The accuracy of a single realization is ai = 1/Vtop, if s* ∈ Vtop or ai = 0 otherwise,
where s* is the true source and Vtop is a group of nodes with the highest score (top
scorers). The total accuracy a is an average of many realizations ai, therefore a ∈
[0, 1]. This measure takes into account the fact that there might be more than one
node with the highest score.

The rank is the position of the true source on the node list sorted in descending
order by the score. In other words this measure shows how many nodes, according
to the algorithm, is a better candidate for a source than the true source. The rank
takes into account the fact that the algorithm, which is very poor in pointing out
the source exactly (low accuracy), can be very good at pointing out a small group
of nodes among which is the source.

The distance error is the number of edges between the true source and a node
designated as the source by the algorithm. If |Vtop| > 1, which means that the algo-
rithm found more than one candidate for the source, the distance error is computed
as a mean shortest path distance between the real source and the top scorers.

9

3.2 Algorithm

The algorithm is called the Gradient Maximum Likelihood Algorithm(GMLA).
In the network, some nodes are selected to be observers, and the observers report
the time when their neighbors received the information. To be more general, we do
not require that the data received by the observer include the identity of the com-
municator. Then use the time reported by all observers to calculate the probability
that each node is the source, which we call score. We assume that information is
always propagated along the shortest path, so we use a breadth-first search tree. We
also assume that the time of propagation of each edge is an independent Gaussian
variable whose mean and variance are known. This is the preliminary algorithm
with complexity above O(N3).

Due to the high complexity, it is difficult to apply to the actual situation and
it needs to be improved. On the one hand, because of too many observers, the
far observers′ contribution to the results are small, but the computational costs
are particularly high. Therefore, we only use the most recent K0 observers, which
can greatly shorten the calculation time. On the other hand, when calculating the
nodes′ scores, all the observers’ neighbors are calculated, so the complexity is too
high. Therefore, we first calculate one observer′ nearest neighbors′ scores, then
chooses the highest score neighbor. Then jump to this node, calculate the scores
of its nearest neighbors and repeat the cycle. The whole process is like a gradient
descent and continues until all neighbors′ scores are lower than the observer.

3.2.1 Visualization

Figure 9: The Visualization Of GMLA

As we can see in Figure 9, the left picture presents the whole graph. The
red node is the true source. Green nodes mark the K0 nearest observers with the
smallest time delays (in this plot K0 = 4). The rest of the observers in the network
are highlighted in blue. The picture on the right is a zoom of a small area around the
nearest observers. In this picture the color corresponds to the score (the likelihood
of being the source) of the node (except for the observers which are green). The
higher the score of the node is, the darker red is its color. At the beginning the
algorithm computes the scores for the neighbors of the nearest observer (in this plot

10

the observer one is o1 and its neighbors are v1, v2, and v3). Afterwards GMLA
selects the neighbor with the highest score (v1 in this case) and starts computing
the scores for its neighbors (o1, v4, v5 and s*). During this step there is no need
for estimating the likelihood for the node v2 since it was done in the previous step.
All the scores which are computed are stored in the list. Since s* has the highest
score among the neighbors of v1, in the next step GMLA will compute the scores
for it neighbors. None of the neighbors of s* has higher score than s*, therefore the
algorithm stops here. The node s* is the source according to GMLA because it has
the highest score from all tested (suspected) nodes. The nodes not visited by the
algorithm are black since their scores are undefined (their scores are not computed).

3.2.2 Complexity

The number of suspicious nodes N0 = |Vs| depends mainly on the size of the
network and the average degree < k >. We know that N0 ∼ klog(N). It is worth
noting that this algorithm does not guarantee that the real source s* will be chosen
for the score calculation, so the accuracy may not be very high.

Using the symbols K0 and N0, we redefine the time complexity of GMLA as
O(N0(K

3
0 +N2)) in the worst case. Assuming N0 ∼ log(N) and K0 << N , so that

the complexity can be further simplified to O(log(N)N2).

3.2.3 Key Parameter

The number of nearest observers K0 is a key parameter of GMLA and should be
carefully chosen. If K0 is too small, the accuracy of the algorithm will decrease. On
the other hand, a large K0 increases the calculation time. The optimal number of the
nearest observers K0∗ is the minimal number of the nearest observers K0 needed to
achieve maximal quality of the spread source localization. In the paragraph below,
we explore the relationship between K0 and the algorithm performance.

3.3 Results

We evaluate the algorithm on synthetic dataset. The dataset is generated by
the MMSB model (a generative model that can generate network structures and
node attributes simultaneously), which contains 3000 nodes and 17477 edges. We
explore the relationship between K0 and accuracy, rank and distance error.

Figure 10: Accuracy

11

Figure 11: Rank

Figure 12: Distance Error

From Figure 10, we can see that as K0 increases, the accuracy increases first and
then decreases, and the maximum value is obtained when K0 = 100. From Figure
11, we can see that with K0 increasing, the rank decreases first, then increases, and
the minimum value is obtained when K0 = 50. From Figure 12, we can see that as
K0 increases, the distance error decreases first and then increases, and the minimum
value is obtained when K0 = 100. Thus, in this case, the optimal value range of K0

is 50 ∼ 100.

3.4 Conclusion

The GMLA algorithm uses a method like gradient descent to calculate the score
by reducing the number of observers. The number of suspicious nodes is the log-
arithmic level of the total number of nodes. Thus, it has a lower complexity and
greatly reduces the time required. Although the algorithm does not calculate the
neighbors of all observers as other previous algorithm does, we can see from its ex-
perimental results that its performance is not bad. The value of K0 in the algorithm
is critical. When it is small, the time required is short, but the performance is not
good. When it is big, it performs well, but takes a long time. If it is too big, it will
not only take a long time, but also not perform well. Through our verification, in
the MMSB model, K0 takes 50 to 100 is more appropriate. In other networks, the
optimal value of K0 needs experimental exploration.

12

4 Multiple Sources Locating

The above source locating algorithms are based on an assumption that a net-
work only contains one single source node. However, in fact, information often be
distributed from multiple sources. The spread of rumors in social networks, for ex-
ample, always started from multiple sources. As shown in figure 13, there are two
sources in this network. But if we consider it as a singel source locating problem,
the yellow node is the most probable solution, which is far from satisfactory. So it
is very necessary to solve the problem of multiple sources locating in social network.

Figure 13: The Problem Of Multiple Sources Locating

4.1 Model

In this problem, we use SIR (Susceptible-Infected-Recovered) model as the prop-
agation model of network. The difference between SI model and SIR model is that,
the SIR model contains not only susceptible nodes and infected nodes but also re-
covered nodes. So what is recovered node? Taking rumor propagation for example,
besides the fact that people who received the rumor may forwarded it with certain
probability, people who has been infected may also find the message is rumor and
then delete it with a certain probability, and the latter people are called recovered
nodes. For a network consisting of N nodes, in each discrete time-step, infected
nodes try to infect their susceptible neighbors with probability p, and these infected
nodes can also be recovered with probability q. In addition, all recovered nodes
cannot be infected again.

In the SIR propagation model, we cannot only use the available infected nodes,
because the information behind the recovered nodes will be neglected. Therefore,
in order to solve this problem, we firstly study a reverse propagation method to
detect recovered and unobserved infected nodes from susceptible ones ,and we can
get an extended infected network. Then, we divide the newly detected network
into several parts based on community detection methods. Through this partition,
we can transform the multi-source locating problem into several independent single
source-locating problems. Eventually we can find out the source of each partition
independently based on the algorithm mentioned above.

13

4.2 Method of Reverse Propagation

When we try to solve the problem of source locating, usually only a few of
infected nodes can be observed, so that many useful information such as many
recovered and infected nodes are unobserved. Thus, an important task in source
locating problem based on the SIR model is to find out more information, and infer
the extended infected network through partially observed network.

We use a score-based reverse propagation method to solve this task. Here score
means the probability of a node in recovered or infected state. If the probability
is larger, the score will be higher. Generally speaking, recovered nodes are often
surrounded by infected nodes. That is to say, recovered nodes will obtain higher
scores than susceptible nodes. This is because the center of infected nodes will get
higher scores than periphery of the infected nodes, while recovered nodes often lie
at the center of infected nodes and susceptible nodes usually lie at the periphery of
infected nodes.

The input of this algorithm is a social network G=(V,E), which contains a nodes
set N, a edge set E, a partially observed infected nodes set Γ ⊆ V , and a constant
basescore, we can optimize the algorithm by adjusting the basescore. The output
of this algorithm will be an extended infected nodes set Γ∗ ⊆ V , which contains
recovered nodes, observed and unobserved infected nodes, nodes once contact to
infected nodes but not be infected. Moreover, we have Γ ⊆ Γ∗ ⊆ V .

In this algorithm, we firstly initialize the score of all observed infected nodes to
1 and other nodes with initial score 0. Then we give a label C to every node and
initial the labels the same as scores:

Cn, SCn =

{
1 i ∈ Γ
0 otherwise

Then do as the following:
Initialize nodes set Γ*= Γ
for iter 1 to Nstep do

for n ∈ Γ* do
for i ∈ nneighbor do

update Γ*= Γ* ∪ i, Ci = 1
update SCi =SCi + SCn, if Ci = 0

for n ∈ V do
If SCn >basescore, Γ*= Γ* ∪ n

Return extended infected nodes set Γ*
By performing the algorithm above, we can approximately restore the extended

infected network of propagation, which actually presents a new network for source
locating analysis.

4.3 Infected Nodes Partitions based on Different Sources

After the score-based reverse propagation above, we get the extended infected
network, and what we need to do next is to divide the complex multi-sources lo-
cating problem into several single-source locating problems. We assume that all
rumor sources propagate the information independently. Then we use the leading
eigenvector based partition solution to solve our task.

Generally speaking, a feasible division of infected nodes needs to satisfy two
conditions , including sparse edges between different groups and dense edges within

14

the same group. The conditions can be described as a modified benefit function
called modularity:

Q = (number of edges within communities) - (expected number of such edges)
The above equation denotes a function of a particular division of the infected

network into different groups, with larger values indicating better divisions. We
can maximize it over all possible divisions of the network. However, exhaustive
maximization over all possible divisions is computational intractable. The modu-
larity function can be rewritten in matrix terms, which allows us to express the
optimization task as a spectral problem in linear algebra.

Another key point in this task is, when partitioning the infected nodes, the
number of sources k is required to be known. Since the number of rumor sources
is always unknown in practice, we need to estimate the number of sources. Firstly,
choose a maximum of k, K. Next, for each k satisfied 1 < k < K, using the community
partition algorithm (Leading eigenvector based method) to partition the extended
infected network. Then, we compute the modularity mk of each partition based
on the number of sources, k. Next, we set k = 2 and observe the increase of mk

when changing the value of k, mk−mk−1. If there is a significantly increase of m by
increasing the value of k, we then modify the value of k to a larger one. Otherwise,
we prefer to chose a smaller value for k.

Now we actually have translated multiple source locating problem to several
single-source locating problems, and the we can find out the source of each partition
independently. Eventually the problem of multiple source locating is solved.

4.4 Evaluation

We evaluate our algorithm on two different networks of different scale, one
network consists of 500 nodes and the another consists of 5000 nodes. In addition,
the number of sources range form 2 to 4. As figure 14 and figure 15 showing:

Figure 14: Accuracy Of Source Locating In Network Of 500 Nodes

15

Figure 15: Accuracy Of Source Locating In Network Of 5000 Nodes

From the results above we can find that, the overall accuracy of large-scale
network is higher than the small-scale network. When the number of nodes is
relatively small, the accuracy will decrease with the increase of number of sources.
But in relatively large-scale network, the number of sources within a small range
seems to have no effect on the accuracy of source locating.

5 Conclusion

In this paper, we introduce A Sample Path Based Approach to solve the source
locating problem in social networks. Furthermore, we propose Gradient Maximum
Likelihood Algorithm to reduce the complexity. Finally, we do some research on
multiple sources locating problem.

16

