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1.Backgroud&Traditional Model

1.1 Backgroud

Multi topic competition communication is of great help to the government, enterprises, etc. For
example, government can conduct preventive public opinion control over emergencies and hot
events and enterprises can predict hot news ahead of time ,understand user focus and achieve a
better business model of social networking sites and news apps. However, the traditional
models are most prediction model of single topic heat.

1.2 Traditional Model

1.2.1 SH Model

According to the SH model, there is a strong linear correlation between the logarithm of early
heat and that of late heat. The formula is:

InN(ty) = Inr(ty,ta) + InNs(t1) + €5 (t1, t2)
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Where N(t) is the network heat at time t, the first term on the right side of the equation is the
intercept of linear function, and the last term is the error.

1.2.2 IMM Model

For the first time, the IMM model takes into account the category characteristics behind the
topic content and applies them to information dissemination. They take into account the
interaction between categories and get a matrix of the interaction between categories.

First, assume that the probability of users being infected by microblog x under K
microblogs.This probability can be transformed by Bayesian formula. So we can get a new
formula.

POOPUYHS, 1) IS, P(X|Y%)
P({%H,) PX)FT

P X|{Yi}hii,) =

o P(X[Y) = P(X) + Acount (X, Y)

Where p (x| y) represents the probability of forwarding X when the content of Y is seen. This
probability is approximately equal to the probability of forwarding x plus the interaction between
X and Y. The interaction between X and y can be written as:

Acount (X7 Yk) = Z Z MX [t] * Acluser(cta Cs) * MYk [3]
t s

The two multipliers on the right side of the equation indicate the probability that Weibo
belongs to s, t respectively. The middle multiplier is the category competition matrix of category t
and category s.

Therefore, the loss function of the competition matrix can be obtained first, and then the
competition matrix can be trained by the method of random gradient descent. After learning the
competition matrix, we can use the competition matrix to predict the heat.

2.Related Concepts

2.1Strong Ties

The most frequent contact is with their relatives, classmates, friends, colleagues, etc. This is a
very stable but limited social cognition, which is a strong ties phenomenon.

The scope of weak ties is wider. It is possible for students, friends, relatives and friends, etc.,
that is, there are less opportunities for communication and interaction. For example, friends who
don't often play together, relatives who don't often play together, etc.

The strong ties usually means that the actors have a high degree of interaction with each other,
and they are close in some existing interaction patterns. Therefore, the messages generated
through the strong ties are usually repetitive and easy to form a closed system.

Compared with the strong ties, the weak ties are more able to deliver non repetitive messages
among different groups, so that members of the network can increase the opportunity to modify
their original views.
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For example, a blogger who joins a microblog has published several microblogs, among which
the users who forward and comment on one microblog basically pay attention to the blogger's
fans (these users are strong connected users). The other users who forward and comment on
Weibo not only have fans of the user, but also many other users (these users are also weak
connected users). Then it can be preliminarily determined that the second microblog has
stronger competitiveness than the first one.

2.2User Competition Matrix

The competition matrix of topic category interaction is proposed in imm. But in the same way,
users are also of great significance to the competitive communication of topics. Therefore, the
competition matrix of user's role on topic is proposed.

To get the user competition matrix, we need to introduce a new concept which calls probe
user concept: probe user means stable and active user. For example, in all users of microblog,
the users with the top 300 comments are used as probe users to avoid errors caused by zombie
powder and inactive users.

Users' attention ability is limited (which is also the basis of topic competition communication),
so when a large number of users comment on topics that do not belong to their preferred
category, it indicates that the topic has strong competitiveness (user preference category vector
needs to be extracted).

3.Model building

3.1 Text Classification

Word vectors are generated by word2vec, and then classified by CNN text classification. Then
get the topic category vector.

3.1.1 Word2vec

Word2vec has two structures: CBOW and Skip-gram. Skip-gram structure is used here.

from gensim.models.word2vec import Word2vec

def word2vecl():

file = open('sentence.txt')sss=[]

while True:
ss=file.readline().replace('\n',"'").rstrip(Q)
if ss=="": break sl=ss.split(" ")
sss.append(sl)file.close(Omodel = word2vec(size=200, workers=5)
build_vocab(sss)model.train(sss,total_examples = model.corpus_count,epochs

= model.iter)model.save('/weibo2vec_model")

3.1.2 CNN Classfication

def get_data(fold):
dax = []
day = []
for fname in os.listdir(fold):
fpath = os.path.join(fold, fname)
split_file_path = os.path.join(fold, fname)
with open(split_file_path, "rb") as f:
nl =0
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def

for 1ine in f:
if(n1>6000):
break
nl += 1
dax.append(line)
day.append(int(fname[:-4]))
datalen = len(dax)
train_len = int(datalen¥®0.8)
day = to_categorical(day, nb_classes=None)
tempper = np.random.permutation(datalen)
trx = np.array([dax[i] for i in tempper[:train_Tlen]])
tryl = np.array([day[i] for i in tempper[:train_len]])
tex np.array([dax[i] for i in tempper[train_len:]1])
tey = np.array([day[i] for i in tempper[train_len:]])
return ((trx, tryl), (tex, tey))

nsh_tra(max1en=400,
max_features = 50000,
embedding_dims = 50,
nb_filter = 250,
batch_size = 32,
filter_length = [3,4,5],
hidden_dims = 250,
nb_epoch = 2):
(xtr, y_train), (xte, y_test) = get_data("../split_weibo")
token = Tokenizer(nb_words=max_features, filters=base_filter(),
Tower=True, split=" ")
token.fit_on_texts(xtr)
cPickTle.dump(token, open("tokenfile", "wbh"))
# make up zero if it's not Tong enough, cut off if it's too long
xtr = token.texts_to_sequences(xtr)
xte token.texts_to_sequences(xte)
xtr sequence.pad_sequences(xtr, maxlen=maxlen)
xte = sequence.pad_sequences(xte, maxlen=maxTlen)
model = Sequential()
minput = Input(shape=(maxlen, ), name="'minput')
embedding = Embedding(max_features,
embedding_dims,

input_length=maxlen,
dropout=0.2) (minput)
convs = []
for i in filter_length:
conv = convolutionlb(nb_filter=nb_filter,
filter_length=i,
border_mode="'valid',
activation="relu',
subsample_Tlength=1) (embedding)
pool_layer = MaxPoolinglb() (conv)
flatten = Flatten() (pool_layer)
convs.append(flatten)
out = Merge(mode='concat', name="merge_name") (convs)
# add a vanilla hidden Tayer:
densel = Dense(hidden_dims) (out)
dropoutl = Dropout(0.2) (densel)
activationl = Activation('relu') (dropoutl)
# project onto a single unit output layer, and squash it with a sigmoid:
dense2 = Dense(15) (activationl)
activation2 = Activation('softmax') (dense2)



model = Model (input=minput, output=activation2)
model.compile(loss="'categorical_crossentropy"',
optimizer="adam',
metrics=["accuracy'])
plot(model, to_file="'model.png', show_shapes=True)
model.fit(xtr, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(xte, y_test))
json_string = model.to_json()
fs = open("weibo_model.json", "w")
fs.write(json_string)
fs.close()
model.save_weights('weibo_weights.h5")
return model

def nsh_pre(filepath ='weibo_model.json', max1len=400):

fs = open("weibo_model.json", "r")
json_string = fs.read()
fs.close()

model = model_from_json(json_string)
model.load_weights('weibo_weights.h5")
token = cPickle.load(open("tokenfile"™, 'rb'))
title = draw_data()
title_item = title.get_title_data('2020-04-22"', '2020-4-28"', 0)
id2text = []
for ti in title_item:
id2text.append([[i['_id"']], list(jieba.cut(ti['title_text'])),
[ti['title_content']]])
arrayid2text = np.array(id2text)
predictData =
sequence.pad_sequences (token.texts_to_sequences(arrayid2text[:, 1]),
max1len=maxlen)
result = model.predict(predictbata)
result_dict = dict()
for i in range(id2text):
print(id2text[i][2] + str(result[i]))
result_dict[id2text[i][0]] = result[i]
np.savez('classify.dict", result_dict)

3.2 Probe User

Each user in Weibo has its own ID. for example, a certain percentage of users with the first total
comments in a certain period of time (4.22-4.28) are taken as probe users.

def prouser(prousernum, dicttoid, percent):
import operator
prouser = {}
if percent == '%':
templist = []
templist = sorted(dicttoid.iteritems(),key =
operator.itemgetter(l),reverse=True)
changepercent = int(len(dicttoid) * prousernum // 100)
for i in range(changepercent):
prouser[templist[i][0]] = None
else:
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for i in dicttoid.keys():
if dicttoid[i]>=prousernum:
prouser[i] = None
return prouser

3.3 SH&Strong Ties Model

def regression():

each_item = np.load("sHitem.npz")['arr_0'1[ (]

xda = []

yda = []

save_id = each_item.keys();

for i in save_id:
if len(each_item[i]) == 4:

xda.append(each_item[i][0:-1])
yda.append(each_item[i][-1])

n_sample = Ten(xda)

sidx = np.random.permutation(n_sample)

n_train = int(np.round(n_sample * 0.3))

texset = np.loglO(np.array([xda[s] for s in sidx[:n_train]])+1)

teyset = np.array([yda[s] for s in sidx[:n_train]])

test_id = [save_id[s] for s in sidx[:n_train]]

trxset = np.loglO(np.array([xda[s] for s in sidx])+1)

tryset = np.loglO(np.array([yda[s] for s in sidx]))

train_id = [save_id[s] for s in sidx]

rg = linear_model.LinearRegression()

rg.fit(trxset, tryset)

prey = np.power(10, rg.predict(texset))

trypre = rg.predict(trxset)

evs = explained_variance_score(teyset, prey)

rmse = np.sqrt(mean_squared_error(teyset, prey))

Togging.info("rmse:"+str(rmse)+" evs:"+str(evs))

Togging.info("mape:"+str(mape(prey, teyset))+"%'")

draw_same(teyset, prey)

dict_id_pred = dict(Q)

for i in range(len(train_id)):
dict_id_pred[train_id[i]] = [trypre[i], tryset[i]]

for i in range(len(test_id)):
dict_id_pred[test_id[i]] = [prey[i], teyset[i]]

np.savez("SH_pred", dict_id_pred)

Togging.info(u", done!")

3.4 Competetion Model

def targetIn(bitem, titem):

temp = titem * 0.2

Tess_Tline = titem - temp

up_line = titem + temp

if bitem >= less_line and bitem <= up_line:
return 1

else:
return 0
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def train_data(queue, birds, level=3000):
allexample = []
bestsum = 0.0
for Tisti in queue:
for idnew in listi:
if dict_id_pred[idnew][0] > Tevel:
allexample.append([idnew, dict_id_pred[idnew][0],
dict_id_pred[idnew] [1]])
bestsum += (abs(dict_id_pred[idnew] [0] - dict_id_pred[idnew]
[1]1)/dict_id_pred[idnew] [1])
if len(allexample) > 0:
pso = PSOo(fitFunc=fitFunc, birdNum=1500, cl=3, c2=2, solutionSpace=100,
extend=allexample, birds=birds)
1BestPosition, birds, 1BestFit = pso.solve(300)
return 1BestPosition, birds, TBestFit, bestsum/len(allexample)
return None, birds, 0, O

def predict_data(position, predict_example, Tevel=3000, true_predict = []):
#print position
basesum = 0.0
predsum = 0.0
for i in predict_example:
if dict_id_pred[i][0] > level:
new_temp = classify_dict[i].reshape(1l, 15)
pred_new = dict_id_pred[i][0] + np.dot(np.dot(new_temp, position),
new_temp.T)
true_predict.append([pred_new[0][0], dict_id_pred[i][0],
dict_id_pred[i][1]])
predsum += (abs(pred_new[0][0] - dict_id_pred[i][1])/dict_id_pred[i]
[11D
else:
true_predict.append([dict_id_pred[i][0], dict_id_pred[i][0],
dict_id_pred[i][1]11)
predsum += (abs(dict_id_pred[i][0] - dict_id_pred[i]
[1])/dict_id_pred[i][1])
basesum += (abs(dict_id_pred[i][0] - dict_id_pred[i][1])/dict_id_pred[i]
[11D

if Ten(predict_example)>0:
return true_predict

def drawPosition(dayposition, daytime, level, k):

topic_name = [u'{ K%', u' 4" ,u" B u" @k ,u'48",
u'iRE U A u o T EE u ke,
u'E A u ERRT R u R R U ]
plt.matshow(dayposition)
np.savetxt("interaction "+str(daytime+datetime.timedelta(days = (-k+1)))+"
to "+str(daytime+datetime.timedelta(days = 1))+" Tevel="+str(level)+".csv",
dayposition,
delimiter=", ')
plt.title("interaction "+str(daytime+datetime.timedelta(days = (-k+1)))+" to
"+str(daytime+datetime.timedelta(days = 1))+" level="+str(level), fontsize=18)
plt.xticks(np.arange(15), topic_name, fontsize=16, rotation=30)
plt.yticks(np.arange(15), topic_name, fontsize=16, rotation=30)
v = np.linspace(-1000,1000, endpoint=True)
plt.colorbar(ticks=v)
# plt.show()



plt.savefig(str(daytime)+" level="+str(level)+".png", dpi=200)

def plot_3d(datex, travel):

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

X = mdates.date2num(np.array(datex))

Y = np.arange(0, 15, 1)

xnew = np.Tlinspace(X.min(), X.max(), 6*1en(X))
ynew = np.linspace(Y.min(), Y.max(), 3*Ten(Y))

z = travel.T
Z = np.zeros(shape=(0,6*1en(X)))
for i in range(z.shape[0]):
z_smooth = spline(X, z[i], xnew)
Z = np.insert(z, z.shape[0], values=z_smooth, axis=0)
znew = np.zeros(shape=(3*Ten(Y),0))
for i in range(z.shape[1]):
z_smooth = spline(y, z[:,i], ynew)
znew = np.insert(znew, znew.shape[l], values=z_smooth, axis=1)
xnew, ynew = np.meshgrid(xnew, ynew)

topic_name = [u'{R%"',u' & ,u" BHE Ju'@FE" ,u'"ihg ",
u'BRIE U EE L u s U EEH u e
u'BE AT U EBR u R U AR U ]
yearsFmt = mdates.DateFormatter('%Y-%m-%d")
ax.xaxis.set_major_formatter(yearsFmt)
surf = ax.plot_surface(xnew, ynew, znew, rstride=1, cstride=1,
cmap=plt.cm.jet)

plt.yticks(np.arange(15), topic_name, fontsize=15, rotation=40)

fig.colorbar(surf)

plt.show()

def get_data(Q):
draw_mysql = draw_data()
rmses = []
mapes = []
for level in range(500, 3500, 300):
allposition = np.zeros(shape=(15, 15))
begin_time = datetime.datetime.strptime('2020-04-22", '%Y-%m-%d"')
end_time = datetime.datetime.strptime('2020-04-28", '%Y-%m-%d"')
queue = []
for i in range(3):
print begin_time
temp = draw_mysql.get_title_data(str(begin_time), str(end_time), 0)
today_day = []
for ti in temp:
if ti['_id'] in dict_id_pred and ti['_id'] in classify_dict:
today_day.append(ti['_id"'])
queue.append(today_day)
begin_time = end_time



end_time = end_time + datetime.timedelta(days = 1)
birds = None
pred_position = None
true_predict []
TbestFitList [1]
baseFitList = []
xdate = []
travel = np.zeros(shape=(0, 15))
for i in range(15):#87
xdate.append(begin_time+datetime.timedelta(days = -1))
temp = draw_mysql.get_title_data(str(begin_time), str(end_time), 0)
today_day = []
for ti in temp:
if ti['_id'] in dict_id_pred and ti['_id'] in classify_dict:
today_day.append(ti['_id"'])
birds = None
temp_position, birds, lbestfit, basefit = train_data(queue, birds,

Tevel)
if temp_position != None:
TbestFitList.append(lbestfit)
baseFitList.append(basefit)
pred_position = temp_position
travel = np.insert(travel, travel.shape[0],
values=temp_position[9], axis=0)
allposition = allposition + pred_position
print begin_time+datetime.timedelta(days = -1)
# drawPosition(pred_position, begin_time+datetime.timedelta(days
= -1), Tevel, 3)
true_predict = predict_data(pred_position, today_day, level,
true_predict)
queue.pop(0)
queue.append(today_day)
begin_time = end_time
end_time = end_time + datetime.timedelta(days = 1)
np.savetxt("allposition"+str(level)+".csv",
allposition/len(xdate),
delimiter=", ')
drawPosition(allposition/len(xdate), begin_time+datetime.timedelta(days
= -1), Tevel, 0)
mape = 0.0
rmse = 0.0
for i in true_predict:
# mape += targetIn(i[0], i[2])
mape += abs(i[0] - i[2])/i[2]
rmse += (i[0]-i[2])**2
mape /= len(true_predict)
rmse /= len(true_predict)
rmse = np.sqrt(rmse)
rmses.append(rmse)
mapes . append(mape)
basemape = 0.0
basermse = 0.0
for i in true_predict:
# basemape += targetIn(i[1l], 1i[2])
basemape += abs(i[1] - i[2]1)/i[2]
rmse += (i[1]-i[2])**2
basemape /= Ten(true_predict)
basermse /= Ten(true_predict)



basermse = np.sqrt(basermse)
plt.plot(range(1000, 4000, 300), mapes, label="mape")
plt.pTot([1000, 4200], [basemape, basemape], Tabel="basemape")

np.savetxt("rmse.csv",rmses,delimiter="', ')
np.savetxt("mape.csv", mapes, delimiter=", ")
plt.show()

4.Result

| crawled through all the tweets posted by seven bloggers in the Weibo dataset between April
22 and April 28. These seven bloggers have more than 10 million fans, and their microblogs
usually belong to different sectors.

4.1 SH&SH+Strong Ties Model

First, we can get the average survival time of each microblog.
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We can find that the average survival time of each microblog is about 100 hours. Therefore, we
can define the first three hours as the initial time, and use sh model to predict the heat degree.
The result is as shown in the figure (the red dot is the training set and the black dot is the test
set):
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It can be seen from the figure that these points are basically linear. At the same time, some
points can be found, which are special cases. At the initial stage of microblogging, there was no
attention, but after a period of time, the popularity will skyrocket.

Now we can get a new graph by adding strong ties.
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As can be seen from the figure, the obvious point aggregation is better. Therefore, it can be
preliminarily judged that strong connection is helpful for the improvement of the model.

4.2 Competition Model

Select microblogs with more than x comments as training samples. Because the competition
usually takes place between popular microblogs. The hot topics (micro blog with small
comments) are relatively stable, and the hot topics are not easy to be seized, nor other hot
topics. Therefore, it will increase the error. This is also why RMSE decreases with the increase of
X, while MAPE (mean absolute percentage error) is basically unchanged.
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4.3 Contrast

Model RMSE MAPE

SH 2693.015 39.482%
SH+3&8iE= 1552.598 17.948%
FREEME (X=1000) 1183.103 16.520%
=SB/ (X=2000) 1147.690 16.423%
FRIEFE (X=3000) 1116.248 16.632%

It can be seen from the table that the competition matrix (user impact on category) model is
better than the SH + strong ties model. And SH + strong ties model is better than SH model.

5. Summary

This assignment let me learn how to predict the topic heat and how to predict the multiple
topic competition and communication heat. But unfortunately, because | have only one person,
although | tried to put forward my own method, | failed. So | can only make some improvement
on the existing model. Thank you, teacher Fu and the TA for this course. teacher Fu and the elder
and elder students who have explained all kinds of knowledge to us are very responsible. At the
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same time, they are very patient, which makes me feel a lot of more interesting things in the
computer field.
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