predicting the future influential researchers in big scholarly network

......

INTRODUCTION

PURPOSE

predict academic influential researchers in the future by using the weighted model of

factors such as author, publication venue, title, abstract, and publication year, etc.

MAIN CONTENT

representative evaluation: H-index

- drawbacks:
 - 1 co-authors
 - ② Not suitable for comparing different subjects

MAIN CONTENT

- (1) theoretical method
- (2) machine learning

METHODS

CONTRIBUTION WEIGHT

improvement for H-index

based on the author's signature rank, the position weight:

 $W_i > W_j$, $\forall i < j$

assume there are k co-authors, the contribution weight $W_j = \frac{2(k-j+1)}{k(k+1)}$, then

 $H_w = WH$

DIFFUSION MODEL

Each node v has an information acceptance threshold θ_v . Each node v is affected by

all its active neighbor nodes. The impact value is represented by weight w.

Assume node u diffuses node v with influence weight $w_{v,u}$. If successful, node v is

converted to active node; If failed, consider attenuation coefficients γ . After several steps,

the effect of node u on node v is not then $w_{v,u}$, but $\gamma w_{v,u}$.

 $| \theta_v |$ $u| \theta_u$ $\begin{cases} w_{v,u}, & if successful \\ \gamma_{w_{v,u}}w_{v,u}, & if failed \end{cases}$

MACHINE LEARNINGextract features

Non-numeric values

- TitleAbstract

Numeric values

- Author citation
- Publication venue citation
- **Publication years**

NON-NUMERIC VALUES

preprocessing: extract features

- (1) non-numeric value: word \rightarrow vector
 - Word Segmentation / Stemming and Morpheme Reduction
 - Construct a dictionary, count word frequency

NON-NUMERIC VALUES

- (1) non-numeric value: word \rightarrow vector
 - Construct a tree structure

RESULT & DISCUSSION

Dataset: about 500,000 articles

comparison of different algorithm:

algorithm	minimum mean absolute error	minimum mean square error
linear regression	18.96	136.80
non-linear regression	18.48	136.32
SVM	17.74	138.42
regression tree	20.27	147.54

Table 1: Table of MMAE & MMSE

Thank you!

