
Wireless Communication and Mobile Networks
Project Report

Dimensionality Reduction Based on Geodesic
Distance

Hao Li, ID:515030910494 ; Yifan Shen, ID:515030910491

May 24, 2018

The work done by the two authors are listed below:
together: 1, 2, 3.1, 4; Hao Li: 3.4. 3.5, 3.6; Yifan Shen: 3.2, 3.3.
(actually same effort to this project)

1 BACKGROUD AND OUR GOAL

Dimensionality reduction is an essential part of data preprocessing in machine learning
tasks. Classic methods include Principle Component Analysis (PCA), Isometric Mapping
(ISOMAP), Locally Linear Embedding (LLE), etc.

These existing approaches typically treat the local linearity of the data set as the basic as-
sumption for their further approximation. In ISOMAP, for example, the key idea is to preserve
the "true distance" between data points. In geometry, this "distance" is just the geodesic dis-
tance defined on a manifold where the data are sampled. Of course, since there is little a
priori knowledge about what the actual manifold in most cases (otherwise the dimensional-
ity reduction issue would be so much easier), it’s hard to perform an exact computation of the
geodesic distance between data points – and that’s why the Dijkstra algorithm is used in the
usual framework of ISOMAP. The idea is that, since manifolds are locally linear, so are the data
if the samples are dense enough. And therefore a series of local Euclidean distances should
be a good approximation for the geodesic distance since locally speaking, the Euclidean dis-
tance approximates the geodesic distance well.

But in many cases this approximation turns out to be not so satisfying. And people have
been trying to work out a better method for computing or approximating the geodesic dis-
tance on a manifold for the sampled data. In our project, we focus on applying the Heat

1

Method, which is originally more of a method in the field of graphics, to ISOMAP. We basi-
cally want to replace he Dijkstra algorithm part with the Heat Method,the work of Crane et
al.[1], which is actually dealing with the geodesic distance between given two data points, in-
stead of approximating it simply using Euclidean distance. To accomplish that, a lot of survey,
reading, discussion and coding were carried out by our little group, and most of our efforts
are presented in the following content.

2 GENERAL FRAMEWORK OF THE HEAT METHOD

2.1 INTRODUCTION

Imagine touching a scorching hot needle to a single point on a surface. Over time heat
spreads out over the rest of the domain and can be described by a function kt ,x (y) called the
heat kernel, which measures the heat transferred from a source x to a destination y after time
t. A well-known relationship between heat and distance is Varadhan’s formula, which says
that the geodesic distance between any pair of points x, y on a Riemannian manifold can be
recovered via a simple point wise transformation of the heat kernel:

φ(x, y) = lim
t→0

√
−4t logkt ,x (y) (2.1)

The intuition behind this behavior stems from the fact that heat diffusion can be modeled as
a large collection of hot particles taking random walks starting at x: any particle that reaches
a distant point y after a small time t has had little time to deviate from the shortest possible
path. To date, however, this relationship has not been exploited by numerical algorithms that
compute geodesic distance.

2.2 ALGORITHM

The method can be described purely in terms of operations on smooth manifolds. In order
to fit the discrete properties,the algorithm has to be reformed which will be showed later. For
now we will just show the basic steps to calculate the geodesic distance in the continuous
time domain.

Let ∇ be the negative semi-definite Laplace-Beltrami operator acting on (weakly) differen-
tiable real-valued functions over a manifold (M , g). The heat method consists of the following
three basic steps:

1. Integrate the heat flow du
dt =∇u for some fixed time t .

2. Evaluate the vector field X =− ∇u
|∇u| .

3. Solve the Poisson equation ∆φ=∇·X .
The function φ approximates geodesic distance, approaching the true distance as t goes to

zero. Note that the solution to step 3 is unique only up to an additive constant; final values
simply need to be shifted such that the smallest distance is zero. Initial conditions u0 = δ(x)
(i.e., a Dirac delta) recover the distance to a single source point x ∈ M .

2

2.3 TIME DISCRETIZATION

We discretize the heat equation from step 1 of the algorithm in time using a single backward
Euler step for some fixed time t . In practice, this means we simply solve the linear equation

(I − t∆)ut = u0 (2.2)

over the entire domain M , where I is the identity. We can get a better understanding of solu-
tions by considering the elliptic boundary value problem

(I − t∆)vt = 0 on M\γ

vt = 1 on γ
(2.3)

which for a point source yields a solution vt equal to ut up to a multiplicative constant. As
established by Varadhan in his proof, vt also has a close relationship with distance, namely,

lim
t→0

−
p

t

2
log vt =φ (2.4)

away from the cut locus. This relationship ensures the validity of steps 2 and 3 since the
transformation applied to vt preserves the direction of the gradient.

3 IMPLEMENTATION OF THE HEAT METHOD FOR POINT CLOUDS

3.1 INTRODUCTION

One might have noticed that in the previous part, although the time discretization for the
heat method is explained, no remarks are made about the spatial discretization, i.e., how all
the operators, like Laplacian, gradient and divergence are computed on an unknown man-
ifold given a discrete data set sampled from that manifold. In the paper of Crane, since it’s
under a graphic context, the spatial discretization is done based on the provided mesh grids
of the data set. However, in terms of dimensionality reduction, as is mentioned before, there
is no such a priori knowledge – the sampled data now form point clouds without any mesh-
grid information. Of course, as Crane mentioned in his work, the Heat Method, in principle,
can be applied to point clouds as well – he even provided a general framework for spatial
discretization for point cloud and some experiment results for this. However, practice dif-
fers from theory all the time and this one is no exception. Spatial discretization of the Heat
Method on point cloud data, especially in high dimensional space, can be of great trouble. In
this section, we’ll mainly introduce the spatial discretization framework of the Heat Method
we built by survey, reading and discussion. Once the spatial discretization is done, the im-
plementation of the whole method comes easily. This framework for spatial discretization of
ours will be introduced step by step, with respect to the algorithm of the Heat Method given
in the previous section.

3

3.2 COMPUTING THE DISCRETE LBO OPERATOR (∆)

At the very beginning of the Heat Method, a time-discretized Poisson Equation with bound-
ary equation has to be solved to get the heat profile at time t. And to do this, we have to per-
form spatial discretization on the Laplace operator in that equation(or, in terms of manifolds,
the Laplace-Beltrami operator) since we are working on point clouds.

One such discretization is given in the work of Mikhail Belkin et al.[2], in which the discrete
LBO operation can be summarized as a matrix L whose elements are given as follows:

Li j = 1

t
li j

li j =


1 if i = j

−αe−
||xi −x j ||2

4t if x j is a neighbour of x j

0 otherwise

where α= ∑
x j , the neighbours of xi

a

(3.1)

In practice, we find the neighbours by a simple knn algorithm, since there is no guaran-
tee on the density of our data and thus we cannot specify an ε and a corresponding neigh-
bourhood. And the parameter t in (3.1) is time for the heat kernel, which is fixed as a small
constant or the square of the average of Euclidean distance between each data point and its
neighbours.

3.3 SOLVING THE POISSON EQUATION WITH BOUNDARY CONDITION

With a given LBO operator on the manifold, where our data are sampled from, we can now
solve the Poisson Equation (2.2) to yield the heat profile ut at time t. This equation has an
initial condition u0, where the point whose geodesic distances to all other points are to be
computed serves as the heat source and has an initial heat value, and also a boundary condi-
tion that the heat value of the heat source stays constant.

To solve this Poisson Equation with boundary condition, we figured out the following pro-
cedure by discussion.

Let L denotes the LBO matrix, n for the number of data points, and assume that point
xi is the heat source with constant heat value 1, then the Poisson Equation with boundary
condition is:

(I − tL)ut = u0where the i -th row in ut is 1, which equals that of u0 (3.2)

Since the i−th row of ut stays constant, we notice that:

(I − tL)ut = Aut = A′u′
t +ai

where A = (I − tL) = (a1, a2, ..., ai , ..., an), (a j is a column vector, j = 1,2, ...,n)

ut = (u1
t ,u2

t , ...,ui−1
t ,1,ui+1

t , ...,un
t)T

A′ = (a1, a2, ..., ai−1, ai+1, ..., an)

u′
t = (u1

t ,u2
t , ...,ui−1

t ,1,ui+1
t , ...,un

t)T (u j
t is the j -th element in ut)

(3.3)

4

And so by a little manipulation, the Poisson Equation with boundary condition reduces to:

A′u′
t = u0 −ai (3.4)

Now note that although the size of A′ is n −by − (n −1), the rank of this matrix should be
(n −1), and so we can use SVD to solve this linear equation:

A′ =U SV (By SV D)

U SV u′
t = u0 −ai

SV u′
t =U−1bi

where bi = u0 −ai

S is the n-by-(n −1) rectangular matrix containing singular values of A′

(3.5)

Since the rank of A′ is (n −1), the last row of the singular value matrix S should be all zero,
and thus (3.5) reduces to:

S′V u′
t =U−1b′

i

where b′
i is bi with its last row removed

and S′ is S with its last row removed

(3.6)

And in (3.6), both S′ and V should be invertible, and so we get the final solution of the
Poisson Equation with boundary condition taken into account (again note that here the ith
point is taken as heat source with constant heat value 1):

u′
t =V −1S′−1U−1b′

i

u j
t =


1 if j = i

u′ j
t if j < i

u′ j−1
t if j > i

(3.7)

3.4 COMPUTING THE GRADIENT (∇) ON A MANIFOLD

3.4.1 GENERAL SCHEME

Now that the heat profile ut at time t is computed, according to the algorithm of the Heat
Method, we now have to compute the gradient of ut and perform normalization to it. Note
that the gradient here is defined on the manifold. And to compute the gradient of ut on
the manifold which our data are sampled from, the general scheme is to first compute the
gradient of ut at each data point in the Euclidean space and the project the result onto the
tangent space of each data point. So this section contains two subsection, one is for compute
the gradient in Euclidean space, and the other for computing the tangent space at each data
point and do projection.

5

3.4.2 COMPUTING THE GRADIENT IN EUCLIDEAN SPACE

According to the work of the Sayan Mukherjee et al.[3] We can compute the discrete gradi-
ent as shown below.

Before we start the algorithm we need to we state the matrices and vectors involved in the
algorithm:

1. the kernel matrix K given the kernel function

Ki , j = K (xi , x j) = 1

(4πt)
d
2

e
−|xi −x j |2

4t for i , j = 1, ..,n (3.8)

2. the elements of the weight matrix W given the parameter s

wi , j = e
−||xi −x j ||2

2s2 for i , j = 1, ..,n (3.9)

3. the label vector computed from heat function for one point y = (y1, ..., ym)T = (ut1, ...,utn)T

4. the input train data set Mx = [x1 −xn , x2 −xn , ..., xn−1 −xn , xn −xn] ∈ Rd×n

5. V = (v1, v2, ..., vd) the d left eigenvectors of M T
x Mx

6. βi =V T (xi −xn) for i = 1, ..,n
7. at iteration t we have the vector

ηt = (γT
0 ,γT

1 , ...,γT
n)T ∈ Rn(d+1)

γ0 := ηt (1 : n)

γi := ηt (n + (i −1)d +1 : n + i d)

γ := (γ1, ...,γn)

(3.10)

8. at each iteration the matrix a ∈ Rm×m is defined by its components

ai , j = wi , jφ
′(yi (k jγ0 +kiγ

T (βi −β j))) (3.11)

where ki is the i -th column of the kernel matrix and

φ(t) = log(1+e−t) (3.12)

9. at each iteration the matrix A ∈ Rm×m is defined by its components

Ai , j = wi , jφ
′′(yi (k jγ0 +kiγ

T (βi −β j))) (3.13)

10. given the matrix a we define the vectors b0 = aT y and

bi = yi

n∑
j=1

ai , j (βi −β j) where i = 1, ...,m (3.14)

11. given the matrix A we define the m ×m matrix

K0 = di ag (Aem)K where em = (1,1, ...,1)T (3.15)

6

12. from the matrices

K1(j , l) =
n∑

i=1
Ai , j K (xi , xl)(βi −β j)T where j , l = 1, ..,n (3.16)

construct the matrix

K̃1 =

K1(1,1) . . . K1(1,n)
...

. . .
...

K1(n,1) . . . K1(n,n)

 (3.17)

13. from the matrices

K2(i , l) =
n∑

j=1
Ai , j K (x j , xl)(βi −β j)T where i , l = 1, ..,n (3.18)

construct the matrix

K̃2 =

K2(1,1) . . . K2(1,n)
...

. . .
...

K2(n,1) . . . K2(n,n)

 (3.19)

14. from the matrices

Bi =
n∑

j=1
Ai , j (βi −β j)(βi −β j)T where i = 1, ..,n (3.20)

construct the matrix

K̃3 =


B1K (x1, x1) B1K (x1, x2) . . . B1K (x1, xn)
B2K (x2, x1) B2K (x2, x2) . . . B2K (x2, xn)

...
...

. . .
...

BnK (xn , x1) BnK (xn , x2) . . . BnK (xn , xn)

 (3.21)

15. from the matrices
K0 K̃1 K̃2 K̃3 (3.22)

construct the matrix

K̃ =
(
K0 K̃1

K̃2 K̃3

)
(3.23)

With the matrices and vectors shown above we can start the algorithm. The basic steps of
the algorithm are shown below:

Inputs:
x = [x1, x2, ..., xn] train data set
y = [ut1,ut2, ...,utn] values of the heat function

Parameters:
s regularization parameter
ε threshold of the iteration

7

Algorithm:
η0 = 0; stop=false; t = 0
repeat:

u(ηt) = 1
m2 (bt

0, ...bt
n)T +ληt ;

∇u(ηt) =λIn(d+1) + 1
m2 K̃ ;

∆ηt =∇u(ηt)−1u(ηt);
ηt+1 = ηt −∆ηt ;
t = t +1;
If ||∆ηt || < ε then stop=true;

until stop=true;
γi = ηt (m + (i −1)d +1 : m + i d) for i = 1, ...,m;
ci =V γi for i = 1, ...,m;
∇ut (x) =∑n

i=1 ci K (x, xi);

Here we have the final result of the gradient of the heat function ut and then we could
calculate the gradient of every point on the point cloud given the heat function from one
point. The next step is to project it onto the tangent space.

3.4.3 PROJECT THE GRADIENT ONTO THE TANGENT SPACE

For computing the tangent space at each data point, the work of Tianhao Zhang et al.[4] is
a good reference. The algorithm in their work mainly contains five steps: data preprocess-
ing(omitted in our project), determining the neighbourhood, extracting local information,
constructing alignment matrix and computing the final map for projection.

Determining the neighbourhood For each data point xi , we find its k nearest neighbours
xi j , j = 1,2, ...,k. These neighbours play a major role in the approximation of the tangent
space at point xi since the approximation is based entirely on local information and opti-
mization. These k neighbouring data of xi forms a matrix Xi = (xi1 , ..., xik), where each xi j is
a column vector.

Extracting local information For each data point xi , Xi is first right multiplied with the
matrix Hk = I − e · eT /k where e is a column vector with k entries whose elements are all 1.
And so for each column in Xi Hk , the mean of the neighbours are subtracted, compared with
Xi . Then we do SVD on Xi Hk , i.e., Xi Hk = U i Si V i . And we set Vi as the matrix made up
by the d (d is the target dimension that we want the data to reduce to, and therefore it’s the
"assumed" dimension of the unknown manifold where the data are sampled form, and of
course the dimension the tangent space at data point on that manifold) right singular vectors
in V i corresponding to the largest d singular values in Si . And let Wi = Hk (I −Vi V T

i).
Constructing alignment matrix Form a matrix B using the neighbouring information com-

puted in the previous step for each data point xi in an iterative manner: B(Ii , Ii) = B(Ii , Ii)+
Wi ·W T

i , i = 1,2, ...,n . Here the initial setting is B = 0, and Ii = {i1, i2, ..., ik } stores the indices
of neighbours of point xi – thus B(Ii , Ii) is actually a k −by −k matrix.

Computing the maps Solve the following generalized eigenvalue problem using the align-
ment matrix constructed previously: X HN B HN X Tα= λX HN X Tα, where HN is again a ma-
trix for removing mean except that its size is now n-by-n. Take out thed eigenvalues and their

8

corresponding eigenvectors(one eigenvector for each eigenvalue of course). The eigenvalues
are ordered in an ascending manner: λ1 <λ2 < ... <λd , and the matrix for the projection map
consists of eigenvectors placed in bysame order: A = (α1,α2, ...,αd). Finally, the projection is
done by X → Y : Y = AT X HN , where each column of X is a data point. And for the purpose of
projecting the gradient at a certain point onto the tangent space of that point, we first com-
pute A according to the data set X and then replace the X in the projection formula by the
gradient matrix, with same form of course.

3.5 COMPUTING THE DIVERGENCE (∇·) ON A MANIFOLD

For discrete divergence, different from other operators indicated before, we will use a quite
simple way to estimate calculate. And this will be shown below.

From the definition of the divergence on the high dimensional space, if a function X in a
d-dimension space is defined by

X (x1, ..., xd) = X1(x1)e1 + ...+Xd (xd)ed =
d∑

i=1
Xi (xi)ei (3.24)

where ei is the normal vector on i -th dimension. Then we can obtain the divergence of X as
shown below

∇·X = ∂X1(x1)

∂x1
+ ...+ ∂Xd (xd)

∂xd
=

d∑
i=1

∂Xi (xi)

∂xi
(3.25)

To obtain the discrete divergence of the function X . We first consider one dimension, say
i -th dimension of the divergence, that is, to estimate ∂Xi (xi)

∂xi
. To achieve this we note that

∂Xi (xi)

∂xi
= lim

x ′
i→xi

Xi (x ′
i)−Xi (xi)

x ′
i −xi

(3.26)

In order to obtain the value of the above expression, we use the following expression to esti-
mate it on the point cloud

∂Xi (xi)

∂xi
≈ Xi (x ′

i)−Xi (xi)

x ′
i −xi

(3.27)

where x ′
i is the i -th dimension of x ′ of the point which is closest to the original point x whose

i -th dimension is xi .
Then we can obtain the final estimation of the divergence of the target function:

∇·X ≈ X1(x ′
1)−X1(x1)

x ′
1 −x1

+ ...+ Xd (x ′
d)−Xd (xd)

x ′
d −xd

=
d∑

i=1

Xi (x ′
i)−Xi (xi)

x ′
i −xi

(3.28)

where x ′ = (x1, ..., xd) is the closest point to point x = (x1, ..., xd) and Xi is the projection of X
to the i -th dimension normal vector.

9

3.6 SOLVE THE FINAL POISSON EQUATION

Since there is no explicit boundary conditions here, we simply assume the LBO operator to
be invertible and solve the final poisson equation below directly:

∆φ=∇· (− ∇ut

|∇ut |
) (3.29)

φ= L−1[∇· (− ∇ut

|∇ut |
)] (3.30)

where φ is the final geodesic distance between one point and others.

4 SUMMERY

4.1 TOTAL STEPS OF THE ALGORITHM

With the theory all above, we can calculate the distance on the manifold using Heat Method
and use this distance to run MDS algorithm which outputs the final result of the dimension
reduction. Here we list the total steps of the all above.

1. compute the discrete LBO operator L
2. solve the poisson equation (I − tL)ut = u0 with boundary condition to get ut

3. compute the gradient ∇ut on a Manifold
4. project ∇ut onto the tangent space
5. compute X =− ∇ut

|∇ut | ;
6. compute the divergence ∇·X
7. get the final geodesic distance φ= L−1(∇·X)

4.2 NEGATIVE RESULTS IN IMPLEMENTATION ON MATLAB

We have implement the whole algorithm in MATLAB. But it turns out that the theory is
still different from the practice. We have tried a simple Swiss roll in 3-dimension as a input
train data set and use this algorithm to reduce the dimensionality of them. The result is quite
unacceptable and it turns out that the algorithm dose not work.

Actually in manifold learning, there are some instinct reasons for negative results according
to Yoshua Bengio, et al.[5] As for the manifold there are several characters that sentence the
death of the manifold learning such as

Noise around the manifold Data are not exactly lying on the manifold. In the case of non-
linear manifolds, the presence of noise means that more data around each pancake region
will be needed to properly estimate the tangent directions of the manifold in that region.

High curvature of the manifold Local manifold learning methods basically approximate
the manifold by the union of many locally linear patches. For this to work, there must be
at least d close enough examples in each patch (more with noise). With a high curvature
manifold, more-smaller-patches will be needed, and the number of required patches will
grow exponentially with the dimensionality of the manifold such as image processing.

10

High intrinsic dimension of the manifold High manifold dimensionality d is hurtful be-
cause O(d) examples are required in each patch and O(r d) patches (for some r depending on
curvature and noise) are necessary to span the manifold.

Presence of many manifolds with little data per manifold In many real-world contexts
there is not just one global manifold but a large number of manifolds which however share
something about their structure. A simple example is the manifold of transformations (view-
point, position, lighting,...) of 3D objects in 2D images. There is one manifold per object
instance (corresponding to the successive application of small amounts of all of these trans-
formations). If there are only a few examples for each such class then it is almost impossible
to learn the manifold structures using only local manifold learning. However, if the manifold
structures are generated by a common underlying phenomenon then a non-local manifold
learning method could potentially learn all of these manifolds and even generalize to mani-
folds for which a single instance is observed.

4.3 CONCLUSION

In this project, we proposed a new method to calculate the geodesic distance used in MDS
on manifold with the heat method. We mainly focus on how to implement the heat method
in point cloud or discrete data set. And we implement the code on MATLAB. Also we analyzed
the instinct reasons for negative result in manifold learning.

5 ACKNOWLEDGEMENT

We mainly want to thank professor Xiaohua Tian and our senior Yinling Mao who offered
us a lot of help during this whole project.

6 REFERENCE

[1]Keenan Crane,Clarisse Weischedel, Max Wardetzky, "Geodesics in Heat: A New Approach
to Computing Distance Based on Heat Flow"
[2]Mikhail Belkin, Partha Niyogi, "Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation"
[3]Sayan Mukherjee, Qiang Wu, "Estimation of Gradients and Coordinate Covariation in Clas-
sification"
[4]Tianhao Zhang, Jie Yang, Deli Zhao, Xinliang Ge, "Linear local tangent space alignment
and application to face recognition"
[5]Yoshua Bengio, Martin Monperrus, "Non-Local Manifold Tangent Learning"

11

