
Report for The Course of Wireless

Communication:

Community-based Task Allocation Optimization

in Social Network

5141109021 Lu, Yifei 515030910109 Xue, Fei

May 27, 2018

1 Abstract

In this report, we propose a Crowdsourcing Social Network model and a
corresponding heuristic algorithm for selecting proper set of workers in Social
Network. The experiment is based on the dblp dataset. Yifei Lu mainly con-
tributes to the problem discovery and model designing, and Fei Xue mainly
contributes to algorithm designing and experiment. The study is collaborated
with Gehua Qing and instructerd by Professor Xiaofeng Gao.

2 Model Introduction

In Crowdsourcing field, how to choose the best workers for tasks is always a
hot problem. For example, David is a committee member of an international ar-
tificial intelligence conference, and he is in charge of the edition of proceeding.
After the main conference, he intends to invite several celebrated scholars to
write the preface. However, David cannot simply invite the most famous schol-
ars, since some of them may not have co-author experiences with each other and
are not willing to get involved. He has to invite a relatively small community
of scholars, in which all of them not only enjoy great academic reputation but
also are socially familiar, e.g. they had co-authored papers in artificial intelli-
gence track. Therefore, David studies the scholar social community and wants
to select a team of authors to satisfy his requirement. Previously, the above
scenario leads to the study of Team Formation (TF).In this section, we first
browse the structure of the Crowdsourcing Social Network. Then we introduce
the definition of ability and communication cost of a team. At the end of the
section, we give the detailed description of the problem.

2.1 Crowdsourcing Social Network

We describe the Crowdsourcing Social Network using a graph with hetero-
geneous weighted vertices and edges. As shown in Figure 1.

There are five vertices in Figure 1, and the number attaching the letter
means its weight. The weight of each vertices represent the ability level. The

1

A2

C4

E2

B3

2

2

D4
2

2

3

Figure 1: Crowdsourcing Social Network

weight of each edge represent the communication distance of two end points.
For example, in Figure 1 C and D have the highest ability level, and B and E
have more distant relationship than D and E.

2.2 Team Ability

If we choose some vertices as a team, the team ability means the sum of
the weight of the whole vertices in the team.

Definition 1 (Team Ability). For a team T = {v1, v2, · · · , vk}, the team ability
(TA) means the sum of the weight of the whole vertices in the team:

TA =
k∑
i=1

ai,

for ai is the ability level of vertices vi.

2.3 Communication Cost

We describe the communication cost of a team using the notion of graph
diameter. Given an original graph G(V,E), we could get the shortest path of
any two vertices in V . As for a subgraph G′(V ′, E′), the diameter D of G′

means the largest shortest path of V ′, whose value has been calculated in G.
For example, in Figure 2, we choose A, C, D, E as a team, which can be

represented by G′. In original graph G, the shortest communication distance of
A and E is 5, of which the path passes B. Thus the diameter D of G′ is 5, not
6(A-C-D-E), although B is not in G′.

2.4 Problem Definition

After introducing some requisite notions, we could give a detailed definition
of the maximum ability bounded cost team formation problem (MATF).

Definition 2 (MATF problem). Given a social graph with reputation for every
vertex and weight for every edge, and a threshold for communication cost, find a

2

A2

C4

E2

B3

2

2

D4
2

2

3

Figure 2: An Example of A Team

team of vertices which maximize the sum of ability while ensuring the diameter
of selected team lower than threshold.

3 Algorithm Introduction

In this section, we introduce a heuristic algorithm to solve the MATF prob-
lem. The algorithm has three steps: the reconstruction of the graph, duplication
of the graph and searching the solution.

3.1 Graph Reconstruction

Assume that the threshold of the communication cost is λ. We use Algo-
rithm 1 to reconstruct the original graph: link any two vertices whose diameter
is less than λ while delete the edge of others whose diameter is more than λ.

Algorithm 1: GRAPHRECONSTRUCTION

Input: The original graph G(V,A,E,W), |V | = n, diameter matrix
Cn×n and threshold λ

1 Initialize a new graph Gλ(V,A,Eλ), Eλ = ∅
2 for vi ∈ V do
3 for vj ∈ V \vi do
4 if cij ∈ Cn×n, cij ≤ λ then
5 Add and edge to (vi, vj) to Eλ

6 return Gλ

After the reconstruction of the graph showing in Algorithm 1, there will be
no edge between any two vertices whose diameter is more than λ, two of which
can not both exist in our solution. Which means, the solution area limits in the

3

set of the complete subgraph of Gλ. Note that the edge of Gλ has no weight
attribute.

3.2 Graph Duplication

After doing the Algorithm 1, we do not need to care about the weight of
the edges any more. In this subsection, we duplicate the Gλ to eliminate the
influence of the weight of vertices.

Algorithm 2: GRAPHDUPLICATION

Input: The reconstructed graph Gλ(V,A,Eλ)
1 Initialize a new graph GR0λ(V R, ER), V R = ER = ∅
2 for vi ∈ V that ai > 1 do
3 k = ri
4 Duplicate the number of k new vertices, and each is weighted 1,

denoted as Vi = {v1i , v2i , . . . , vki }
5 V R = V R ∩ Vi
6 for vi ∈ V that ai > 1 do

7 for vji ∈ Vi do

8 for vqi ∈ Vi\v
j
i do

9 Add an edge(vji , v
q
i) to Eλ

10 for vji ∈ Vi do
11 for ep ∈ Eλ do
12 if ep connects vi and any other vertex vep then

13 Add an edge(vji , vep) to Eλ

14 return GR0λ

After the duplication showing in Algorithm 2, we split any vi with weight ai
into ai vertexes without weight and add edges to any two of them. An example
is showed in Figure 3.

4

A2 B3

A2
B3

Figure 3: GRAPHDUPLICATION

3.3 Searching Solutions

The algorithm shown in Algorithm 3 works as the basic structure of our
heuristic algorithm. First, we run GRAPHRECONSTRUCTION to setup a
new graph. Then, we use GRAPHDUPLICATION to eliminate the influence
from the weights of vertices. As a result , in the new graph, the weight of every
vertex is one. So the problem will transfer to find a clique in graph which has
maximum members. Then we randomly(or sequentially)select one vertex from
V as a searching starting point. Then we construct a set of vertices named Cand,
which is the potential candidate vertices that can be selected (initially, all these
vertices must be adjacent to v, since we aim to find a clique containing v). Please
notice that every vertex in Cand is fully connected to vertices in C, i.e. there
is a complete bipartite matching graph between Cand and C. Next, when there
are candidates in Cand, we select the best vertex(which can make upper bound
of newly gained size of clique largest). Here comes the first prunning operation,
since when we try to add u into our clique, the upper bound of newly gained size
of clique is |C|+ |N(u)∩Cand|+ 1 at most (note that if we add u to our clique,
then all the following added vertices must be adjacent to u and other vertices in
the original Cand). This because after adding u, all the newly added vertices in
Cand would also be added to C later. Thus, the clique would grow by at most
1+|N(u)∩Cand∩N(N(u)∩Cand)∩N(u)∩Cand∩. . . | ≤ 1+|N(u)∩Cand|.We
can directly drop v if the upper bound of current growing clique is less than
current best result. If we do not prune the growing clique, we can say that we get
a bigger clique with size of |C|+1, and by the adjacent constraint we mentioned
above, we have to update the candidate set by let Cand = Cand∩N(u). Thus,
we get a new bipartite graph between Cand and C.The algorithm will stop when
all the vertexes in V have been traversed.

5

Algorithm 3: SOLUTION SEARCHING

Input: The original graph G(V,A,E,W) and threshold λ
1 Gλ = GraphReconstruction(G(V,A,E,W), λ)

2 GR◦λ = DuplicatedGraph(Gλ)
3 C∗ = ∅
4 for v ∈ V do
5 C = C ∪ {v}
6 Cand = N(v)
7 while Cand 6= ∅ do
8 u = arg maxu∈Cand |N(u) ∩ Cand|
9 if |C|+ |N(u) ∩ Cand|+ 1 ≤ |C∗| then

10 break

11 C = C ∪ {u}
12 Cand = Cand\{u}
13 Cand = Cand ∩N(u)

14 if |C| > |C∗| then
15 C∗ = C

16 return C∗

4 Experiment

For this experiment, we use PC with i7-4720hq and 8GB DDR3 RAM in
matlab platform and dblp database. In the following figures, lambda is the edge
threshold, and time is the time cost for running the algorithm. Utility is the
ability of the final solution.

From Figure 4, we can see that as lambda increase, the utility will also
increase. This is because if the threshold is higher, more edge will be added to
new graph. As a result, the solution and its utility will be larger.

From Figure 5, we can see that as lambda increase, the time will also
increase. This is because if the threshold is higher, more edge will be added to
new graph. As a result, the calculated amount will be larger. So the time cost
increase.

Figure 4: Utility Increases with Lambda

6

Figure 5: Time increases with Lambda

7

