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Abstract. In the data time, as electronic data about individuals becomes increasingly detailed, 

and as technology enables ever more powerful collection and curation of these data. The 

protection of people’s data is becoming a very hot topic, and the differential privacy is a very 

important technology to protect people’s privacy. In the traditional circumstances, we assumed a 

fixed privacy requirement ε, then we try to maximize the accuracy of the computation subject to 

the privacy constraint. But this sequence has some problems under some certain circumstances. 

For example, when we use the medical data to train the model, the function of which is to predict 

Organ lesions, in this circumstance, the most important things are the accuracy, rather than the 

privacy. So, in this paper we estimate the relation among ε, privacy level and the accuracy, and 

attempt to achieve an algorithm that a fixed accuracy requirement is given and and the data 

analyst would like to maximize the privacy subject to the accuracy constraint. Moreover, we 

carry out those algorithms in some practical circumstances, and compare them. 
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1 Introduction 

 

We live in a big data time, and we use these data for many purposes, such as data analyze and 

machine learning, these now technologies present many opportunities for enhanced services and 

products in diverse areas such as healthcare, safety, online search, and so on. However, its use is 

hindered by concerns regarding the privacy of the individuals whose data are being used. People 

worried about that their data would be disclosed, they may be harassed because of this 

disclosure. So, we use the technology called “differential privacy” to protect people’s sensitive 

data. There are much more recent set of large-scale practical deployments, including by Google 

and Apple. To protect data, differential privacy uses an output perturbation technique which adds 

random noise to the outputs. The magnitude of noise to add, which determines the degree of 



privacy, depends on the type of computation and it must be large enough to conceal the largest 

contribution that can be made to the output by one single individual. To be specific, let X be a 

database to release statistics about and f be a query function. differentially private mechanism 

gives perturbed response f(X)+Y instead of the true answer f(X), where Y is the random noise. 

While this seems a perfect solution, the amount of noise needed to achieve indistinguishability 

between two datasets generally eliminates any useful information. But there are still many 

problems about this technology needed to be solved, first ε does not easily relate to practically 

relevant measures of privacy, we need to determine the relation between them. What’s more 

After knowing the relation, we attempt to design the accuracy-first method’s steps and give the 

background about them. In the ending part of this paper we do some experiments which includes 

the performance of the different algorithm under the Laplace mechanism of output perturbation 

then performs an optimization using the noisy data. Our experiments concentrate on a practical 

circumstance, and we will compare two method’s performance.   

 

2 Differential Privacy Background  

 

2.1 Differential privacy 

Differential privacy is a mathematical definition for the privacy loss that results to individuals 

when their private information is used in the creation of a data product. So, we have this 

following definition, that Let ε be a positive real number and A be a randomized algorithm that 

takes a dataset as input (representing the actions of the trusted party holding the data). Let imA 

denote the image of A. The algorithm A is ε -differentially private if for all datasets D1 and D2 

that differ on a single element (i.e., the data of one person), and all subsets S of imA has 

Following property: 

Pr[A(D) ∈ S] ≤ exp(ε)Pr[A(D’) ∈ S] 

where the probability is taken over the randomness used by the algorithm. 

2.2 Ex-Post Privacy Loss 

Given a randomized algorithm A, which map X To O, the definition of the ex-post privacy loss 

is listed as following 

Loss(o) = max
𝐷,𝐷′:𝐷~𝐷′

𝑙𝑜𝑔
Pr⁡[𝐴[𝐷]=𝑜]

Pr⁡[𝐴(𝐷′)=𝑜]
 

 

2.3 Global Sensitivity 



In a model which is interactive, users’ queries come to the database and receive a noisy response 

which may not be accuracy, because the magnitude of noise is added to the response, which is 

determined based on the query function f. Sensitivity of that function represents the largest 

change in the output to the query function which is made by a single data. From these, we can 

drive the notation, global sensitivity. 

The given query function, which will may D to R, the global sensitivity is definite as: 

Δf =max
𝑥,𝑦

|𝑓(𝑥) − 𝑓(𝑦)| 

For ∀x, y differing in at most one element. 

 

3 The Relation Among ε, Privacy Level and The Accuracy 

 

We now display the relation among ε, privacy level and the accuracy, and how to select the value 

of ε, given the goal of hiding any individual’s presence (or absence) in the database. Assuming 

that the privacy requirement for our example dataset is to limit the any individual’s probability of 

being identified as present in the database to be no greater than one certain number. We show 

two ways of selecting a good choice of that guarantees the probability of identifying any 

individual’s presence is no greater than the maximum tolerable value δ. One is to use the upper 

bound; the other is to search for the right value (reducing noise). We first consider how the 

principle upper bound on the adversary’s probability can be used to enforce the requirement. Let 

ρ be the probability of being identified as present in the database. After some mathematical 

derivation, we finally find that satisfies the following inequality: 

ε ≤⁡
𝛥𝑓

𝛥𝑣
⁡ln⁡

(𝑛−1)𝑝

1−𝑝
 

Note that the greater n and ρ are, the greater the minimum ε needed. Therefore, as the size of 

database to publish and the probability to bound get larger, less noise need be added, which is a 

very useable conclusion when made the decision to choose that parameter. 

And in another method, things become a little different: Let X = {x1, x2,..., xn−1, v} and X∗  = 

{x1, x2,..., xn−1}. Without loss of generality, assume that elements are sorted in ascending order 

(i.e., x1   <  x2   <...  <  xn−1    <  v).  Two databases X and X∗   are identical except that only 

one element, v,  is  missing  in  X.  If we divide numerator and denominator of β(ωi) by P (κf 

(ωi) = γ), after some mathematical derivation, the conclusion is listed following:  

β(ωi))=
1

1+(𝑛−1)𝑒
−
𝜀Δv

Δ𝑓

 

To compare these two methods, we can see that both the methods for a differential private 

algorithm can solve for the smallest value of the differential privacy parameter (ε), and other 



parameter values needed to be set. Run the private algorithm we can get the result ε. But because 

Upper Bound theorems tend to be worst-case bounds, this approach will generally be extremely 

conservative, leading to a much larger value of ε than it truly needed, and hence a much larger 

leakage of information than is necessary for the problem at hand, which is very bad and need to 

find way to avoided. 

 

4 Differential Privacy Algorithms with Accuracy Requirements 

 

4.1 Laplace mechanism algorithm 

The key part of the differential privacy, and the most basic subroutine we will use is the Laplace 

mechanism. The Laplace Distribution centered at 0 with scale b is the distribution with 

probability density function, add the Laplace noise into the original database to get another noisy 

database  

Main Code: 

import math 

import random 

import numpy as np 

import matplotlib.pyplot as plt 

from collections import Counter 

def laplace(): 

    start, scale = 0.0, 2.0 

    sample = np.random.laplace(start, scale, 1000) 

    vals = np.arange(-8.0, 8.0, 0.01) 

    dFunc = np.exp(-abs(vals-start)/scale)/(2.0*scale) 

    plt.plot(vals, dFunc) 

    plt.show() 

def generate_new_database (name_list): 

    probTable = [] 

    dataBase = [] 

    count = 0 

    index = 0 

    for item in name_list: 

        count+=item[1] 



        probTable.append(count) 

    for x in range(10000): 

        y = random.uniform(0,1) 

        for item in probTable: 

            if y>item: 

                index+=1 

            else: 

                dataBase.append(name_list[index][0]) 

                break 

     index = 0 

return database 

def genLapN(): 

    start, scale = 0.0, 20.0 

    sample = np.random.laplace(start, scale, 1000) 

    listN = [] 

    for x in range(20): 

        listN.append(sample[x]) 

    return listN 

     

def add_noise(): 

    name_base = generate_new_database () 

    lapNum = genLapN() 

    count = Counter(name_base) 

    idx = 0 

    for item in count: 

        count[item]+=lapNum[idx] 

        idx+=1 

    comName = count.most_common(10) 

    return comName[0][0] 

4.2 The key parts of noise-reducing algorithm  

4.2.1 Gradual private release 

gradually releasing private data is a very important method when we carry out the noise reducing 

algorithm, by using the Laplace kernel mechanism with an increasing sequence of ε values. 

Seeing a privacy cost scaling with on the least private release, rather than the accumulation of the 



privacy costs of independent releases. That’s an extremely good things for us. Giving some 

examples, the algorithm can be depicted as a continuous random walk starting at a very private 

data point v with the property that the marginal distribution at each point in time is Laplace 

centered at v. Releasing the value of the random walk at a fixed point in time gives a certain 

output distribution, for example, v, with a certain privacy guarantee and then like walking toggle, 

you may go to a more private place or a more accuracy place. To produce v0 whose ex-ante is 

more private, one can simply “fast forward” the random walk from a starting point of v to reach 

v 0; to produce a less private v 0, one can turn around. The total privacy cost is some certain 

place, given the least private point, all more private points can be derived by taking a random 

walk of a certain length starting at v, until you reach the least one. Note that were the Laplace 

random variables used for each release independent, the composition characteristic would require 

just summing the ε values after each release. 

Main Code: 

import numpy as np 

def do_filt(prob, matrix): 

f = lambda x: 0 if np.random.random() <= prob else x 

  return np.vectorize(f)(matrix) 

def gen_list(M, sensitivity, eps_list): 

 try: 

 steps = len(eps_list) 

 except: 

  steps = eps_list.shape[0] 

  shape = M.shape 

  rev_eps_list = eps_list[::-1] 

  noise_list = [np.random.laplace(scale=sensitivity/eps, size=shape) for eps in rev_eps_list] 

  walk = [M + noise_list[0]] 

  filt_probs = [ (rev_eps_list[j] / rev_eps_list[j-1])**2 for j in range(1, steps) ] 

  walk_steps = [do_filt(p, noise_list[1+j]) for j,p in enumerate(filt_probs)] 

  for j in range(1, len(rev_eps_list)): 

    walk.append(walk[j-1] + walk_steps[j-1]) 

  walk.reverse() 

  return np.array(walk) 

4.2.2 Over Threshold Method 

This part takes the responsibility to terminate the program when the Over subroutine “gradual 

private release” already make the result satisfy our requirement. Overall approach to our eventual 

problem will be as following, generate a sequence of available parameters the 1, ……, T, each 

with increasing accuracy and decreasing privacy; then test their accuracy levels sequentially, 

output the first one whose accuracy is “good enough.” The classical Over Threshold algorithm 



takes in a dataset and a sequence of queries and privately outputs the index of the first query to 

exceed a given threshold. 

Tousling Over Threshold to when to perform these accuracy checks. Unfortunately, there is a 

bad obstacle: for us, the “queries” themselves depend on the private data. Standard composition 

analysis would involve first privately publishing all the queries, then running Over Threshold on 

these now public queries. Though, until Over Threshold stop that produce, it would be much 

better to generate and publish the queries one at a time, at which point one would not publish any 

more queries. The problem is centered in speed of analyzing this approach that is we do not 

know when Over Threshold will terminate, when we need to analyze a large mount data, that’s 

can be a fatal drawback. 

Main Code: 

import numpy as np 

import matplotlib.pyplot as plt 

 return " ".join(list(map(str, arr))) 

def Threshold (X, Y, lamb, alpha, gamma, max_norm, max_steps): 

  n = len(X) 

 dim = len(X[0]) 

  if max_norm <= 0.0: 

    max_norm = logist.compute_max_norm(lamb) 

  sv_sens = logist.get_sv_sensitivity(max_norm, n) 

  opt_beta_sens = logist.compute_opt_sensitivity(n, dim, lamb) 

  compute_err_func = lambda X,Y,beta_hat: logist.compute_err(X, Y, lamb, beta_hat) 

 opt_beta, opt_res = get_opt(X, Y, lamb) 

  opt_err = opt_res[0] 

  for beta, res in [(output_beta_hat, output_res), (naive_beta_hat, naive_res)]: 

    success, excess_err, sv_eps, my_eps, index = res 

    two_norm = np.linalg.norm(beta) 

    unreg_err = logist.compute_err(X, Y, 0.0, beta) 

    print("1" if success else "0", excess_err, sv_eps, my_eps, index, two_norm, unreg_err) 

    print(stringify(beta)) 

def parse_inputs(args): 

  try: 

    filename = args[1] 

    lamb = float(args[2]) 

    alpha = float(args[3]) 

    gamma = float(args[4]) 

    max_norm = float(args[5]) 



    max_steps = int(args[6]) 

    X, Y = [], [] 

    with open(filename) as f: 

      for line in f: 

        nums = [float(x) for x in line.split()] 

        X.append(nums[:-1]) 

        Y.append(nums[-1]) 

    X = np.array(X) 

    Y = np.array(Y) 

return X, Y, lamb, alpha, gamma, max_norm, max_steps 

 

5 Experiments and Comparison 

 

To evaluate the noise reducing methods which we described above, we conducted practical 

evaluations. We use the practical data, which is downloaded from “http://ama.liglab.fr”, this 

dataset contains two different social networks: Twitter, a micro-blogging platform with 

exponential growth and extremely fast dynamics, and Tom’s Hardware, a worldwide forum 

network focusing on new technology with more conservative dynamics but distinctive features. 

In this experiment we use the Twitter part. We tested the algorithm’s average ex-post privacy 

loss vs a large range of input accuracy goals. The results show that noise reducing algorithm 

gives a large advance over the traditional upper bound approach, which just inverting utility 

theorems. Obviously, the improvement over traditional method is enormous, for instance, in this 

experiment, Noise Reduction has about 5 ex-post privacy loss, when the excess error 

requirement is about 0.05, but the other method has about 20 ex-post privacy loss. This is a very 

tremendous improvement. Out final result is showed following:  



 

  

 

 

6 Conclusion 

 

There is no doubt that the differential privacy has received considerable attention, and it has been 

deployed worldwide to protect users’ data by the data giant like, Google, Apple, Facebook and 

so on. ε is the most important parameter for differential privacy, but it does not directly correlate 

to a practical privacy level. What’s more, under a certain accuracy requirement, how to choose a 

suitable ε efferently is very meaningful. it is possible to determine an appropriate value of ε. We 

have shown that given an accuracy level, how to choose the ε to get a most high privacy level, up 

to now, there already are many different algorithm, which can achieve the goal, we choose two 

representatives, depict their detail, and compare their performances. The result show that the 

newer one—noise reducing algorithm has very large advance over the traditional one. In a word, 

any discussion of a differentially private mechanism requires a discussion of how to set an 

appropriate ε for that mechanism with users’ requirement, it’s will always be the hot topic in the 

field of differential privacy. 
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