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ABSTRACT
Information cascades, the representation of content reshares in vari-
ous networks, are considered a major factor in predicting the future
diffusion of a certain content.With the proliferation of deeplearning
techniques, many learning-based methods have been proposed to
predict the future size of a cascade, that is, the number of newly af-
fected users in the future timestamps. However, those methods only
considered single content diffusion without taking into account
the impact of those simultaneously diffused contents. In this paper,
we predict the future size of a certain cascade based on both the
cascade itself and cascades of other interrelated contents that are
diffused in the same network. As a result, it is critical to represent
cascade graphs of other contents in each time step so as to remind
the current cascade graph the existence of other contents’ diffusion.
Therefore, we proposed a novel multi-contents-aware recurrent
neural network, namely MUCA-LSTM, to model the existence of
other contents. We customized MUCA-LSTM for the cascade size
prediction problem which significantly improves the performance
of cascade size prediction compared with existing baselines such
as feature-based methods and node embedding methods.

KEYWORDS
Cascade Prediction, Recurrent Neural Network, Information diffu-
sion

1 INTRODUCTION
Information diffusion is a common phenomenon that happens ev-
ery second in various networks which reveals how people discover,
consume information online [5]. In most cases, a piece of informa-
tion such as a photo, a twitter can get reshared multiple times via
the network among users and a cascade of resharing can develop,
potentially reaching a large number of people. Such cascades have
been identified in plenty of applications ranging from product mar-
keting, rumor spread, crowdsourcing, etc. If the size of a cascade
can be predicted, that is the number of affected users in the future,
the potential influence of a certain content can be captured so that
one can make better decision about it. For example, a clothing man-
ufacturer can gain more profits by producing clothing with higher
popularity; figuring out the potential influence of a rumor helps the
administrators to prevent social instability in advance; in academic
network, the potential citation number of a paper helps researchers
to identify its significance.

Early work usually assumes that diffusion model is given, such
as independent cascade (IC)[19] and linear threshold (LT) [10].
Based on whether nodes or edges attributes, an activation prob-
ability function is established between two nodes for predicting
the spread of a content. Those IC and LT models also enable an
important research direction of influence maximization [18]. Nowa-
days, researchers try to learn the diffusion model directly from
those given cascade graphs, i.e. the activated node sequence with
activation timestamps. Those methods largely rely on explicitly
experience-based, manual-extracted features to model the activa-
tion probability of a node, such as network structure, nodes’ social
roles , edge type between users, diffusion content, etc. Although
these methods have shown significant improvements in diffusion
prediction performance, they cannot be generalized to more appli-
cations for the performance largely depends on how good those
selected features are. This requires much manual effort and exten-
sive domain knowledge. With the recent proliferation of neural
networks, another branch of work starts to utilize deep learning,
so as to avoid explicit feature extraction for diffusion modeling.
For example, Embedded-IC [3] considers each inactive node to be
activated by the active nodes where each node is modeled as one
of the following two roles: an active node serves as a“sender", and
an inactive node serves as a “receiver". For each role, it learns a
special vector as a node’s embedding and then models an activation
function based on the similarity between an inactive node’s receiver
embedding vector and the active nodes’ sender embedding vectors.
Another example is DeepCas [16], which aims at predicting the
future cascade size. It models the cascade at each time step with an
induced subgraph over the active nodes. Then, it decomposes the
subgraph into some random walk paths, and uses Gated Recurrent
Unit (GRU) to learn an embedding vector of the subgraph. Based
on this subgraph embedding vector, it predicts the cascade size in
the future.

Despite the proliferation of deeplearning methods to deal with
cascade prediction, we find that the impact of other simultaneously
diffused contents are often underexplored in thosemodels. In reality,
the diffusion of one content in a network is not independent with
others; the fact is that there are usually multiple contents diffused
together in a network during the same period. For example, consider
the purchase of Apple Watch and iPhone8, it is vital to recognize
that Apple Watch generally needs an iPhone to be usable, and
iPhone’s user experience can be greatly enhanced by a pairingApple
Watch. In other words, they can exert strong influence on each



other. Moreover, the relationship between different propagating
contents is more general than pure competition. Therefore, how
to incorporate cascades of other contents over the network into
the predicted cascade lies in the heart of our paper. Without loss
of generalization, we focus on two content diffusion process and
leave the other settings as our future work.

We present a simple example to further explain our intuition as
follows. Consider a network graph as shown in Fig. 1 where two
contents I1 and I2 are propagated. We represent each cascade as
a set of sampled cascade sequences and incorporate cascades of
another content I2 into each sampled cascade sequences of the tar-
geted content I1. AssumeA→ B → C → D is the cascade sequence
c1i of I1 that we are currently dealing with, and I2 has k sampled
sequences where the 1st sequence c21 is E → B → G and the kth

sequence c2k is D → A→ G → C . We would like to incorporate the
diffusion of I2 into the targeted cascade sequence c1i . Particularly,
from Fig. 1(a) we know that before A is activated for I1, {E} has
already been activated by I2 in c21 and {D} is activated by I2 in c2k .
So E has the potential chance to influence its neighbor {B} in G
about whether B would be activated by I1 and the same is with D to
influence A,C . Therefore we draw an arrow from E to B and D to
A,C , to denote the potential influence attempts. As a consequence,
we form the multi-content-aware diffusion graph (MUCA-diffusion
graph) before timestamp t(A,I1) as shown in Fig 1(a), where t(A,I1)
is the time when A is activated by I1. Similarly, before B is activated
by I1, both {B,E} in c21 and {D,A} in c2k have the potential influ-
ence towards whether B would be activated by I1. As a result, we
get the MUCA-diffusion graph in Fig 1(b). Such MUCA-diffusion
graphs are helpful in capturing the influence of simultaneously
diffused content, e.g. on the one hand, a piece of information is
more likely to be propagated from a user to her friends; on the
other hand, a user’s willingness of buying an iPhone8 may be in-
fluenced by the popularity of Apple Watch among her friends. By
utilizing MUCA-diffusion graphs, we can make better prediction of
the concerned content. However, existing deeplearning methods
for diffusion modelling do not take the influence of simultaneously
diffused content into consideration, instead, they only focus on the
cascade of the targeted content.

In this paper, we demonstrate how to wisely incorporate cascade
graph of another content into the predicted cascade (more specif-
ically, into a set of sampled cascade sequences of the concerned
cascade) and utilize deeplearning techniques to predict the future
size of the concerted cascade. Generally, we first sample several
cascade sequences to represent each cascade graph. Then, we uti-
lize all the sequences of content I2 to construct MUCA-diffusion
graphs in different timestamps so as to incorporate I2’s influence
into each sampled cascade sequence of I1. Finally, we integrate the
learning results of every incorporated cascade sequence of I1 to get
a final result. The main challenge lies in how to utilize the sampled
sequences of content I2 to form MUCA-diffusion graph and then
incorporate it into each sampled sequence of I1.

Our main contributions are summarized as follows:

• We proposed a new diffusion data model, namely multi-
content-aware diffusion graph (MUCA-diffusion graph) to
better explore the interaction of two simultaneously diffused
contents in the same network.

• We designed a novel MUCA-LSTM model that is full aware
of the influence of the simultaneously diffused content, so
as to better predict the growth of the concerned cascade in
the future.
• We conduct extensive experiments on real and synthetic
datasets and verify the effectiveness of our methods.

The rest of the paper is organized as follows. Sec. 2 presents
a formal definition of the cascade size prediction problem. Sec. 3
addresses the framework of our proposed MUCA method and fur-
ther explained it into three substeps: cascade sequence sampling,
MUCA-diffusion graph construction and finally the MUCA-LSTM.
Sec. 4 evaluates our proposed methods and presents the evalua-
tion results compared with other state-of-art methodologies. Sec. 5
presents the visualization of our result and the conclusion is drawn
in Sec. 7.

2 PROBLEM FORMULATION
In this section, we study the problem of cascade size prediction that
aims to predict the number of newly affected nodes during a future
time period in a cascade by analyzing the available cascade graphs.
To begin with, we first formally define the problem and then explain
our methodology. In this paper, we consider two-content scenario
where there are two simultaneously diffused contents in a network
and denotes these two contents as I1, I2 respectively.

Definition 2.1 (Network Graph). A network graph is a directed
graph G = (V ,E), where V is the set of nodes in the network and
E ⊂ V ×V is the set of edges among nodes.

A nodev ∈ V represents a user (e.g. a researcher in the academic
network, a blogger in Twitter). A weighted edge from a source
node to a target node indicates a relationship tie (e.g. retweeting or
citation) between them. The reason the network graph is directed
is that, in reality, the influence from the source to target nodes is
asymmetric to the influence from the target to source nodes. For
example, a celebrity in Twitter may have millions of followers while
she may only follows a limited number of users. An undirected
network graph is an approximation of the directed form.

Definition 2.2 (Cascade Graph). A cascade graph of contentm is
an ordered sequence of tuples that consists of a timestamp ti and
a node set Vm

i including newly activated nodes at timestamp ti .
Those time-relevant tuples records all the activated nodes along
with their activation time from the beginning of the cascade until
time t . It is denoted as дmt = {(V

m
1 , t1), (V

m
2 , t2) · · · (V

m
n , tn )} where

Vm
i is the set of nodes that are activated by information Im at
timestamp ti . Each nodev appears only in one node setVi and each
ti is a timestamp such that ti < ti+1. We denote the set of activated
nodes until time t as Vm

t =
⋃
i V

m
i .

In reality, we may only observe the relative orders of those
timestamps ti without knowing the exact time information (e.g.,
we know who cited a paper in ti but not know exactly when and
where she found the paper).

Definition 2.3 (Cascade Graph Tuple). A cascade graph tuple is
a set of two cascade graphs that represents two simultaneously
diffused contents along with their integrated network graph, de-
noted as дt = {д1t ,д

2
t ,G
∗(V ∗,E∗)}. V ∗ =

⋃
m Vm

t is the union
2
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Figure 1: Illustration of MUCA-diffusion graph. At each timestamp t, we construct the corresponding MUCA-diffusion graph
which depicts the influence of another content’s current diffusion (I2) on the targeted content I1. In each MUCA-diffusion
graph, solid circles and dotted circles are active and inactive nodes of I2 respectively. Red circles are nodes in an I1 cascade
sequence. An arrow is a possible influence attempt of I2 to nodes of the targeted cascade sequence in I1.

of nodes in these two cascade graphs and E∗ = {(u,v)|(u,v) ∈
G(V ,E) and u,v ∈ V ∗} is the relationship tie among those nodes.

As problem input, we have a network graph G = (V ,E) and a
set of training cascade graph tuples. The cascade size prediction
problem is then defined as follows.

Definition 2.4 (Cascade Size Prediction Problem). Give a network
graph G = (V ,E) and a set of training cascade graph tuples, the
cascade size prediction problem is to find a matching function f
to output the increased size ∆Vm = |Vm

t+∆t | − |V
m
t |(m = 1, 2) of

two cascade graphs in a tuple after time period ∆t ( i.e. the number
of newly affected nodes in a cascade). That is, f : (дt ,∆t) →
(∆V 1,∆V 2).

Table 1 summarizes the commonly used symbols.

Table 1: Symbols and Descriptions

Symbol Description

дt a cascade graph tuple until time t
дmt a cascade graph of contentm until time t
hi output embedding from MUCA-LSTM for the ith node in a

cascade sequence
xv embedding vector for node v
cmj the jth sampled cascade sequence from cascade graph of content

m

3 MUCA: A MULTI-CONTENT-AWARE LSTM
NETWORK

3.1 Framework of MUCA
We proposed a multi-content-aware LSTM network framework
that takes the influence of simultaneously diffused content into
consideration as shown in Fig. 2. The input is a cascade graph tuple
consists of two cascade graphs along with their integrated network
graph and the output is the increased size of these two cascades
(∆V 1,∆V 2). The framework first samples k cascade sequences to
represent each of the two cascade graphs and then iteratively feeds
one cascade sequence of I1 along with all the k sequences of I2 into
aMUCA − LSTM network. Finally, by utilizing pooling techniques

we get an aggregated single vector to represent I1 and feeds it to
a MLP network to predict the final size increase of I1. The same
procedure is taken as well to obtain the size increase of I2.

3.2 Cascade Graph Representation–Cascade
Sequence Sampling

Given a cascade graph дmt , we would like to learn an embedding
vector to fully represent the development of the cascade diffusion as
the input of MUCA-LSTM. Therefore, we first represent the cascade
graph as a set of cascade sequences (a set of nodes sequences).

Definition 3.1 (Cascade Sequence). A cascade sequence of content
m is an ordered time-relevant sequence of several node-time tuples
cmi = {(v1, t1), (v2, t2) · · · (vn , tn )}, where each nodev is an distinct
node in a cascade graph and each timestamp tj satisfies ti < ti+1.
The subscript i indicates it is the ith sampled cascade sequence of
contentm.

In order to preserve the structural information of the cascade
graph, we adopt the similar approach proposed in DeepCas [16] and
Deepwalk [20], i.e. perform random walk over a cascade graph дmt .
However, the major difference in our random walk is that, nodes
in a cascade graph are clustered by their affected years. Supposed
a cascade sequence is given by v1 → v2 → · · ·vn , it must always
satisfy:

t(vi ) < t(vj ), i f i < j

where t(vi ) returns the affected year of vi . It means that the early
nodes in a cascade sequence is affected in early years compared with
nodes behind them. Therefore, after we first extract the cascade
graph edge set Ecascade = {(u,v)|(u,v) ∈ G(V ,E) and u,v ∈ Vm

t },
we filter those edge (u,v) ∈ Ecascade where the affected year of
source node equals to or later than that of the target node, i.e.
t(u) ≥ t(v). Then, as shown in Fig. 3, we perform a random walk
on the cascade graph and its filtered edge set Ecascade .

The random walk starts from the starting state S , which is fol-
lowed by the state N , where the walker transits to a neighbor of
the current node. With probability 1-pj , it goes on walking to the
neighbor. With a jumping probability pj , it jumps to an arbitrary
node in the cascade graph that is affected later than itself, leading
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the walker to the jump state J . With continuation probability p0, it
walks to a neighbor of the current node, thus going back to state N .
With probability 1-p0, it goes to the terminal state T , terminating
the entire random walk process.

When the walker is in state N , it follows a transition probability
p(u ∈ Nbr (v)|v) to go to one of its outgoing neighbors u ∈ Nbr (v),
where Nbr (v) is the neighbor set of the current node v . The tran-
sition probability can be calculated in multiple ways such as the
degree of u, the edge weightweiдht(v,u) between them, etc.

When the walker is in state J , it follows a transition probability
to jump to an arbitrary node who are affected later than itself. The
transition probability p(u |v) can also be calculated by the degree
of u and other proper ways.

3.3 MUCA-Diffusion Graph
After we represent each cascade graph as a set of cascade sequences,
the main challenge lies in how to embed each node in a sequence so
that the embedding vector of the concerned cascade graph, which
is obtained by pooling all the node embeddings in each cascade
sequence, is fully aware of the influence of another simultaneously
diffused content in the network. To address this challenge, we
introduce a new data model, namely MUCA-diffusion graph, to
explore the interaction of two simultaneously diffused cascades.
Then in Sec. 3.4 we design a novel MUCA-LSTM model to learn
the cascade graph embedding by utilizing MUCA-diffusion graph.

Finally, we feed the cascade graph embedding vector as the input
of a BP network to predict the future size increase of our concerned
cascade.

When predicting the future size increase of content I1, theMUCA-
diffusion graph is useful in representing the potential influence from
another simultaneously diffused content I2 to I1. Since we represent
each cascade graph as a set of cascade sequences, we would like to
construct MUCA-diffusion graph for each sampled sequence c1i of
content I1.

Consider a set of k cascade sequences of content I2, C2 = {c21, c
2
2

· · · c2k } and a sampled sequence of content I1, c1i = {(v1, t1), (v2, t2)
· · · (vn , tn )} , we denote N1:ti−1 as the set of nodes in any sampled
sequences of content I2 that are activated before time ti . For example
in Fig. 1, N1:tA−1 = {E,D} and N1:tB−1 = {E,B,D,A} where tA, tB
refers to the activation time of node A,B by content I1 respectively.
We also useO1:ti−1 to denote the set of nodes in c1i who are activated
by I1 before ti . Nodes in N1:ti−1 have the potential influence on
those inactivated nodes till ti − 1 in I1 sequences and we would
like to demonstrate how they can exert such potential influence to
those inactivated nodes in I1 sequences. Intuitively, since a user in a
network would be more easily influenced by her friends, we utilize
those edge information in the network graph G(V ,E) to construct
MUCA-diffsuion graphs that reveal the interaction between I1 and
I2.

Definition 3.2 (MUCA-Diffusion Graph). Given a network graph

G(V ,E), aMUCA-diffusion graphGc1i
t (V

c1i
t ,E

c1i
t ) for cascade sequence

c1i of content I1 until time t is a directed graph, where V
c1i
t is

the set of nodes in the concerned cascade sequence c1i of I1 and

those appears in any of the k sampled sequences of I2. E
c1i
t =

{(ui ,v)|(ui ,v) ∈ V ,ui ∈ N1:t−1,v ∈ Nc1i
\O1:i−1} is the set of edges

representing the potential influence from I2 to I1 where Nc1i
is the

node set of c1i .
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Every edge (ui ,v) ∈ E
c1i
t represents a potential influence from

an active node in I2 to an inactive node in I1. Therefore, we call ui
a potential influencer of v and we denote the potential influencer

set of v until time t as PIv,t = {vi |(vi ,v) ∈ E
c1i
t }. As we can see,

a MUCA-diffusion graph fully characterizes the influence exerted
from another content, thus it is helpful in learning the cascade
graph embedding. Fig. 1 represents the MUCA-diffusion graphs at
four different timestamps and we remark that the MUCA-diffusion
graph at any given timestamp is unique.

Moreover, the MUCA-diffusion graph is monotonically growing
over time and the graph at timestamp t is always a subgraph of that
at timestamp t − 1. This indicates that the node embedding with a
sequence can be learned recurrently from earlier embedding vectors,
which naturally yields a LSTM model to implement our prediction.
However, existing LSTM model cannot incorporate the MUCA-
diffusion graph so we design a novel MUCA-LSTM described in the
following section.

3.4 MUCA-LSTM
Once we have sampled k sequences to represent each of the two
cascade graphs, we design a novel MUCA-LSTM model to embed
every sequence of content I1 with corresponding MUCA-diffusion
graphs so as to get an embedding vector for each sequence. Then
we use pooling techniques to aggregate those sequence embedding
vectors to get an embedding vector for the whole cascade graph.
This is because we can view each cascade sequence as a sentence,
every node in a sequence as a unique word and a cascade graph as
an article. Therefore, after we have embedded sentences we need to
aggregate them to represent the article just like in natural language
processing (NLP). The difference is that the content of sentences in
an article has already been written, however in our cases, we need
to first figure out what are the contents of these sentences, that is,
to embedding structural information and the influence of another
diffused content into each sequence. The structural information
is solved by using random walk, while the influence embedding
remains unsolved. Therefore, we utilize the aforementioned MUCA-
diffusion graphs and design a novel MUCA-LSTM model to embed
the influence information. Finally we feed embedding vector of the
cascade graph as input of a MLP network to obtain the final size
increase result.

Node Embedding. Each node in a sequence is represented by a
unique embedding vector x ∈ Rd where d is the feature dimension
of the vector. A simple example is to use the one-hot vector to
represent each node’s identity.

MUCA-LSTM Sequence Embedding. In order to incorporate
MUCA-diffusion graphs into the sequence embedding vector, we
design a novel MUCA-LSTM model which contains k + 1 input
layers and k + 1 LSTM layers as shown in Fig. 2, to iteratively
calculate embedding vectors for each cascade sequence.

Assume we are embedding the ith cascade sequence c1i in I1.
Firstly, for each of the k sampled sequences of I2, we apply the
standard Long-Short-Term-Memory (LSTM), an improved version
of traditional recurrent neural network (RNN) which is known to be
effective for modeling sequences, to output the hidden states in each
sequence . When applying LSTM recursively to a sequence from
left to right, the sequence representation will be more and more

enriched by information from later nodes in this sequence, with the
gating mechanism deciding the amount of new information to be
added and the amount of history to be preserved, which simulates
the process of information flow during a diffusion. To be more
specific, we denote step j the jth node in each sequence, for each
step i , we input the embedding vector of jth node and the previous
hidden state hij , so as to compute the hidden state at the current
step as shown in Eqn. (1).

hij = LSTM(x ij ,h
i
j−1) (1)

Then we design a new LSTM layer, namely MUCA-LSTM layer
to incorporate the MUCA-diffusion graphs into targeted embedding
sequence c1i by revising standard LSTM as the following running
example.

Example 3.3. Consider a running example as shown in Fig. 1
where the targeted embedding sequence is c1i = {(A, t1), (B, t2),
(C, t3), (D, t4)}. Assume for each cascade graph we sample 2 cascade
sequences (i.e. k=2) and for I2 they are c21 = {(E, t0), (B, t1), (G, t2)},
c22 = {(D, t0), (A, t1), (G, t2), (C, t3)}. At timestamp t1, A is activated
by I1 and we get the MUCA-diffusion graph as shown in Fig. 1(a) .
We can know that the potential influencers of A are PIA,t1 = {D

2}
where the superscript 2 denotes the sequence number where D
belongs to. So we take both A′s embedding vector xA and the hid-
den state output hD2 of D in c22 as input to get the hidden state
output of A, i.e. hA. Next at timestamp t2, B is activated by I2 and
the MUCA-diffusion graph is shown in Fig. 1(b) . The potential
influencers of B are PIA,t2 = {E

1,B1,A2}. Therefore, we first use
pooling technique to aggregate hE1 ,hB1 ,hA2 into a single vector
htmp = ϕ(hE1 ,hB1 ,hA2 ) and then take both htmp and B′s embed-
ding vector xB as input to calculate the hidden state output of B,
i.e. hB . The same procedure is operated on the remaining nodes in
the targeted embedding cascade c1i .

Generally speaking, our MUCA-LSTM differs from the standard
LSTM in the input of each cell where we input not only the node em-
bedding vector but also its influencers’ hidden states. To incorporate
MUCA-diffusion graphs into the sequence embedding vector, we
adopt a pooling function to aggregate the influencers’ hidden state
h
j
i as shown in Eqn. (2), where the aggregation function ϕ(·) can be

a simple pooling or some more sophisticated attention mechanism.
In this paper, we adopt the mean pooling method.

h
j
tmp = ϕ({hv |v ∈ PIvj ,tj }) (2)

Our MUCA-LSTM also has a memory cell with three functional
gates along with a cell state, similar to the standard LSTM. We
set the dimension of the cell state vector as D and illustrate the
structure of MUCA-LSTM as follows.
• Input Gate: AssumeWi ∈ R

D×d , bi ∈ RD , Zi ∈ RD×D
as input gate parameters, the input gate activation vector
i j ∈ R

D in the jth step is computed as

ij =Wixj + Zihtmp + bi (3)

• Forget Gate: AssumeWf ∈ R
D×d , bf ∈ RD , Zf ∈ RD×D

as forget gate parameters, the forget gate activation vector
fj ∈ R

D in the jth step is computed as

fj =Wf xj + Zf htmp + bf (4)
5



• Cell State: AssumeWc ∈ R
D×d , bc ∈ RD , Zc ∈ RD×D as

cell state parameters, we first aggregate cell states from the
node’s influencers’ as follows where ◦ denotes the element-
wise multiplication.

c
′

j = ϕ({cv |v ∈ PIvj ,tj }) (5)

Then the cell activation vector c j ∈ RD in the jth step is
computed as

ĉ j = tanh(Wcxj + Zchtmp + bc )

c j = i j ◦ ĉ j + fj ◦ c
′

j
(6)

• Output Gate: AssumeWo ∈ R
D×d , bo ∈ RD , Zo ∈ RD×D

as forget gate parameters, the forget gate activation vector
oj ∈ R

D in the jth step is computed as

oj = σ (Woxj + Zohtmp + bo ) (7)

Finally the output hidden state vector hj ∈ RD is given by

hj = oj ◦ tanh(c j ) (8)

Cascade Graph Embedding and Learning. After we get the
output hidden state vector hj for each step in every embedding
sequence of I1, we aggregate these hidden states vector to obtain
the final embedding vector for the cascade graph as follows, where
h
j
i is j

th hidden state vector in ith cascade sequence of I1.

houtput = ϕ(
∑
i

∑
j
h
j
i ) (9)

Finally , we feed the cascade graph embedding vector houtput
to a MLP network to obtain the predicted size increase of a cascade
graph, i.e. f (дt ,δt) = MLP(houtput ) where MLP stands for multi-
layer perception.

4 EXPERIMENTS AND RESULTS
To validate our proposal, we adopt real world datasets and present
comprehensive experiments to evaluate the performance of MUCA-
LSTM. The experiments are conducted on a machine with Intel
Core i7 server, 2.70GHZ processor and 8GB RAM.

4.1 Experiment Setup
Datasets.We conduct the experiment on academic networks to pre-
dict the cascades of scientific papers. The dataset is collected from
Acemap1, which is an academic website for academic visualization.
We first construct the network graph G = (V ,E) within the domain
of computer science bacause Acemap has classified the paper into
three-level topic hierarchy structures from L0 to L2 where computer
science domain belongs to L0. The node setV are authors who have
been active in the computer science domain during our chosen
experiment period from 2000 to 2007. To identify active authors,
we only select authors who has more than 10 citation in computer
science domain between 2000 and 2007 and filter those who own
less than 10 citations. An directed edge in the edge set E represents
the relationship tie between two nodes. We draw an edge from
source node A to target node B if author B has cited A’s papers for
at least 5 times thus filtering those edge with low relationship tie.

1http://acemap.sjtu.edu.cn

As for cascade contents, since the network graph needs to be con-
structed before a cascade begin, we select computer science papers
published in year 2008 and construct a cascade for each of those
papers. To be more specific, if a paper is cited by a certain author,
we include her as an activated node in the cascade and record her
activation time, i.e. the citation year of this paper. Therefore, the
cascade format is a set of tuples cmi = {(V1, t1), (V2, t2), ..., (Vn , tn )}
where ti , i = 1, 2, ...,n denotes a specific year andVi denotes the set
of authors who cited this paper in year ti . We construct the cascade
from 2008 to 2013 and use the number of activated authors in 2014
and 2015 as labels.

After constructing cascades, we manually select several two-
paper tuples to model two simultaneously diffused contents in
the network. According to our design intuition, the two papers in
one tuple are supposed to be two highly related papers, otherwise
the mutual influence between these two papers affects little about
the cascade size prediction problem. Hence, we first classify the
paper into several clusters and then match every two papers by the
criterion that these two papers must be published in the same year
(to guarantee they stay in the same diffusion period) and belong to
the same clusters so that they may pretend to be in high relativity.
After the above procedures, we finally extracted 5102 matched
paper pairs for training, 821 pairs for validation and 866 for test
respectively. The statistic of the dataset are illustrated in Tab. 2.
Note that the scale growth is measured by loд2(∆s + 1) where ∆s
denotes the increased active nodes per year.

Table 2: The statistic of the dataset

Set Acemap

# nodes in G All 151384

# edges in G All 2481312

cascades
train 1554
val 851
test 845

Avg. nodes per
cascade

train 73
val 75
test 74

Avg. edges per
cascade

train 68
val 73
test 72

Avg. scaled
growth

train 3.01
val 3.03
test 3.02

matched paper
train 5102
val 821
test 866

Clustering. To classify the papers into several clusters, we first
measure the similarity of two papers by two features, i.e., topic
similarity and cascade similarity. Here, we apply the Microsoft
Academic Graph, which provides topic information of each paper
and the topic hierarchy structure. If the topic hierarchy structure of
two papers as shown in Fig. 4 is similar, we consider they tend to
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have high relativity in topics. Hence, we define the topic similarity
of two papers in Eqn. (10) where wi is the weight coefficient for
each level and ni is the num of same topic that two paper belong to.
As for cascade similarity, it plays a significant role and we measure
it by the following three factors.
• Same node num |V

′

| = |VA ∩VB |.
• Average node degree of “intersectant graph" G

′

= (V
′

,E
′

)

where V
′

= VA ∩VB is the same activated author set of two
cascade graghs and E

′

is the set of the edge between these
same authors. The average node degree is defined as V

′

E′
.

• Activated tendency: we consider that if the tendency of two
papers that paid attention are similar, they may have some
interactions during the diffusion. We define the cite tendency
vector as C = [ct1 , ct2 , ..., ctn ] where cti is the citation per-
cent in year ti among total citations in the whole time period
and we apply cosine distance of two cite tendency vector to
measure the similarity.

We combine these aforementioned factors and use normalization
to define cascade similarity between paper A and B as denoted in
Eqn. (11) where f denotes the cosine distance of two vectors. Finally,
we set the distance between two papers in Eqn. (12) where λ is the
coefficient.

Simtopic =

2∑
i=0

ni ∗wi (10)

Simcascade =
|VA ∩VB |

|VA ∪VB |
+

V
′

/E
′

1
2 (VA/EA +VA/EA)

+ f (CA,CB ) (11)

Dis(A,B) = 1/(Simtopic + λSimcascade ) (12)
With distance definition we can obtain the distance metricsM

and we apply DBSCAN, a kind of density-based clustering method,
for clustering as illustrated in Alg. 1.

Figure 4: The effect of number of dimension of hidden state
vectors

Baselines.We select three state-of-art and representative baselines
for comparison with our model.
• DeepCas [16] considers only one item propagating in the
network to predict the future size of the cascades. It applies
random walk process to sample multiple paths to represent
the diffusion cascade and learn in an end-to-end manner
using RNN. We choose the hyperparameters as 200 walks of
length 10 for each cascade, the same setting as in [16].
• Topo-LSTM [29] also considers one item in the network
to predict the next activated node. It holds the view that a
cascade is not merely a sequence of nodes ordered by their
activation time stamps; instead, it has a richer structure
indicating the diffusion process over the data graph. Hence,

Algorithm 1: DBSCAN for Clustering
1 Input: Sample Set D = {x1,x2, ...,xm }, Distance Metric

Mm∗m , parameter(ϵ,MinPts);
2 Ω ← ∅;
3 for j = 1, 2, ...,m do
4 Nϵ (x j ) ← FindNeighbor(x j , ϵ);
5 if |Nϵ (x j )| ≥ MinPts then Ω ← Ω ∪ {x j } ;
6 k ← 0;
7 Initialize unvisited samples T ← D;
8 while Ω , do
9 Told ← T ;

10 Random select a core object o ∈ Ω, initialize queue
Q =< o >;

11 T = T \o;
12 while Q , do
13 q ← deQueue(Q);
14 if |Nϵ (x j )| ≥ MinPts then ∆ = Nϵ (q) ∪T ,

enQueue(∆), T ← T ∆ ;
15 k ← k + 1, Ck = Told\T ;
16 Ω = Ω\Ck ;

it revise the structure of RNN to represent diffusion topology
and the input data is the activation sequence of the nodes.
To better compare the with our model, we did two main
revisions for Topo-LSTM without changing its core idea. We
change the input data as our random walk result and add a
MLP to predict the future cascade growth size.
• Feature-based method: we select several structural features
that could be generalized across data sets from recent studies
of cascade prediction [5, 21]. The selected features reflect
density and centrality of a cascade graph including average
node degree, number of leaf nodes, edge density.

Table 3 depicts our experimental parameters, where the default
values of these parameters are in bold font.

Table 3: Experiments Setting.

Parameters Values

Prediction period ∆t 1 year, 2 year
Dimension D of the hidden state vector h 32, 50, 128, 256, 512
Number of sampled sequences per cascade graph 10,20,50,70,100,150,200
Average length of sampled cascade sequence 1,2,3,4,5

Accuracy evaluation metrics. Since the possible value of size
increase is infinite, mean squared error (MSE) are applied in our
experiments to evaluate the accuracy of predictions, which is used
in previouswork of cascade prediction [32]. MSE is defined as follow
in Eqn. (13). y is the truth value and is defined as yi = loд2(∆Vi + 1)
where ∆Vi is the size increase of a cascade graph. ŷ denotes the
predicted value.

MSE =
1
n

n∑
i=1
(ŷi − ŷ)

2 (13)
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4.2 Experiment Results
Effect of various prediction period We first compare the MSE
score among those methods under two prediction period as shown
in Tab. 4. The results shows that MUCA-LSTM always outper-
forms other methods under various prediction period. Moreover,
deeplearning methods are better at near future size increase pre-
diction while the performance of feature-based method is almost
irrelevant to the period length.

Table 4: Effect of prediction period.

Deepcas Topo-
LSTM

Feature-
based

MUCA-
LSTM

∆t = 1 year 1.643 1.432 1.793 1.324

∆t = 2 year 1.682 1.447 1.621 1.378

Running Time Comparison We use the default parameter set-
tings as shown in Table 3 to test the running time of these methods.
The result is shown in Tab. 5. AlthoughMUCA− LSTM spends the
longest time for prediction, the time is comparable with another
two deeplearning method: Deepcas and Topo-LSTM, and the MSE
of MUCA-LSTM is smaller than those of the two methods. Feature-
based method requires the minimal running time however the MSE
is considerably larger than the three deeplearning method.

Table 5: Running Time Comparison.

Deepcas Topo-
LSTM

Feature-
based

MUCA-
LSTM

Running
time

207 mins 214 mins 154 mins 232 mins

Effect of Dimension of Hidden State Vectors. We study how
the value of dimension D of hidden state vectors affect the perfor-
mance of the MUCA-LSTM. As shown in Fig. 5, with the increase
of dimension number, the MSE decreases. However, when the di-
mension number continues to get larger, the decrease degree gets
smaller and finally reaches an almost stable level. This is because
when the dimension is very small, the hidden state vectors may not
fully reflected the information of a cascade graph. However when
dimension reaches a certain level, it is capable to reveal enough
information about each cascade graph so the following increase of
dimension number has little effect for performance improvement.
Effect of average length of a cascade sequence. Since we rep-
resent a cascade graph by a set of sampled cascade sequences, we
study how the average length of these cascade sequences can af-
fect the performance of those deeplearning methods. The result
is shown in . Because we limited the length of sampled cascade
sequences by filtering those unqualified sequences, we change the
default setting of sequence number k = 200 to a smaller one k = 50.
We can observe that with the increase of average cascade sequence,
all those deeplearning methods achieves a better MSE. This is be-
cause a longer sequence can be used to trace a longer history about
how the content is diffused in the network. Moreover, MUCA-LSTM

Figure 5: The effect of number of dimension of hidden state
vectors

performs better compared with other methods when k gets larger
while perform almost the same with baselines when the average
length of sequences is too small. This is because in MUCA-LSTM,
we incorporate each node’s influencers’ hidden state vectors into
their output hidden state vectors and when the sequence is too
short, there is little chance for a node to find lots of influencers
so MUCA-LSTM becomes almost the same with single-content
diffusion models as Deepcas and Topo-LSTM.
Effect of the number of sampled cascade sequences. At last
we study the effect of number of sampled cascade sequences in each
cascade graph and the result is shown in Fig. With the increase
of sequence number, the MSE achieves a better result while the
performance improvement is smaller when the number has reached
a relatively large value. This is the more sequences, the better
structural information of the cascade graph we can get. However
when the number of sequence continues to increase, most of the
information has been captured so the improvement is limited.

Figure 6: The effect of aver-
age sequence length

Figure 7: The effect of se-
quence number

5 VISUALIZATION
In order to visualize our work and facilitate the usage of experiment
result, we deploy an on-line visualization system, named Paper Map
on Acemap Website, to show the information and prediction result
of each paper.

An overview of Paper Map is shown in Fig. 8. In the paper map,
nodes represent paper, of which color distinguishes publication year
and radius distinguishes the citation count of paper. Simultaneously,
the line between the nodes represent the existence of the reference
relationship between paper. As for layout, nodes are clustered by
publication year, which helps visualize the citation trend of the
papers more intuitively.
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Through the system, user can search a specific paper they inter-
ested in by the search box, and the paper’s position will show on
the Paper Map. Users can also filter the paper according to topic to
generate submap by option box.

Figure 8: Overview of paper map system

More information of each paper can be available to users by
clicking the paper nodes in Paper Map system. As illustrated in
Fig. 9. By click effect, papers with reference relationship will be
highlighted. The information panel will appears to show the essen-
tial information as well as trend and prediction result of citation
count.

We also visualize the cascades of papers input to neural network
topology by dynamic graph, where nodes representing the infected
author, with color illustrating the infected year and lines illustrating
the reference relationships between authors.

We remark that the goal of designed Paper Map system is to
help researchers to get a more intuitive understanding of the exper-
imental data structure and prediction results, which helps to get
inspiration from visual effects of paper information and connection.

6 RELATEDWORK
Information prediction are empirically proved to be predictable to
some extent, including Tweets/microblogs [11, 13, 30], photos [5],
videos [2] and academic papers [23]. In literature, it can be classified
into two fashions.

Model-basedMethod. Earlyworkmainly focus onmodel-based
method with certain macroscopic distributions [15, 33] or stochastic
processes that explain the microscopic actions of passing along the
information. The basic models such as Independent Cascade (IC)
Model [8, 22] and Linear Threshold (LT) Model [4, 9] are widely
studied. Recent researches often take the detailed features into con-
sideration like network structure and temporal information [5],
user nodes’ social roles and preferences [12, 27, 28], user edges’
relationships [10, 14] as well as diffusion content or topic aware-
ness [1, 26, 31].

In [32], Yang et al held that users may play multiple roles with
respect to different social communities and proposed a Role-Aware
information diffusion model (RAIN) which integrates social role
recognition and diffusion modeling. A Gibbssampling based algo-
rithm are then developed to learn the parameters using the histor-
ical diffusion dataset. As for [10], different types of relationships

between of users were seen as indispensable to considered in het-
erogeneous networks and two variations of the linear threshold
model are discussed. [12] took both users’ preferences over topics
and topic distributions of cascading messages into account and for-
mulated the problem as non-smooth convex optimization problems
with coordinate proximal gradient descent to solve while in [17]
textual documents, social influences, and topic evolution are all
unified and the whole diffusion process is regularized through a
Gaussian Markov Random Field.

In these model-based method, these features usually makes
strong assupmtions and the distribution are often assumed to be
known with parametric formulations. However, they will no doubt
oversimplify the reality, as a result, they generally underperform in
real prediction tasks. Moreover, this requires much manual effort
and extensive domain knowledge and seems hard to generalized to
other applications.

Learning-based Method. With the development of machine
learning techniques, recent work starts to exploit deep learning in
prediction tasks to avoid explicit feature engineering for diffusion
modeling. For instance, Embedded-IC [3] embedded users in a latent
space to extract more robust diffusion probabilities. It differentiates
two kinds of roles for the nodes; i.e., an active node serves as a
“sender”, and an inactive node serves as a “receiver”, which each
learns a vector as a node’s embedding. Then, it models an activa-
tion based on the closeness between an inactive node’s receiver
embedding vector and the active nodes’ sender embedding vectors.
DeepCas [16] applied Gated Recurrent Unit (GRU) [6] to predict
the cascade size in the future. The input data of RNN are extracted
from the cascades and represents as a sequence of nodes. It firstly
models the cascade at each time step with an induced subgraph
over the active nodes and then sampled the subgraph into some
random walk paths. However, [29] pointed out that a cascade has a
richer structure indicating the diffusion process instead of merely a
sequence of nodes ordered by their activation time stamps. Hence,
they revised the structure of RNN and introduced Topo-LSTM, to
represent the diffusion topology.

Standard RNN are designed for sequences, frequently applied in
music and speech domains. Nowadays, more variants of RNN struc-
tures are studied to adapt to various applications. Tree structured
RNN are exploited especially in natural language processing. For ex-
ample, [25], not limited in linear chains, introduced a generalization
of LSTMs to tree-structured network topologies to predict semantic
relatedness and sentiment classification. In [7], a RNNG is devel-
oped to encode a parse tree. There are also some RNN variants for
directed acyclic graphs (DAGs). In [24], DAG-RNNs are proposed
to deal with DAG-structured images for Scene Labeling. It modeled
long-range contextual dependencies among image units and even-
tually enhanced the discriminative power of local representations
tremendously.

Our work differs from this literature as we take the influence
of other contents’ diffusion in the social networks into account to
predict the future cascade size. We focus on the feature extraction of
multi-cascade and LSTMmodel design to incorporatemulti contents
for better prediction.
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Figure 9: Paper Information.User can search the prediction results of citation count and cascade sequence sampling of papers
by click effect.

7 CONCLUSION
In this paper, we tackle the problem of cascade prediction which
aims at predicting the number of newly activated nodes in a given
future period. We take the influence of another simultaneously
diffused content into consideration which largely improves the
performance of prediction compared with some state-of-art base-
lines. We introduce MUCA: a multi-content-aware RNN network
for cascade prediction which contains 3 steps: cascade sequence
sampling, MUCA-LSTM and cascade graph representation. Our
extensive experiments on both real and synthetic datasets verifies
the effectiveness of our proposed method. In the future, we will
focus on the generalization of model design that incorporates more
than two contents diffused in the networks for better predition.
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