
SHANGHAI JIAOTONG UNIVERSITY

Influence Maximization in Social Networks

Wei Pengchao,5141309020

May 27, 2018
Version: My First Draft



Abstract

In recent years, due to the surge in popularity of social-networking web sites, consid-
erable interest has arisen regarding influence maximization in social networks. Given
a social network structure, the problem of influence maximization is to determine
a minimum set of nodes that could maximize the spread of influences. The main
purpose in influence maximization, which is motivated by the idea of viral marketing
in social networks, is to find a subset of key users that maximize influence spread
under a certain propagation model. In this project, I implement greedy heuristic
algorithm,random heuristic algorithm and optimized greedy heuristic algorithm for
influence maximization in social networks. Dataset is network of Arxiv High Energy
Physics Theory category and has 9877 nodes and 51971 edges. Experiments on this
real-world dataset "ca-HepTh.txt" have shown that the optimizated greedy algorithm
has competitive performance relative to greedy algorithm and random heuristic
algorithm in terms of propagation efficiency and influence and gives better results
for running time in social networks.
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1Introduction

In the last decade, social network analysis has drawn much attention due to its
widespread applicability. A social network is a social structure made up of individuals
who are tied by one or more specific types of relationship or interdependency, such
as friendship, co-authorship, common interest, or financial exchange, to name a
few. Nowadays, many worldwide social- networking web sites, such as Facebook
and Twitter, are very popular since users can share their thoughts and comments
with their friends and also bring small and disconnected social networks together. In
2011, Facebook and Twitter already had more than 600 million and about 90 million
active users, respectively. Hence, marketing on online social networks shows great
potential to be much more successful than traditional marketing techniques. In many
enterprises, the budget of advertisement spending on worldwide social-networking
sites is almost the same or even in excess of that spent in traditional ways.

Fig. 1.1.: Graph Representing Social Network

A social network normally represented by a graph G(V,E). Where V represents the
set of nodes and E represents set of relationships. Figure 1.1 shows a directed social
network. The set V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the set of nodes, and the set E =
{(7, 1), (6, 7), (6, 5), (7, 5), (7, 2), (7, 8), (4, 7), (3, 7), (3, 8), (3, 9), (3, 1), (3, 10), (8, 9), (2, 3)}
is the set of edges. An undirected social network is the social network where edges
are undirected all others remain same.
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1.1 Motivation and Importance

The rapid growth and popularity of online social networking sites have brought a
great deal of attention to social networks. Beside a means of communication, online
social networks provide immense sources of information, experience and innovations
that enable everyone from everywhere to create, exploit, or spread content through
the network via internet links. More importantly, social interaction plays a central
role in shaping political or social movements and debates. Social network analysis
can help extracting worthwhile knowledge, controlling methods of exchanging data,
maximizing acquisi- tion of information in the network and also designing improved
social networks with appropriate facilities of dissemination.

A lot of studies have been done in the context of information diffusion in social
networks. Precisely, information diffusion is a research domain that concerns with
the processes of dissemination of information and opinion sharing among members
of a social network. According to a recent survey, studies conducted in this field in-
clude three general branches as following: “Detecting Interesting Topics”, “Modeling
Diffusion Processes” and “Identifying Influential Spreaders”. The latter branch is
what we study in this article, which is known as “influence maximization”.

1.2 Problem Statement

When news and innovations arise in a social network, they usually begin to spread
through the network from person to person, in a virus manner, to achieve as large
individuals as possible. The extent of diffusion in the network mainly relates to the
mutual relationships of its members. Consider the phone network of a group of
individuals. If we send a message including a rumor to someone in this network,
he will inform those in his contacts about the new message. They will either accept
or ignore the rumor. In fact, if they are affected by the sender, they will believe the
new announcement and begin to spread it through the rest of the network using
their influence on their friends. Depending on the initial receiver of the message,
final amount of receivers in the network would be different. This process is called
“word-of-mouth” effect in social networks and is so much operational in commercial
intentions. Recently, online social communities have become the target of many
companies as a way of advertising new products. These companies aim to find the
most influential individuals who are most suitable for pro- moting their brands and
absorbing the most customers. They give free or discounted samples of their product
to these particular persons and trigger a large cascade of further adoptions in the
whole network subsequently. Therefore, proficient adoption of an exact strategy for
specifying potential trendsetters is of great interest; in order to gain the most profit
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utilizing their influence. These are some examples which the influence maximization
problem can cope with. Given a social network graph, a seed size k, and a known
influence cascade model, influence maximization is the problem of choosing a set
of k influential seed nodes in the graph. Starting from these source nodes, we
aim to maximize the spread of information – rumor, innovation, disease – under
the influence propagation model in the network. As mentioned above, identifying
the influential spreaders (seeds) has a different meaning in each kind of diffusion
network. For example in the blogosphere, it means selecting a set of blogs and
websites that broadcast the information in a broad range of others. In epidemiology,
it consists of finding a set of persons that together are most likely to spread a virus to
the greatest number of persons in the population. Identifying these individuals can
help cont- rolling the disease transmission in the network. Finally, in viral marketing,
the problem reduces to finding a set of trendsetters that absorb the most number of
customers to adopt a product.

Formally speaking, a social network is generally modeled as an undirected graph
G(V,E), where V = {v1, v2, ..., vn} is the vertex set and E = {(vi, vj)| there is an
edge from vi to vj } is the set of edges. A node represents an individual, and an edge
between two nodes represents some kind of relationship (friendship or co-authorship,
etc.). A node is marked as active if it has adopted an idea or an innovation, or as
inactive if it has not. Thus, the problem of the influence maximization is given below:

(Influence Maximization Problem) Given a social network G = (V,E), the output
is to determine a set of seeds (i.e., nodes) such that these seeds could spread their
influence to other nodes with the purpose of maximizing the number of nodes
affected by the seeds.

Fig. 1.2.: Original Problem Statement

In this project, I implement greedy heuristic algorithm,random heuristic algorithm
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and optimized greedy heuristic algorithm for influence maximization in social net-
works. Dataset is Collaboration network of Arxiv High Energy Physics Theory
category and has 9877 nodes and 51971 edges. Experiments on this real-world
dataset "ca-HepTh.txt" have shown that the optimizated greedy algorithm has com-
petitive performance relative to greedy algorithm and random heuristic algorithm in
terms of propagation efficiency and influence and gives better results for running
time in social networks.

1.2 Problem Statement 4



2Background and Related Work

With the development of the social networks, there are many researches on influ-
ence maximization in social network in recent years. The literatures[1][2] first
formulate influence maximization problem as an algorithm problem. And these
articles describe the basis theory of the social networks in influence maximization
problems, including some basic algorithms. Kempe and other scholars put forward
a series of articles to explain the definition of the influence maximization problem
and prove that optimization problem is NP-hard[2]. This article also introduces two
basic information diffusion model: LT (Linear Threshold model)and IC (Independent
cascade model).The greedy algorithm turns out to have plenty of issues, which
include the time complexity is too high. And with the network’s size especially the
large-scale network’s size is getting bigger, the algorithm’s efficiency becomes lower.

There are a lot of related researches completed under independent cascade model.
the article proposed in [4] describes a CELF (Cost-effective Outbreak Detection)
algorithm, the algorithm is based on the influence maximization problem and use
the submodule function of the problem, the experiment in the article proves that
their algorithm has a huge increase in time complexity and in performance, but
the efficiency of the algorithm in large-scale network is still a drop in the bucket.
Kimura and his fellow partner put forward heuristic strategy based on the shortest
path in the literature [5], and design more efficient algorithm solution to influence
maximization according to the strategy , efficiency of the algorithm is not very ideal
in actual network because of the limitation of network size.

This article chooses LT as the research model. And there are a lot of articles
proposing some algorithm based the article [3]. Chen et al. [7] study the influence
maximization problem in the linear threshold model. The article first show that com-
puting exact influence in general networks in the linear threshold model is NP-hard.
Based on the fast computation in DAGs (which is proves can be done in linear time
in the article), Chen propose the first scalable influence maximization algorithm
(LDAG: local directed acyclic graph) tailored for the linear threshold model. The
simulation shows it performs consistently among the best algorithms and it also has
the stable performances on real world networks. There are a lot different algorithms
as LDAG is based on the greedy algorithm [6, 7, 10]. Since the greedy algorithm is
proved to be the optimal solution for the influence maximization problem, improve
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the greedy algorithm still will be a research trend.

The solution for influence maximization problem is not limited to above method.
Kimura et al. [8] address the problem of control the spread information transmission
by minimizing the propagation of undesirable things, such as block a limited number
of links in a network. Kimura also propose a method for efficiently finding a good
approximate solution to this problem based on a naturally greedy strategy. Ceren
Budak et al. [9] study the notion of competing campaigns in a social network and
address the problem of influence limitation by using the notion of limiting campaigns
to counteract the effect of misinformation. The article also study the influence limi-
tation problem in the presence of missing data and propose a prediction algorithm
that is based on generating random spanning trees which the performance of this
approach turned out to be outstanding.
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3Algorithms and Models

In this section, I will first introduce the existing basic models of influence in the area
of influence maximization. After that, I will introduce three classic algorithms of
influence maximization used in this project.

3.1 Basic Models

Independent Cascade Model (ICM) and Linear Threshold Model (LTM) are two
classic graph based approaches which exhibit the process of influence propagation
in a social network. Both approaches model a social network as a directed graph in
which nodes and links represent individuals and relations between them respectively.
A node is active if it has adopted the content spreading through the graph or it is
inactive otherwise. Each link of the graph is associated with an influence probability
showing the degree of influence of the tail node on the head of the link. When a
node becomes active, it can send the content to its neighbors by its outgoing links
and affect them with a specific probability. In the following, we introduce these
models in more details.

3.1.1 Independent Cascade Model(ICM)

ICM is a popular diffusion model which has been widely studied in the context of
influence maximization. It describes an iterative propagation process, focusing on
the sender of the information. Flow of diffusion starts from the initial seed nodes
which are all active at first. Nodes can have two states, (i) Active: It means the
node already influenced by the information in diffusion. (ii) Inactive: node unaware
of the information or not influenced. At the beginning of ICM process, few nodes
are given the information known as seed nodes. Upon receiving the information
these nodes become active. In each discrete step, an active node tries to influence
one of its inactive neighbors. In spite of its success, the same node will never get
another chance to activate the same inactive neighbor. The success depends on the
propagation probability of their tie. Propagation Probability of a tie is the probability
by which one can influence the other node. In reality, Propagation Probability is
relation dependent, i.e., each edge will have different value. However, for the
experimental purpose, it is often considered to be same for all ties. The process
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continues in discrete time units, till no more nodes transfer to active state. The
independent cascade model is a probabilistic model. When a node v is activated, it
will attempt to activate its unactivated outbound neighbor node w with probability
Pvw. This attempt is only performed once, and between these attempts is Indepen-
dent of each other, that is, the activation of v on w will not be affected by other nodes.

At present, there are many researches on the maximization of influence of the
independent cascaded model. The characteristic of the IC model is that it only
considers the activation relationship between u and the outbound neighbor w, and
does not consider the impact of other inbound neighbors of w on w. However,
because it is a probabilistic model, its activation process is uncertain, and the final
results obtained by activating the same network and the same seed nodes may vary
greatly.

3.1.2 Linear Threshold Model(LTM)

In the case of LTM, in addition to the influence probability on each link, we need an
influence threshold for each node in the network. As well as ICM, the propagation
proceeds iteratively in discrete time steps while focusing on the receiver node. In
fact, this model investigates the simultaneous impressions of a node’s neighbors on
its status. Thus, a node becomes active by its activated neighbors, if the summation
of influence degrees on the incoming links exceeds its threshold amount. Again, the
diffusion process ends when no transition happens to active state. In both cases
of LTM and ICM, an activated node remains active and does not change its status
anymore.

The linear threshold model is a value accumulation model. It has an activation
threshold θv ∈ [0, 1] for each node v.The information propagation process of the
linear threshold model is as follows:
(1) Any node v in a given set is randomly assigned a threshold θv ∈ [0, 1], which
indicates how difficult the node is affected. The smaller the θv is, the more vulnerable
the node v is, and the larger θv is, the more difficult it is to affect the node v. Node
v can be activated only when the influence of its newly active neighbor on node v is
greater than the threshold.
(2) v is affected by its inbound neighbors w with bwv, and bwv satisfies:

∑
w∈in(v)

bwv ≤ 1

Where in(v) is the set of inbound neighbors for v.

3.1 Basic Models 8



(3)Given the initial set of active nodes A (all other nodes in the network are inactive),
a threshold is arbitrarily assigned to each node in the network. At time t, all
active nodes remain active at time t-1. And, when the sum of the influence of
the neighboring nodes of node v is greater than the threshold of node v at this
moment, node v is activated, that is, the condition that node v is activated is that
the cumulative effect of v-activated neighboring neighbors on v is greater than v.
The activation threshold is as follows:

∑
w∈in(v),active(w) 6=0

bwv ≥ θv

(4)After node v is activated, it will affect its neighbors at the next moment and repeat
the above process.
In the LT propagation model, the propagation process ends when the sum of the
influence of any of the active nodes already existing in the network cannot activate
their neighbor nodes that are in an inactive state.

The LT model is characterized by its activation process is determined. When we
activate the same graph with the same seed node, the final propagation range is
exactly the same. And when a node v is activated, it will try to activate each of its
unactivated outbound neighbors w, even if this activation attempt does not enable w
to be activated, but bvw will be accumulated, and then other nodes to w The activa-
tion helps, which shows that the activation process of the LT model is a cooperative
activation process, and each activation attempt is accumulated.

In social network, almost each node is not independent. Linear threshold model
is a good match to the herd behaviour in real life, it’s conformed to the basic logic
of social information transmission. In this project, we will use the linear threshold
model as our research model.

3.2 Classic Algorithms

Many solutions have been purposed for the vertex cover problem. As it is NP-
complete, there is no polynomial algorithm constructing an optimal vertex cover.
Most of the methods are approximation algorithms and heuristics. In this section, I
will give a rapid overview of algorithms used in this project.

3.2.1 Greedy Heuristic Algorithm

The main content of the greedy algorithm is as follows: first of all, choose k nodes
in the network, then calculate the influence of each node above the whole set of
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users in network, it divides the number of transmission, the biggest results from
the set of nodes will join the initial seed after accumulation ;Choose k node in the
network outside the seed collection, each of these k nodes try to join each the seed
combination, then calculate the influence of each node above the whole set of users
in network, accumulative average is the each node’s influence divided by the number
of transmission, the average maximum of the nodes is added to the seed collection;
Repeat these steps until the k node seed selection as initial set of nodes completed.

Fig. 3.1.: Greedy Algorithm

3.2.2 Random Heuristic Algorithm

In this algorithm, we need to pick k nodes at random from nodes set and add it to
best nodes.
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3.2.3 Optimized Greedy Heuristic Algorithm

The main content of this algorithm is deleting some nodes from Graph V to complete
a new Graph in each round of greedy algorithm. The following content is about
how to reasonable choosing the nodes which are about to be deleted. First, if node
v can influence u in (k + 1)th step, so a series of activation node from step 1 to
step k + 1 can be assumed as {v, w1, w2, ..., wk−1, wk, u} in order. We can measure
node v’s influence to active node u as INFu(v). Our study is based on the LT(Linear
Threshold) model, so it has serval variables including influence weight bv,w for link
(v, w) and activation threshold θv for node w.

In LT model, there can be serval nodes activating an inactive node at the same
time. If node u is active and wk is one of the nodes which is activating node u. So
node wk ’s influence INFu(wk) can be measured as INFu(wk) = bwk,uθ

−1
u . If any

node v, w in the Graph V satisfies bv,w > θw then set the equation bv,w = θw.

Then we can infer if we want to obtain the node v’s influence to u, we can get
it from combine the influence from v to wk andwk to u.

Fig. 3.2.: Optimized Greedy Algorithm

So in greedy algorithm we can delate some nodes which are the core influence zone
of initial node. And the size of node set in the graph is getting lower in each round,
it will reduce the time complexity of the algorithm.

3.2 Classic Algorithms 11



4Implementation Setup and
Precedure

Most of the communication and social networks have power-law link distributions,
containing a few nodes that have a very high degree and many with low degree
[10,11]. Therefore we produce random graphs with power-law edge distribution
besides other random graphs. We conduct several experiments on collaboration
network of Arxiv High Energy Physics Theory category with different nodes that
were selected to evaluate the performance of optimized greedy heuristic algorithms
and compare it with greedy heuristic algorithm and random heuritic algorithm.

4.1 Environment Setup

The code is written in Python 3.6, and all the experiments are run on Mac OS
X 10.10.5 machine with 2.5GHz Intel Core i5 CPU and 4GB memory. The code is
available in Appendix-A. It includes the implementation of our algorithm and process
of the dataset to create a random graph. The software we used in this project is
Anaconda3-5.1.0.

4.2 Dataset

Arxiv HEP-TH (High Energy Physics - Theory) collaboration network is from the
e-print arXiv and covers scientific collaborations between authors papers submitted
to High Energy Physics - Theory category. If an author i co-authored a paper with
author j, the graph contains a undirected edge from i to j. If the paper is co-authored
by k authors this generates a completely connected (sub)graph on k nodes.

The data covers papers in the period from January 1993 to April 2003 (124 months).
It begins within a few months of the inception of the arXiv, and thus represents
essentially the complete history of its HEP-TH section. This dataset is a directed
graph and contains 9877 nodes and 51971 edges.
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Tab. 4.1.: Dataset Statistics

Dataset statistics
Nodes 9877
Edges 25998

Nodes in largest WCC 8638(0.875)
Edges in largest WCC 24827(0.955)
Nodes in largest SCC 8638(0.875)
Edges in largest SCC 24827(0.955)

Average clustering coefficient 0.4714
Number of triangles 28339

Fraction of closed triangles 0.1168
Diameter(longest shortest path) 17
90 percentile effective diameter 7.4

4.3 Implementation Precedure

Step 1: Read graph file from dataset ca-HepTh.txt and create a random graph;
Step 2: Set threshold=10 and the value of totalnodes;
step 3: Get influence map

Fig. 4.1.: Get Influence Map

step 4: Remove any nodes that are there in source nodes from influenced_nodes.
step 5: Calculate the influence and size of influenced set of each algorithm.
step 6: Draw the influence-curve and execution time curve of each algorithm.

Tab. 4.2.: Varialbe Definition

Varialbe Definition
graph_snaps graph snapshots

nodes_set set of nodes in the complete graph
k number of nodes to influence initially

step_size number of nodes to add to the opt set every iteration

4.3 Implementation Precedure 13



5Experimental results and
Discussion

In this section, I will present the experiment results of random heuristic algorithm,
greedy heuristic algorithm and optimized heuristic algorithm. You can get the set of
nodes that maximize the influence of these three algorithms in the result.txt file.

5.1 Influence Performance

The following tabel and figures describe the size of influenced set of each algorithm.

Tab. 5.1.: Size of Influenced Set of Each Algorithm with Different Total Nodes

Toal Node 20 50 100 150
Random Heuristic Algorithm 3892.9 3925.2 3950.5 3936.2
Greedy Heuristic Algorithm 3880 3874 3858 3791

Optimized Greedy Heuristic Algorithm 4061 4255 4519 4657

Fig. 5.1.: TotalNode=20 Fig. 5.2.: TotalNode=50

Fig. 5.3.: TotalNode=100 Fig. 5.4.: TotalNode=150
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Through these four figures we can see that optimized greedy algorithm performs
slightly better than the original greedy algorithm and outperforms heuristic algo-
rithms.

5.2 Running Time Performance

We compared the running time performance of optimized greedy heuristic algorithm
to running time performance of original greedy heuristic and random heuristic algo-
rithm. We experimented these algorithms on the dataset mentioned in the previous
section. It is obvious that optimized greedy heuristic algorithm performs better than
original heuristic algorithm. Moreover the difference between the running time per-
formances of optimized greedy algorithms and original heuristic algorithm become
larger as the number of total node is increasing. The running time comparison of
optimized greedy algorithm and other two algorithms is shown in Figures below.

Fig. 5.5.: TotalNode=20 Fig. 5.6.: TotalNode=50

Fig. 5.7.: TotalNode=100 Fig. 5.8.: TotalNode=150

5.2 Running Time Performance 15



6Conclusion

In this project, I worked on the influence maximization problem in social net-
works.First, I introduce the basic concepts of influence maximization and briefly
described what Independent Cascade Model of Information Diffusion is and provided
an implementation, in details, of greedy algorithm, random heuristic algorithm and
optimized greedy heuristic algorithm. Coding is done in Python.Method described
here can directly be used for any directed social networks. With simple modification,
it can also be generalized to work with undirected social networks as well.Then I
do some experiments on social networks ca-HepTh.txt and this experiments demon-
strate the effectiveness and the efficiency of classic algorithms and optimized greedy
algorithm. I established a series of experiment by Python language in heuristic
algorithm and the improved greedy algorithm under LT model. In fact the network
which is a package of python make us work easier. The heuristic algorithms we used
in the experiments is the random heuristic algorithm, greedy heuristic algorithm and
optimized greedy heuristic algorithm.

These experiments show that optimized greedy algorithm gives better results for
running time in social networks and have a better influence performance relative to
other heuristic algorithms. Next, I want to study how to change the algorithm so it
can have a good performance on different social networks. And the efficiency of the
algorithm is also need to be improved.
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A.Aappendix-code

This appendix is code of my project. Code is on the followinging pages.
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2018/5/27 main.py

file:///Volumes/C/Users/weipengchao/anacondaProjects/Advanced-Algorithms-Influence-Maximization-In-Social-Networks-master/main.py 1/2

#python3.6 
 
import sys 
import random 
from Graph import * 
from ReadDataset import * 
from Heuristic import * 
from InfluenceUtility import * 
sys.setrecursionlimit(100000) 
import matplotlib.pyplot as pyplot 
import time 
 
 
def main () : 
    edges_list, weight_list, nodes_set = ReadGraphFile () 
    graph_snaps = CreateRandomGraphs (50, edges_list, weight_list) 
    step_size = 1; 
    threshold = 10; 
    totalNodes = range(0, 21); 
 
    optimizedGreedyHeuristic = []; 
    greedyHeuristic = []; 
    randomHeuristic = []; 
    optimizedGreedyHeuristic.append(0); 
    greedyHeuristic.append(0); 
    randomHeuristic.append(0); 
    influenceMap = getInfluenceMap(nodes_set,graph_snaps,threshold); 
    optimizedGreedyHeuristicSelectedSet = set(); 
    greedyHeuristicSelectedSet = set(); 
    randomHeuristicTime = []; 
    randomHeuristicTime.append(0); 
    optimizedGreedyHeuristicTime = []; 
 
    optimizedGreedyHeuristicTime.append(0); 
    greedyHeuristicTime = []; 
    greedyHeuristicTime.append(0); 
    fout=open("result.txt",'w') 
 
    for k in totalNodes : 
        print ("k = ", k) 
        fout.write("k="+str(k)+'\n') 
 
        if k == 0: 
            continue; 
 
        startTime = time.time(); 
        randomHeuristicCount = random_heuristic(graph_snaps, nodes_set, k, step_size, 
threshold); 
        randomHeuristicTime.append(time.time() - startTime); 
        randomHeuristic.append(randomHeuristicCount); 
 
        startTime = time.time(); 
        influenceSet = heuristic1(graph_snaps, nodes_set, k, step_size, 
threshold,influenceMap,optimizedGreedyHeuristicSelectedSet); 
        optimizedGreedyHeuristicTime.append(time.time() - startTime); 
        print("Size of influenced set is ", len(influenceSet)); 
        fout.write("Size of influenced set is "+str(len(influenceSet))+'\n') 
        optimizedGreedyHeuristicCount = len(influenceSet); 
        startTime = time.time(); 
        greedyHeuristicCount = 
len(heuristic2(graph_snaps,nodes_set,k,step_size,threshold,influenceMap,greedyHeuristicSel
ectedSet)); 
        greedyHeuristicTime.append(time.time() - startTime); 
        print("Size of influenced set by greedy heuristic is ", greedyHeuristicCount); 
        fout.write("Size of influenced set by greedy heuristic is "+ str( 
greedyHeuristicCount)+'\n') 
 
 
        print ("Size of influenced set by random heuristic is ", randomHeuristicCount) 
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2018/5/27 Graph.py

file:///Volumes/C/Users/weipengchao/anacondaProjects/Advanced-Algorithms-Influence-Maximization-In-Social-Networks-master/Graph.py 1/1

#python3.6 
 
class Graph : 
    def __init__ (self) : 
        self.edges = {} 
 
    def add_edge (self, from_, to) : 
        if from_ not in self.edges : 
            self.edges[from_] = [to] 
        else : 
            self.edges[from_].append(to) 
 
        if to not in self.edges : 
            self.edges[to] = [] 
 
    def find_reachable_nodes (self, source_nodes) : 
        # source nodes is a list of nodes 
        reached = set([]) 
        for node in source_nodes : 
            if node in self.edges : 
                self.dfs (node, reached) 
 
        return reached 
 
    def dfs (self, node, reached) : 
        for nbr in self.edges[node] : 
            if nbr not in reached : 
                reached.add (nbr) 
                self.dfs (nbr, reached) 
 
    def print_graph (self) : 
        for node in self.edges : 
            print (node, ": ", self.edges[node]) 
 
def test () : 
    G = Graph () 
    G.add_edge (0,1) 
    G.add_edge (1,2) 
    G.add_edge (2,3) 
    G.add_edge (1,4) 
    print (G.find_reachable_nodes ([1])) 
 
if __name__ == "__main__" : 
    test () 
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2018/5/27 ReadDataset.py

file:///Volumes/C/Users/weipengchao/anacondaProjects/Advanced-Algorithms-Influence-Maximization-In-Social-Networks-master/ReadDataset.py 1/1

#python3.6 
 
# Reads a text file and creates a graph as a list of edges, each edge has a random weight. 
 
from Graph import * 
import sys, random 
 
def ReadGraphFile () : 
    f = open ("ca-HepTh.txt") 
    lines = f.readlines() 
 
    edges_list = [] 
    weight_list = [] 
    nodes_set = set([]) 
    for line in lines : 
        if line[0] == "#" : 
            continue 
 
        node1, node2 = map(int, line[:-1].split()) 
        edges_list.append ([node1, node2]) 
 
        # TODO: assign num parallel edges here and use it to assign a probability for each 
edge. 
        weight_list.append (random.random()/3) 
        # weight_list.append (1) 
        nodes_set.add(node1) 
        nodes_set.add(node2) 
 
    return edges_list, weight_list, nodes_set 
 
def CreateRandomGraphs (num_graphs, edges, probs) : 
    graph_snapshots = [] 
    for i in range (num_graphs) : 
        tmp_graph = Graph () 
        for edge, prob in zip(edges, probs) :  
            rand = random.random() 
            if rand < prob : 
                tmp_graph.add_edge (edge[0], edge[1]) 
        graph_snapshots.append(tmp_graph) 
 
    return graph_snapshots 
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2018/5/27 InfluenceUtility.py

file:///Volumes/C/Users/weipengchao/anacondaProjects/Advanced-Algorithms-Influence-Maximization-In-Social-Networks-master/InfluenceUtility.py 1/1

#python3.6 
 
def find_influence (source_nodes, graph_snapshots, threshold) : 
    influenced_node_count = {} # this contains nodes and count for each node 
    for G in graph_snapshots : 
        S = G.find_reachable_nodes (source_nodes) 
        # Update influenced_node_count looking at S 
        for node in S : 
            if node in influenced_node_count : 
                influenced_node_count[node]+=1 
            else : 
                influenced_node_count[node] = 1 
 
    influenced_nodes = set([]) 
    for node in influenced_node_count : 
        if influenced_node_count [node] > threshold: 
            influenced_nodes.add (node) 
 
    # We do not want source nodes in the influenced set. Remove any nodes that are there 
in source nodes from influenced_nodes. 
    for node in source_nodes : 
        if node in influenced_nodes : 
            influenced_nodes.remove (node) 
 
    return influenced_nodes 
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2018/5/27 Heuristic.py

file:///Volumes/C/Users/weipengchao/anacondaProjects/Advanced-Algorithms-Influence-Maximization-In-Social-Networks-master/Heuristic.py 1/2

#python3.6 
import  InfluenceUtility as influence 
import pickle 
import random 
 
def heuristic1 (graph_snaps, nodes_set, k, step_size, threshold,influenceMap,selectedSet) 
: 
    load_influence_map_from_file = 0 
    # graph_snaps: graph snapshots 
    # nodes_set: set of nodes in the complete graph 
    # k: number of nodes to influence initially 
    # step_size: number of nodes to add to the opt set every iteration 
    uninfluencedNodes = nodes_set; 
    bestNodes = set(); 
    maxLength = 0; 
    maxNode = -1; 
    for node in selectedSet: 
        bestNodes = set.union(influenceMap[node],bestNodes); 
        bestNodes.add(node); 
        uninfluencedNodes.discard(node); 
        uninfluencedNodes = uninfluencedNodes.difference(bestNodes); 
    if not load_influence_map_from_file : 
        f = open ("influenceMapObject.pickle", "wb") 
        pickle.dump (influenceMap, f) 
        f.close () 
    else : 
        f = open ("influenceMapObject.pickle", "rb") 
        influenceMap = pickle.load (f) 
    for uninfluenced_node in uninfluencedNodes: 
        new_nodes_influenced = len(set.intersection(influenceMap[uninfluenced_node], 
uninfluencedNodes)); 
        if maxLength < new_nodes_influenced: 
            maxLength = new_nodes_influenced; 
            maxNode = uninfluenced_node; 
        # print ("best nodes before", len(bestNodes)) 
    bestNodes.add(maxNode); 
    bestNodes = set.union(bestNodes,influenceMap[maxNode]); 
    selectedSet.add(maxNode); 
    # print ("uninfluenced nodes", len(uninfluencedNodes)) 
    return  bestNodes; 
 
def heuristic2 (graph_snaps, nodes_set, k, step_size, threshold,influenceMap,selectedSet) 
: 
    load_influence_map_from_file = 0 
    # graph_snaps: graph snapshots 
    # nodes_set: set of nodes in the complete graph 
    # k: number of nodes to influence initially 
    # step_size: number of nodes to add to the opt set every iteration 
    uninfluencedNodes = nodes_set; 
 
    bestNodes = set(); 
    maxLength = 0; 
    maxNode = -1; 
    for node in selectedSet: 
        bestNodes = set.union(influenceMap[node], bestNodes); 
        bestNodes.add(node); 
        uninfluencedNodes.discard(node); 
 
    if not load_influence_map_from_file: 
        f = open("influenceMapObject.pickle", "wb") 
        pickle.dump(influenceMap, f) 
        f.close() 
    else: 
        f = open("influenceMapObject.pickle", "rb") 
        influenceMap = pickle.load(f) 
 
    for uninfluenced_node in uninfluencedNodes: 
 
        new_nodes_influenced = len(set.intersection(influenceMap[uninfluenced_node], 
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