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Abstract

In multi social networks de-anonymization problem, different social

networks often have very different user numbers. Structure-based algo-

rithms often performs not well enough since they only make use of the

topological information. In this paper, we first improve the two graph

matching solver by taking each node’s features into consideration. Then we

come up with the hierarchical matching methods for multi social network

de-anonymization. Social networks with large amounts of users will be

treated as central part, and the matching for small social networks will

depend on the central part. Experiments on generated graphs show the

advantage of our algorithm.

1 Introduction

With the development of technology, we live in an era with the explo-
sion of information. When the information of social network users is released,
only removing ID(such as user’s real name or ID number) is not enough. De-
anonymization algorithm can get user’s information by matching the anonymized
network with a sanitized one. However, in the situation of multi social network
de-anonymization, directly using structure-based two-graph matching solver for
all pairs of multi-social networks have several practical problems:

1. In real social network platforms, there may not exist one platform that
can cover all the users.
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2. Different social networks are partially overlapped, which is to say different
social networks often have very different user numbers and the set of
common users is unsure.

3. Social network is not only about the connections between users. Each
user has its own inherent characteristics (e.g. preference for a certain
topic; behavioral habits). Only make use of the topological structure(e.g.
adjacent matrix) to do multi social network de-anonymiziation is a waste
of known information and will lead to low accuracy.

Based on the above consideration, we first improve the two graph matching
solver by attaching each node with a feature vector. These feature vectors
represents each node’s inherent characteristics rather than topological structure.
In real world, these features include things like each user’s preference and
behavioral habits. For example, whether or not the user is interested in a specific
sport, whether or not the user prefers a specific singer and whether the user is
inclined to use the APP during a certain time of the day? Features like these
are very common for a social network so that they are available. And we believe
that the users’ behavior is consistent to some extent. By this we mean for the
same user in two different social networks, the two feature vectors collected from
these two networks have a large possibility to be similar.

Then, we come up with the hierarchical multi social networks de-anonymization
methods. The top two or three networks will chosen as center. We hope that
the union of nodes from central graphs will cover all potential nodes with a high
probability. The graphs in central part will match one another. For the rest
graphs, we call them peripheral graphs. Peripheral graphs will first match all cen-
tral graphs, then match other peripheral graphs via central graphs. Experiments
on generated data show a good performance of our methods.

Prior work [1] is the first to take the partially overlapped situation into
consideration, but it:

1. Only considers two social networks. Our work is about multi social net-
works.

2. Does not take nodes’ features into consideration.

3. Just proof the conditions for correct matching, and does not give a specific
algorithm.
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Prior work[4][5] also focus on the setting of partially overlapped social
networks, but they do not take nodes’ features into consideration neither and
they are seeded de-anonymization while our work is without seeds.

For the following sections, we first set up the model of feature-aware de-
anonymization and analyse the conditions for correct matching in section 2; in
section 3 we will show our hierarchical multi graphs matching methods; and
experiments are in section 4. In section 5 there is the conclusion for this paper
and acknowledgement is in section 6.

2 Feature-aware Two Graphs Matching

2.1 Problem Statement

We suppose the real underlying social network is the Erdos-Renyi Graph
G(n, p) with n representing the total number of users(nodes) and p representing
the possibility of an edge existing between two random nodes. We posit the node
sampling probability is ti for the ith graph and the edge sampling probability is
s for all graphs.

We note the sanitized network as G1(V1, E1, A) with node set V1, edge
set E1 and adjacent matrix A ∈ Rn1×n1(|V1| = n1 and E(n1) = nt1); the
auxiliary network as G2 with with node set V1, edge set E1 and adjacent matrix
B ∈ Rn2×n2(|V2| = n2 and E(n2) = nt2). The ith node in A has a feature
vector fAi for i in{1, 2, . . . , n1}, while the jth node in B has a feature vector fBj
for j in{1, 2, . . . , n2}. All feature vectors have d dimensions. Besides we get a
distance matrix D, where Dij = ||fAi − fBj ||22 depicts the distance between ith
nodes’s feature vector in A and jth node’s feature vector in B.

We posit the matching matrix is P ∈ {0, 1}n1×n2 , where Pij = 1 means the
ith node in G1 is the jth node in G2. And we assume the ground truth matching

3



matrix is P ∗. The goal is to find a certain P to match nodes in V2 to nodes in
V1 with the highest accuracy:

min
P∈{0,1}n1×n2

||P − P ∗||22

2.2 The Model for Feature Vectors

2.2.1 Binomial Model

In binomial model, the kth dimension of feature vectors obeys a binomial
distribution:P (fAik = 1) = P (fBjk = 1) = pk and P (fAik = 0) = P (fBjk = 0) =

1− pk. This is like we ask each user d "whether or not" questions and the user
answers "yes" or "no" honestly.

If (i, j) is a correct match, we suppose that fAi = fBj so that Dij = 0.
If (i, j) is a wrong match, then P (fAik = fBjk) = p2k + (1− pk)2 and P (fAik 6=

fBjk) = 2pk(1 − pk). For the convenience of analysis, we posit that pi = p for
i ∈ {1, 2, . . . , k}. So that Dij obeys a binomial distribution B(d, 2p(1− p)).

2.2.2 Gaussian Model

In Gaussian model, the kth dimension of feature vectors obeys a Gaussian
distribution N(µk, σ

2
k).

If (i, j) is a wrong match, fAik − fBjk obeys a Gaussian distribution N(0, 2σ2
k).

If (i, j) is a correct match, we suppose that fAik−fBjk obeys a Gaussian distribution
N(0, 2σ

′2
k ) with σ

′

k � σk. For the convenience of analysis, we posit that σi = σbig

for i ∈ {1, 2, . . . , k} and σ′i = σsmall for i ∈ {1, 2, . . . , k} with σbig � σsmall.
So if (i, j) is a wrong match, Dij obeys a generalized χ2(d) distribution,

which means E(Dij) = dσ2
big and V ar(Dij) = 2dσ4

big; if (i, j) is a correct match,
Dij obeys a generalized χ2(d) distribution, which means E(Dij) = dσ2

small and
V ar(Dij) = 2dσ4

small.
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2.3 Algorithm

The two graph matching problem can be approximated in the Koopmans-
Beckmann’s Quadratic Assignment Problem form in the first step:

P = arg min
P∈{0,1}n1×n2

||A− PBPT ||2F + λ||P ◦D||2F

s.t. P1n2 ≤ 1n1 and P
T1n1 = 1n2

where λ is a parameter controlling the weight of feature vector matching loss
and ◦ is the Hadamard product for two matrices. Although the two graphs may
be partially overlapped, in the first step we match all nodes in the smaller graph
to the other graph.

To remove the wrongly-matched nodes in the first step, we add one more
step:

∀i, j, if Pij = 1 and Dij > threshold, set Pij = 0.

Then we use gradient descent method to solve it. Through the process of
gradient descent, we may get continuous-value matching matrix. And the sum
of a certain column may not equal to 1, which may violate the requirement for
assignment problem. So after each step of gradient descent, we use Hungarian
algorithm to get the discrete matching matrix.
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Algorithm 1: Gradient-based Two-graph Matching

input :adjacent matrix Am×m and Bn×n, feature distance
matrix Dm×n.

output : identify matrix P ∗.

1 P ← 1m×n

min{m,n} ; λ← 1; α← 0.1; β ← 0.01; threshold← 0;

2 loss = ||A− PBPT ||2F + λ||P ◦D||2F ;
3 while loss ≥ β do
4 G← 4APBPT − 2λ||P ◦D||F ◦D;
5 Q = arg max

Q∈{0,1}m×n

tr(QTG);

6 P = αP + (1− α)Q;
7 loss = ||A− PBPT ||2F + λ||P ◦D||2F ;

8 P ∗ = arg max
Q∈{0,1}m×n

tr(QTP );

9 For all P ∗ij , if Dij > threshold, set P ∗ij = 0;
10 return P ∗;

2.4 Conditions for Correct Matching

For the following part, we give an theoretical analysis of the conditions for
correct matching if we follow the above loss function. Without loss of generality,
we posit that t1 > t2 and n1 > n2.

Theorem 1. We suppose that p = 0.5,s = 1 and d ∼ θ(1), then if p, t1 and t2
satisfy the following condition, we will get a correct matching.

pt1
18

max{ 2

1− t1
, nt1t2} ∼ lnn+ ω(1)

Before the proof, we first give some definitions. Like in [2], we divide the
nodes into three parts, correctly matching nodes Vc, mismatched nodes Vm and
unmatched nodes Vu. And E(Vu) = n(t1 − t2).

The node pairs can be parted into three categories:

1. Ec,k is the correctly matched pairs where both nodes are correctly matched.

2. Em,k is the mismatched node pairs where one of them is a mismatched
node and the other is either mismatched or correctly matched.
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3. Eu is the node pairs where at least one node of whom is unmatched.

And from the perspective of mathematical expectation, we have:

|Ec,k| =
(
nt2−k

2

)
|Em,k| =

(
k
2

)
+
(
k
1

)(
nt2−k

1

)
|Eu| =

(
n(t1−t2)

2

)
+
(
n(t1−t2)

1

)(
nt2
2

)
We note ∆1

k = ||A−PBPT ||2F and ∆2
k = λ||P ◦D||2F as the loss while there

are exactly k wrongly matched nodes for k ∈ {kmin, kmin + 1, . . . , [nt2]} where
kmin = n(t1 − t2). And we note that ∆k = ∆1

k + ∆2
k.

2.4.1 The Evaluation of P (∆k ≤ ∆kmin)

For a given k, we first evaluate the possibility P (∆k ≤ ∆kmin
).

As shown in [2], ∆1
k − ∆1

kmin
= X2

k − X1
k where X2

k is the number of
wrongly matched edges in and X1

k is the number of edges is correctly matched
but only sampled in either G1 or G2. E(X2

k) = |Em,k − Em,kmin
|2ps(1 − s),

E(X1
k) = |Em,k − Em,kmin

|2ps.
We note that ∆2

k −∆2
kmin

= X3
k . E(X3

k) = 2d(k − kmin)p(1− p).

Lemma 1. P (X2
k −X1

k + X3
k ≤ 0) ≤ P (X2

K ≤ b) + P (X1
K ≥ a) + P (X3

K ≤ c)

for any positive constants a, b, c satisfying b− a+ c = 0.

Proof.

P (X2
k −X1

k +X3
k ≤ 0)

= P (X1
k ≥ a ≥ X2

k +X3
k) + P (X2

k +X3
k ≤ X1

k ≤ a) + P (X1
k ≥ X2

k +X3
k ≥ a)

≤ 2P (X1
k ≥ a ≥ X2

k +X3
k) + P (X1

k ≤ a ∩X2
k +X3

k ≤ a) + P (X1
k ≥ a ∩X2

k +X3
k ≥ a)

= P (X1
k ≥ a) + p(X2

k +X3
k ≤ a)

= P (X1
k ≥ a) + p(X2

k +X3
k ≤ b+ c)

For the second term:

p(X2
k +X3

k ≤ b+ c)

≤ P (X2
k ≤ b ∩X2

k ≤ c) + P (X2
k ≥ b ∩X3

k ≤ c ∩X2
k +X3

k ≤ b+ c) + P (X2
k ≤ b ∩X3

k ≥ c ∩X2
k +X3

k ≤ b+ c)

≤ 2P (X2
k ≤ b ∩X2

k ≤ c) + P (X2
k ≥ b ∩X3

k ≤ c) + P (X2
k ≤ b ∩X3

k ≥ c)

≤ P (X2
k ≤ b) + P (X3

k ≤ c)

Combine the above two parts together, we finish the proof.

7



Lemma 2. For a binomial random variable X ∈ B(n, p) and µ = np, then:

P (X > µ+ r) ≤ exp{− r2

2(µ+ r
3 )
}, r ≥ 0

P (X < µ− r) ≤ exp{− r
2

2µ
}, r ≥ 0

Proof. This is a basic property of Chernoff bound for binomial random vari-
ables[3]. Here we leave out the detailed proof.

We try to find a, b, c, r1, r2, r3 satisfying:

b− a+ c = 0

a = µ1 + r1

b = µ2 − r2

c = µ3 − r3

r1 = r2 = r3

By solving the above equation set, we get r1 = r2 = r3 = −µ1+µ2+µ3

3 .
Now that we get:

P (X1
k ≥ µ1 + r1) + P (X2

k ≤ µ2 − r2) + P (X3
k ≤ µ3 − r3)

≤ exp{− r21
2(µ1 + r1

3 )
}+ exp{− r22

2µ2
}+ exp{− r23

2µ3
}

≤ 3exp{− r21
2(µ1 + µ2 + µ3)

}

= 3exp{− (−µ1 + µ2 + µ3)2

18(µ1 + µ2 + µ3)
}

Remember that

µ1 = ((nt2 −
1

2
)(k − kmin)− k2

2
+
k2min

2
)(2ps)

µ2 = ((nt2 −
1

2
)(k − kmin)− k2

2
+
k2min

2
)2ps(1− s)

µ3 = 2(k − kmin)dp(1− p)

And E(kmin) = nt2(1− t1).
We further get

P (X1
k ≥ µ1 + r1) + P (X2

k ≤ µ2 − r2) + P (X3
k ≤ µ3 − r3)

≤ 3exp{− (k − nt2 + nt1t2)

18

[(nt2 + nt1t2 − k − 1)(−ps2) + 2dp(1− p)]2

(nt2 + nt1t2 − k − 1)ps(2− s) + 2dp(1− p)
}
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2.4.2 Bound the Error For ALL k

We suppose that p = 0.5,s = 1 and d ∼ θ(1), then

E(S)

≤ 3

nt2∑
k=kmin+1

nkexp{− (k − nt2 + nt1t2)(nt2 + nt1t2 − k − 1)p

18
}

= 3

nt2∑
k=kmin+1

exp{k lnn− (k − nt2 + nt1t2)(nt2 + nt1t2 − k − 1)p

18
}

≤ 3

nt2∑
k=kmin+1

exp{k(lnn− (k − nt2 + nt1t2)(nt2 + nt1t2 − k − 1)p

18k
}

≤ 3

nt2∑
k=kmin+1

exp{k(lnn− pt1
18

max{ 2

1− t1
, nt1t2})}

So if p, t1 and t2 satisfy the following condition, we will get a correct matching.

pt1
18

max{ 2

1− t1
, nt1t2} ∼ lnn+ ω(1)

3 Hierarchical Multi Social Network De-anonymization

We suppose the real underlying social network is the Erdos-Renyi Graph
G(n, p) with n representing the total number of users(nodes) and p representing
the possibility of an edge existing between two random nodes. There are N
graphs needs to be matched. We note them as Gi(Vi, Ei, Ai) with node set Vi,
edge set Ei and adjacent matrix Ai ∈ R|Vi|×|Vi|. Each node in every graph has
a d dimension feature vector. For two graphs Gi and Gj , we use P ij to express
its matching matrix.

Now we partition total graphs into two parts:

1. central graphs
This part contains two or three graphs which has the most nodes. Only
graphs whose node sampling possibility is larger than a certain threshold
can be selected into central part. We hope the union of nodes in central
graphs will cover as more nodes as possible while using the minimum
number of graphs. According to possibility, if the threshold is 80%, two
graphs will cover about 96% of total nodes; if the threshold is 70%, three
graphs will cover about 97.3% of total nodes.
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2. peripheral graphs
The rest of graphs will be put into peripheral part.

When coming to the matching part, we partition it into three phases:

1. center-center matching
We first match all the graphs in central part using the two-graph matching
solver mentioned in the front part. We will give a tolerance on consistency,
which is to say, if three graphs G1, G2, G3 are selected into central parts.
We do not require exactly P 12 = P 13P 23T for the three-graph tuple.

2. center-peripheral matching
When matching graphs from peripheral part, we first map every one of
them to every graph in the central part respectively. By doing so, we get
all the center-peripheral matching pairs. For a peripheral graph Gi, we
will get P 1i, P 2i, P 3i in this phase.

3. peripheral-peripheral matching
When it comes to peripheral-peripheral matching, rather than directly
mapping them, we use all graphs in the center part as intermediates.
That is to say, for two peripheral graphs Gi and Gj , we have Pij =∑
∀Gk∈center

PTikPkj . This is kind of like a ’voting’ process: we let central

graphs decide how to match peripheral graphs. Then we use Hungarian
algorithm to turn Pij into an assignment matrix.
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Algorithm 2: Hierarchical Multi-graph Matching

input :adjacent matrices of all graphs; feature distance matrices
of all center-center and center-peripheral graph pairs.

output :matchings for all graph pairs.

1 matching all center-center graph pairs using feature-aware
two-graph matching solver;

2 matching all center-peripheral graph pairs using feature-aware
two-graph matching solver;

3 matching all peripheral-peripheral graph pairs by:
4 (1) for peripheral graph Ga and Gb, P ab =

∑
∀Gk∈center

(P ka)TP kb;

5 (2) P ab = arg max
Q∈{0,1}m×n

tr(QTP ab);

6 (3) For all P abij , if Dab
ij > threshold, set P abij = 0;

4 Experiments

The following experiments are conducted on generated data. For the follow-
ing experiments, we set d = 7, s = 1, p = 0.05.

1. We first compare the feature-aware two-graph solver with the original
method. For this experiment t1 = 0.9 and t2 = 0.2. From the result we can
see that without node features the accuracy is almost 0, while feature-aware
method can achieve nearly 100% if nodes number is larger than a threshold.

11



2. There are two graphs in central part both with node sampling probability
0.9. There are many graphs in the peripheral part with node sampling
probability 0.2. If directly matching peripheral graphs the accuracy is
around 60%, while our hierarchical method can achieve an accuracy of over
90%. The accuracy shows the advantage of our methods compared with
directly matching two nodes.

3. In this experiment we compare one central graph with two central graph-
s. The central graph has node sampling probability 0.9 while peripheral
graphs are 0.2. Obviously with one more central graph, the performance
is better. This is because ore central graphs will cover more potential nodes.

4. In this experiment we compare two central graphs with node sampling
probability 0.9 and three central graphs with node sampling probability 0.7.

12



Result shows two central graphs with node sampling probability 0.9 is better.
This is because (1)it covers more potential nodes(99% ≥ 97.3%);(2)larger
node sampling probability means the matching is more stable and more
reliable for every central-peripheral matching.

5 Conclusions and Future Work

In this paper, our main contribution includes:

1. We come up with the feature-aware solver for partially overlapped graph
matching problem, and we analyze the conditions for correct matching.

2. We come up with the hierarchical methods for multi partially overlapped so-
cial network de-anonymization problems. Experiments show the advantage
of our methods.

Future work may includes:

1. Online Matching
Future work may take the change of each platform’s user number into
consideration. There may be new users for social networks. Small platforms
may grow larger while large platform may decline.

2. All Platforms Too Small
In this work, we have an assumption that the top 2 or 3 platforms will
cover most of the latent nodes. But what if the biggest platform only
contains less than 50% of total nodes?
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