
1

IE304 Project: Learning to Estimate the Authors of
Double-blind Submission in Scholarly Networks

Jie-Lin Qiu
Shanghai Jiao Tong University
{Qiu-Jielin@sjtu.edu.cn}

Abstract: The problem is to estimate the authors of a
double-blind submission paper with the help of scholar
networks. First, we conduct the feature engineering to
transform the various provided text information into fea-
tures. Second, we train classification and ranking models
using these features. Last, we combine our individual
models to boost the performance by using results on the
validation set. Some effective post-processing techniques
have also been proposed. Our solution achieves 0.9113
MAP score of Test set.

Keywords—Feature engineering, Paper-Author Identifi-
cation, Scholar networks

I. INTRODUCTION

The problem lies in how to estimate the au-
thor of papers which were submitted to double-
blind process. The dataset, which is provided by
Microsoft (Acemap1 Group2), contains the informa-
tion of confirmation and deletion of authors. The
confirmation means the authors acknowledge they
are the authors of the given paper; in contrast, the
deletion means the paper has no information about
its authors, institutions and any other information
related to their personality. The confirmation and
deletion information are split into three parts, in-
cluding Train, Valid, an Test sets based on paper
and author IDs.

The Train set contains 3739 authors. For
each paper, the PaperId, ConfirmedAuthorIds, and
DeletedAuthorIds are provided. The Valid set of
1486 authors, each of which is with a sequence
of assigned author IDs without confirmation or
deletion, is for public leaderboard evaluation.

1 http://acemap.sjtu.edu.cn/
2 Thanks to excellent previous fundamental work achieved by Yuting

Jia, Hao Wu, Weijie Tang, Wen Sui, Tao Ni, Hao Lu et al. of Acemap
Group, especially the map group and the engineering group.

In addition to the Train set, other information is
also provided. Author.csv contains author names
and their affiliations. Paper.csv contains paper ti-
tles, years, conference IDs, journal IDs, and key-
words (the real keywords and important words ex-
tracted from abstract). PaperAuthor.csv contains
paper IDs, author IDs, author names, and affiliation-
s. The Journal.csv and Conference.csv contain
short names and full names information of journals
and conferences, respectively. Unfortunately, the
provided data are noisy and have missing values. For
instance, PaperAuthor.csv contains the relations
of authors and papers, but papers may be wrongly
assigned to an author.

The goal of the project is to predict which given
authors wrote the given papers. The evaluation
criterion is mean average precision (MAP), which
is commonly used for ranking problems.

The paper is organized as follows. Section 2
outlines the framework of our approaches. Section
3 introduces the approaches to transform the given
text information into meaningful features. Section
4 discusses the models we use. Section 5 describes
how we combine different models and postprocess
the combined result to boost the performance. Fi-
nally, we conclude in Section 6.

II. FRAMEWORK

This section first provides the architecture of
our system. Then it discusses the self-split inter-
nal validation set from the Train set, which is a
crucial component in the architecture. The internal
validation is not only useful for offline validating the
model performance and combining different models,
but also important for avoiding over-fitting the Valid
set.



2

A. System Overview
Our system can be divided into four stages: gen-

erating features, training individual models, combin-
ing different models, and post-processing as shown
in Figure 1. In the first stage, since the given data
are all csv files, we explore different approaches to
generate various features, which capture different
aspects of the given information. In the second
stage, we mainly employ three models, including
Random Forests, Gradient Boosting Decision Tree,
gcForest, and LambdaMART. For each individual
model, to avoid overfitting, we carefully conduct the
parameter selection by using the internal validation
set. In the third stage, we combine the three different
models by using results on the internal validation set
and the official Valid set. In the last stage, we post-
process the combined result to further improve the
performance by exploiting the characteristic of one
feature which is not fully utilized by the models.

Fig. 1: The architecture of our apporach.

B. Validation Set
A validation set is useful to evaluate models and

avoid over-fitting. We construct an internal valida-
tion set for verifying our models. It is also useful to
avoid over-fitting leaderboard results on the Valid
set. In this project, Train, Valid and Test sets are
generated by randomly shuffling authors with ratio
5:2:3. Therefore, we randomly split the Train set
to have 2,670 authors as the internal training set
and 1,069 authors as the internal validation set. In
our experiments, the MAP score on the internal
validation set is usually consistent with the one
computed by five-folds cross validation on the Train
set.

III. FEATURE ENGINEERING

To determine the confirmation or deletion of each
author-paper pair, we transform Train.csv into a

binary classification training set. Each confirmation
of an author-paper pair is a training instance with
label 1; each deletion of of an author-paper pair is
a training instance with label -1. We then generate
97 features for each instance and apply the learning
algorithms described in Section 4. Subsequently, in
describing the feature generation for each author-
paper paper, we refer to the author and the paper
as the target author and target paper, respectively.
In this section, we describe our approaches of
transforming the given information into features.

A. Preprocessing
Since many features are mainly based on string

matching, we conduct simple preprocessing to clean
the data. We first remove or replace non-ascii char-
acters. Then, we remove stop words in affiliations,
titles and keywords, where the stop-word list is
obtained from the NLTK package [1]. Finally, we
convert all characters into lowercase before compar-
ison.

B. Features Using Author Information
This type of features stems from user profile,

such as usernames or affiliations. Based on the
information we try to capture, these features can
be classified into the following three groups.

1) Confirmation of Author Profiles
An intuitive method to confirm that a paper is

written by a given author is to check whether the
name appears in the author section of the paper.
However, a more careful setting is to check also the
consistency of other information such as affiliations.
In the project, author affiliations are provided in
Author.csv and PaperAuthor.csv. One basic as-
sumption about Author.csv and PaperAuthor.csv
is that Author.csv contains the author profiles main-
tained by Microsoft Academic Search, while the
author information in PaperAuthor.csv is extracted
from the paper without confirmation. The assump-
tion is based on our observation on the given files as
well as the online system. When there exists a con-
flict between Author.csv and PaperAuthor.csv,
the author information in the online system is usu-
ally the same as that in Author.csv. Therefore, the
features of author profile confirmation comprise of
comparisons of author name and affiliation between
Author.csv and PaperAuthor.csv. The compar-
isons are done by string matching, and various



3

string distances are used as features, including Jaro
distance, Levenshtein distance, Jaccard distance (of
words) and character match ratio. These features are
simple but useful; for example, by using only the
affiliation Levenshtein distance as a feature, we can
achieve 0.94 MAP score on the Valid set.

An issue in author-name matching is to han-
dle abbreviated names, which are very common
in PaperAuthor.csv. In contrast, author names in
Author.csv are usually in complete format. The
string distance between an abbreviated name and
a full name may be large even if the two names
are the same. Two different approaches are used to
overcome the problem. The first one is to convert
all names into an abbreviated format before the
comparison; in our approach, the conversion is done
by retaining only the last name and first character
of first and middle names. The second approach is
to split the author name into first, last and middle
names, and compare each of them separately. The
two approaches are applied independently to obtain
different features.

Another challenge of name matching comes from
the inconsistency of the name order. There are
two main name orders in the provided data, the
Western order and the Eastern order. The Western-
order means that given names precede surnames;
in contrast, the Eastern-order means that surnames
precede given names. While most of the names are
in the Western order, names in the Eastern order
also frequently appear to cause failed comparisons.
Although it is possible to check the name order and
transform the Eastern-order names to Western-order
ones before comparisons, such checking might be
difficult and is prone to error. Instead, two different
features are generated for the same distance mea-
sure. One assumes that names from Author.csv and
PaperAuthor.csv are in the same name order. The
other assumes that names are in opposite orders, so
the name order in Author.csv is changed before
string comparisons. Specifically, the order change
is done by exchanging the first word and last word
in the name. However, this setting may wrongly
consider two different author names as the same;
for example, Xue Yan (PID:1224852) and Yan Xue
(PID:482431) are considered as the same person
given the second feature. Fortunately, because the
number of Eastern-order name is relatively small in
the data set, our approach still improves the overall
performance.

2) Coauthor Name Matching
Features matching coauthor names are inspired by

an observation of the dataset: in many deleted pa-
pers, there exist coauthors with names similar to the
target author. For example, two authors (174432 and
1363357) of the deleted paper 5633 are the same as
the target author Li Zhang. Therefore, having such
coauthors is an important trait of deleted papers.
To capture the information, we take the minimum
string distance of names between the target author
and his/her coauthors as a feature. Similar to the
feature generation in Section 3.2.1, we also need to
address the issue of abbreviated names and name
orders.

Another problem for matching coauthor names
is to decide names for comparison. For a given
author identifier, corresponding names may appear
in both Author.csv and PaperAuthor.csv. In fact,
multiple names under this identifier may appear in
PaperAuthor.csv. These names may be different
because of abbreviations, typos or even parsing
errors of the Microsoft system. For example, author
1149778 is Dariusz Adam Ceglarek in Author.csv,
while it corresponds to Dariusz Ceglarek and D.
Ceglarek under paper 770630 in PaperAuthor.csv.
Besides, some authors in PaperAuthor.csv do not
appear in Author.csv. To handle the problem, mul-
tiple features are generated, where each feature is
computed by using different combinations of name
sources. For instance, the target author name could
be from Author.csv and PaperAuthor.csv, and
coauthor names could be from PaperAuthor.csv.
Then the distances of all possible combinations of
the author and each coauthor names from different
sources are computed. We select the minimum dis-
tance among all possible combinations to represent
the name distance between the author and his/her
coauthors.

3) Author Consistency
Understandably, information in the dataset should

be consistent across papers and authors. Author-
consistency features try to measure such information
in author profiles. In particular, we measure the
coauthor-affiliation consistency and research-topic
consistency as features. Affiliation consistency is
based on the assumption that authors with the same
affiliation are more likely to co-work on a paper;
therfore, we compute the affiliation string distance
as well as the number of coauthors with the same
affiliation as the target author. Similar to coauthor



4

name matching, the affiliation may come from dif-
ferent sources, so we compute multiple features.

Research-topic consistency assumes that the au-
thor should work on similar topics across different
papers. Although the research-topic or field infor-
mation is not given in the dataset, we infer it
from the paper titles, keywords and important words
extracted from abstract. Therefore, we compute the
title and words similarity between the target paper
and the potential authors other papers as features.

4) Missing Value Handling
The missing value problem is an important issue

of string matching. A common situation in compar-
ing author affiliations or author names is that both
strings are empty. The resulting zero string distance
wrongly indicates an identical match. Then papers
with missing values tend to be ranked higher in
prediction. To conquer this problem, we consider
values other than zero in calculating the distance.
If both strings for comparison are empty, we define
their Jaro distance as 0.5, Jaccard distance as 0.5 and
Levenshtein distance as the average length of the
field. Besides, we use some indicators as features;
examples include the number of coauthors without
affiliation information.

C. Features Using Publication Time

Publication-time features are related to the pub-
lication year provided in Paper.csv. The intuition
of these features is that an author can be active in a
specific period, and papers written outside this peri-
od are likely authored by others. We include several
features to capture the publication-time information,
such as the exact publication year, publication-time
span and publication year differences with other
papers of the target author.

To determine whether the provided year is valid
is an issue to resolve before we can generate year
features. In the dataset, some papers publication
years are obviously invalid, such as 0, -1 and
800190. Besides, experiments on the internal valida-
tion set show that excluding publication years earlier
than 1800 A.D. improves the overall performance.
Therefore, we set the valid interval to be between
1800 A.D. and 2013 A.D. and ignore publication
years outside the interval.

Removing invalid publication years incurs the
missing value problem. To fill the missing year
values, we utilize the publication-year information

of coauthors. The basic concept is to replace a miss-
ing value with the average of the mean publication
years of all coauthors of the paper. This average,
however, is not computable because coauthors may
also have missing information on publication years.
An iterative process is used to solve the problem as
follows. First, papers with invalid years are ignored
and mean of available publication years is calculated
for each author. The mean value is then used to fill
the missing value of the author. These new values
can be incorporated to calculate the new mean
value of the publication years. Therefore, the mean
publication years and missing values are computed
alternatively until convergence.

D. Features Using Heterogeneous Bibliographic
Networks

The work in [2] introduces the concept of Hetero-
geneous Bibliographic Network which captures the
different relations between authors and papers, and
demonstrates the effectiveness of link prediction. In
this project, finding whether a given paper is written
by a author is the same as predicting a link between
an author and a paper. Inspired by [2], we extract
several useful features from the network to obtain
the relation between nodes.

Fig. 2: Relationship among papers, authors and
topics1.

Heterogeneous Bibliographic Network is a graph
G = (V,E), where V is the vertex set and E is the
edge set. According to the given data, the vertex set
V = P ∪A∪C∪J contains the set of papers P , the
set of authors A, the set of conferences C and the
set of journals J . The set E consists of two kinds
of edges. Based on PaperAuthor.csv, if author ai
writes paper pj , then we create the edge eij based

1 Thanks to previous work achieved by Fengyu Deng, Lingkun Kong,
Bo Wang, Jialu Wang et al.



5

on Papers.csv, if paper pm belongs to conference
cn or journal jn , then we create the edge emn. Note
that, because information in PaperAuthor.csv may
be incorrect, some links are wrongly generated in
the network.

After generating the network, we could extract
basic features, such as the number of publications
of an author, and the number of total coauthors of
an author.

To utilize the heterogeneous bibliographic net-
work, we further define the path to describe node
relationship. Given the paper-author pair (pi, aj), a
length k meta path is defined as (pi ↔ v1 ↔ ... ↔
vk−1 ↔ aj ), where v1,..., vk1 ∈ V and ↔ means
two nodes are connected by an edge. For example,
given (pi, aj), Sij = (pi ↔ j ↔ p̄↔ aj) is a set of
length-3 meta paths which captures all papers of
author aj published in the same journal j as pi.

On the other hand, given an author pair (ai, aj
), a length-k pseudo path is defined as (ai ∼
a1 ∼ ak−1 ∼ aj) where a1, ..., ak1 ∈ A. However,
since there is no edge between two author nodes
in our network, ∼ is the pseudoedge. If author
node aj is reachable from ai on the network by
traversing non-author nodes, then we consider there
is a pseudo-edge between ai and aj . In other words,
the pseudoedge describes the possible co-authorship
between two authors. By considering the pseudo
paths, we can grasp different co-authorship infor-
mation.

IV. MODELS

After generating features, we apply classification
methods to train the dataset. To enhance the diver-
sity, we explore three state-of-the-art algorithms as
described in this section.

A. Random Forests
Random Forests is a tree based learning method

introduced by Leo Breiman [3]. The algorithm con-
structs multiple decision trees using randomly sub-
sampled features and outputs the result by averag-
ing the prediction of individual trees. The use of
multiple trees reduces the variance of prediction, so
Random Forests are robust and useful in this project.

We use the implementation in the scikit-learn
package [4]. The package provides a parallel mod-
ule to significantly speed up the tree building
process. Note that the scikit-learn implementation

combines classifiers by averaging probabilistic pre-
diction instead of a voting mechanism in [3].

In this project, the variance may influence the
standing on the leaderboard significantly. For exam-
ple, with different random seeds and fewer trees, the
performance of Random Forests can vibrate from
0.981 to 0.985 on the Valid set. Our experiments
show that using more trees leads to better validation
scores due to lower variance. After some trials,
we use 12,000 trees and a fix random seed 1 in
our Random Forests model, which could achieve
0.983340 MAP score on the Valid set.

B. Gradient Boosting Decision Tree
Gradient Boosting Decision Tree (GBDT) [5] is

also a tree-based learning algorithm. We use the
same package scikit-learn [4]. The optimization goal
of GBDT in [4] is to optimize deviance which is
same as logistic regression. Unlike Random Forest-
s, GBDT combines different tree estimators in a
boosting way. A GBDT model is built sequentially
by using weak decision tree learners on reweighted
data. Then it combines built trees to generate a
powerful learner. The main disadvantage of GBDT
is that it cannot be trained in parallel, so we only
use 300 trees to build the final ensemble model
of GBDT. This is much smaller than 12,000 for
Random Forests. With the above parameters, the
GBDT model could achieve 0.983046 MAP score
on the Valid set.

C. gcForest
The gcForest is a model proposed by Zhou et al.

2017 [6], which which generates deep forest holding
layer-by-layer processing, in-model feature transfor-
mation and sufficient model complexity. This is a
decision tree ensemble approach, with much less
hyper-parameters than deep neural networks, and its
model complexity can be automatically determined
in a data-dependent way. Figure 3 summarizes the
overall procedure of gcForest. Suppose that the
original input is of 400 raw features, and three
window sizes are used for multi-grained scanning.
For m training examples, a window with size of
100 features will generate a data set of 301 ×m
100-dimensional training examples. These data will
be used to train a completely-random tree forest
and a random forest, each containing 500 trees.
The transformed training set will then be used



6

Fig. 3: The model of gcForest.

to train the 1st-grade of cascade forest. Similar-
ly, sliding windows with sizes of 200 and 300
features will generate 1,206-dimensional and 606-
dimensional feature vector, respectively, for each
original training example. The transformed feature
vectors, augmented with the class vector generated
by the previous grade, will then be used to train the
2nd-grade and 3rd-grade of cascade forests, respec-
tively. This procedure will be repeated till conver-
gence of validation performance. In other words, the
final model is actually a cascade of cascade forests,
where each level in the cascade consists of multiple
grades (of cascade forests), each corresponding to
a grain of scanning. Note that for difficult tasks,
users can try more grains if computational resource
allows. Given a test instance, it will go through
the multi-grained scanning procedure to get its cor-
responding transformed feature representation, and
then go through the cascade till the last level. The
final prediction will be obtained by aggregating the
four 3-dimensional class vectors at the last level,
and taking the class with the maximum aggregated
value.

In experiments, gcForest is using the same cas-
cade structure: each level consists of 4 completely-
random tree forests and 4 random forests, each
containing 500 trees. Three-fold cross validation is
used for class vector generation. The number of
cascade levels is automatically determined. In detail,
we split the training set into two parts, i.e., growing
set and estimating set 2; then we use the growing
set to grow the cascade, and the estimating set to
estimate the performance. If growing a new level
does not improve the performance, the growth of
the cascade terminates and the estimated number
of levels is obtained. Then, the cascade is retrained
based on merging the growing and estimating sets.

For all experiments we take 80% of the training data
for growing set and 20% for estimating set.

D. LambdaMart
We choose LambdaMART [7] because of its

recent success on [8]. LambdaMART is the com-
bination of GBDT and LambdaRank. The main
advantage is that LambdaMART use LambdaRank
gradients to consider highly non-smooth ranking
metrics. We use the implementation in the JForests
[9], which optimizes the NDCG metric. To avoid
over-fitting, we train 10 Lamb-daMART models
with random seeds from 0 to 9, and average the
output confidence scores. The number of leaves is
set to 32, the feature sample rate is 0.3, the mini-
mum instance percentage per leaf is 0.01, and the
learning rate is 0.1. With the above parameters, the
LambdaMART model could also achieve 0.983047
MAP score on the Valid set.

V. ENSEMBLE AND POST-PROCESSING

To further boost our performance, we ensemble
results of different models and conduct a post-
processing procedure.

A. Ensemble
In our system, we calculate the simple weighted

average after scaling the decision values to be be-
tween 0 and 1. Because only four models described
in Section 4 were built, we search a grid of weights
to find the best setting.

To see the performance under a setting of weight-
s, we check the results on the Valid set. We train
three models on the internal training set, and predict
on the internal validation set. Then we combine
the results according to the weights to check the



7

improvement. Similarly, we train three models on
the Train set (internal train set + internal valid set)
and predict on the Valid set. Then we check whether
results are further improved. The final weights are
1 for both Gradient Boosting Decision Tree and
LambdaMART, 4 for fcForest, and 5 for Random
Forests.

B. Post-Processing
1) Using Strong Features

In Section 3.4, we describe the concept of Het-
erogeneous Bibliographic Network. Even if there is
an edge between the author node a and the paper
node p, a may not be the author of p because
of the incorrect information in PaperAuthor.csv.
To get confidence on each link, we observe from
PaperAuthor.csv that there are some duplicated
paper-author pairs. For example, lines 147,035 and
147,036 record the same author-paper pair. We
observe that duplicates highly correlate with the
confirmation. Therefore, we let the number of du-
plicates be the weight of the edge between a paper
and an author. We use weighted edges in two ways.
First, we add a feature to illustrate the number of
duplicates before the training procedure to obtain
models described in Section 4. Second, according to
the number of duplicates, we divide the given papers
of each author into two groups: those having more
than one duplicate and those having only one. Then
in our prediction, we rank the first group before
the second. For each group, we rank its members
according to their decision values.

2) Duplicated Paper ID
In the Test set, the assigned papers of an author

may contain duplicates. For example, author 100
has five papers 1, 2, 2, 3 and 4 to be ranked, and
confirmed papers are 1, 2, 2 and 4. According to
the algorithm for calculating MAP, only one of
these duplicated paper IDs will be calculated in
MAP. Therefore, the list 1, 2, 4, 3, 2 has a higher
MAP than the list 1, 2, 2, 4, 3 because the second
paper with ID 2 is treated as a deleted paper in
the evaluation algorithm. To handle this situation,
we put all duplicated paper IDs to the end of the
ranked list as deleted papers.

VI. RESULTS AND CONCLUSION

The comparison results of different approaches
are shown in Fig. 4, where RF is short for random

Fig. 4: Comparison results of different approaches.

forest, GBDT is short for Gradient Boosting Deci-
sion Tree, LbM is short for LambdaMART, gcF is
short for gcForest, and EM is short for ensemble
method. As it is shown, gcForest achieved better
results than the other three and ensemble method
took advantage of complementarity of different ap-
proaches and achieved better results than single
model.

In this paper, we address the problem of esti-
mating the authors of double-blind submission in
scholarly networks. We successfully transform the
given paper information into several useful features
and propose techniques to address the issue of
noisy features for making features robust. We then
apply several useful algorithms on the generated
features. To further improve the performance, we
conduct a simple weighted average ensemble and a
post-processing procedure by utilizing some strong
features, which achieved better results.

REFERENCES

[1] S. Bird, E. Klein, and E. Loper, “Natural language processing
with python,” 2009.

[2] Y. Sun et al., “Co-author relationship prediction in heterogeneous
bibliographic networks,” 2011 International Conference on Ad-
vances in Social Networks Analysis and Mining, pp. 121–128,
2011.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp.
5–32, 2001.

[4] F. Pedregosa et al., “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[5] J. H. Friedman, “Stochastic gradient boosting,” 1999.
[6] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to

deep neural networks,” in IJCAI, 2017.
[7] C. J. C. Burges, “From ranknet to lambdarank to lambdamart:

An overview,” 2010.
[8] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge

overview,” in Yahoo! Learning to Rank Challenge, 2011.
[9] Y. Ganjisaffar, R. Caruana, and C. V. Lopes, “Bagging gradient-

boosted trees for high precision, low variance ranking models,”
in SIGIR, 2011.


	Introduction
	Framework
	System Overview
	Validation Set

	Feature Engineering
	Preprocessing
	Features Using Author Information
	Confirmation of Author Profiles
	Coauthor Name Matching
	Author Consistency
	Missing Value Handling

	Features Using Publication Time
	Features Using Heterogeneous Bibliographic Networks

	Models
	Random Forests
	Gradient Boosting Decision Tree
	gcForest
	LambdaMart

	Ensemble and Post-Processing
	Ensemble
	Post-Processing
	Using Strong Features
	Duplicated Paper ID


	Results and Conclusion
	References

