
Ad Hoc Network Routing Comparison

David Chiasson
dchiasso@purdue.edu

Abstract

A Mobile Ad Hoc Network (MANET) is a wire-
less network designed to operate without a preex-
isting infrastructure. Such a network is self sup-
ported, with each node acting as a source and
drain for information, as well as a router for com-
munication between other nodes. Due to the com-
plexity and instability of an ad hoc network, rout-
ing information between nodes becomes a nontriv-
ial problem. The limited battery, processing power,
and bandwidth available to wireless nodes make
finding an optimal algorithm even more essential
to the practicality of such a network. Many differ-
ent routing protocols have been proposed and im-
plemented in ad hoc networks. Each of these pro-
tocols has its own advantages and disadvantages,
making the optimal method unapparent. This pa-
per will discuss different methods used by vari-
ous routing protocols, and the situations in which
those protocols excel. The information presented
will allow the network designer to more effectively
choose the optimal routing protocol based on dif-
ferent network variables.

Keywords: MANET, Ad Hoc, Routing Proto-
col, Optimal Routing, Protocol Comparison

A Mobile Ad Hoc Network (MANET) is
a wireless network designed to operate without
a preexisting infrastructure. Such a network
is self supported, with each node acting as a
source and sink for information, as well as a
router for communication between other nodes.
There are many different protocols proposed for
routing information between nodes. Most of these
protocols can be placed into general categories

based on the techniques employed. Perhaps the
most general category is proactive versus reactive
routing philosophies[8].

Proactive Routing Protocols

Proactive routing protocols, or table driven
protocols, in their most basic form, store an
exhaustive table containing all network connec-
tions between every node. This creates very low
latency in a network because every node is able
to calculate the most efficient route to its desti-
nation on demand. However, keeping that table
updated poses a difficult problem. Every time a
connection between nodes is broken or created,
the whole network must be alerted of the change.
If connections are changed at a fast enough rate,
the network is unable to keep up. This severely
limits the size and rate of mobility practical with
a proactive routing network. Popular table driven
protocols include Destination Sequenced Distance
Vector Routing (DSDV)[7] and Optimized Link
State Routing Protocol (OLSR)[4]. These table
driven protocols can be further categorized based
on types of routing tables[10].

Distance Vector Versus Link State Tables

The distance vector tables save routing direc-
tions to every possible destination in the network.
These tables include both the next hop in the
direction of the destination node as well as the
distance to that node in the form of hops, time,
or link quality[6]. Link state proactive routing
protocols also keep exhaustive routing tables
saved on each individual node but do not save the
routing directions. Instead, these tables save the

connections of each other node in the network, or
the topology of the network[1]. This allows each
node to calculate for itself the optimal path to the
destination node. Link state routing protocols are
more reliable in the event of topology change as it
is easy for a node to find an alternate path to the
destination, but the required algorithm is naturally
more complex[10].

Reactive Routing Protocols

Reactive Routing Protocols, also called on-
demand or source-initiated routing protocols, do
not store connection information on the nodes.
Instead, if a node wants to initiate communication
with another node, it sends out a mass route
request (RREQ) message to the entire network.
Once the target node receives this message, it
sends a route reply (RREP) message along the
reverse path of the RREQ message. This category
of routing methods has a higher latency than the
proactive methods, but does not require exhaustive
routing tables to be stored on every node, nor does
it require constant routing updates to flood the
network. Ad hoc On-Demand Distance Vector
Routing (AODV)[2] is a popular reactive routing
protocol.

Packet Addressing Method

Routing protocols can also be categorized
based on how packets are addressed. These can
be either source routing or hop-by-hop routing.
Source routing includes the complete directions to
the destination node. Each node along the route
simply reads from the packet header where to
forward the packet. Hop-by-hop routing on the
other hand only includes the destination in the
packet header. The source node simple forwards it
to the node that is in the direction of the destination
node, and every node along the path is responsible
for determg the next hop. Hop-by-hop routing
is much more robust in the event of topology
change, as the route can be altered by any node
along the route, but can sometimes lead to loops in
network[10].

Flat Versus Hierarchial

Ad hoc networks can also vary in regards
to topology of node relationships. The classic
MANET has all participant nodes being identical
and equal. This is considered a flat routing
approach. Other approaches include hierarchical
routing and geographic position assisted rout-
ing. A hierarchical routing protocol such as
the zone routing protocol (ZRP)[9] organizes
nodes into smaller groups or zones. These zones
will communicate with each other pro actively,
but communicate within themselves reactively.
Another method used in hierarchical routing is
the specialization of nodes. Nodes with greater
processing power might be chosen to form a sort
of backbone for the network, carrying the majority
of the routing load, while less able nodes function
predominately as a source or sink. Geographic
position assisted routing, such as the location
aided routing (LAR)[5] protocol, uses limited
geographic information about the nodes to limit
the limit the flooding of a network. These two
categories of routing protocols have been referred
to as hybrid routing protocols since they use a
combination of proactive and reactive methods.
Such protocols have been shown to greatly en-
hance the scalability of a network[10].

Protocols Tested

In this study, three different routing protocols
of DSDV, AODV, and DSR are explored. These
are three of the more standard routing protocols
but there are many more in circulation. The ex-
ploration of other protocols will be left to further
research.

DSDV[7]: The destination sequenced dis-
tance vector routing protocol is a proactive
distance vector table routing protocol. Routing
tables are stored on each node and are frequently
broadcasted to neighbors to resolve differences.
One of the oldest, this protocol was published
in 1994 by Charles E. Perkens at IBM, yet this
protocol still receives much attention today as one
of the premier proactive algorithms.

AODV[2]: The Ad hoc On-demand Distance
Vector routing protocol is a reactive routing
protocol that waits until a route is required to
discover it. AODV also saves routing tables which
are used to return RREP messages and route the
data packets. This protocol was developed in
1999 by Charles E. Perkens at Sun Microsystems
Laboratories.

DSR[3]: The Dynamic Source Routing pro-
tocol is a reactive routing protocol which relies
on the two main functions of route discovery and
route maintenance to maintain communication
between nodes. This protocol is distinctive in it’s
use of source routing which can be updated on
demand through the route maintenance procedure.
This procedure was published in 1998 by David B.
Johnson at Carnegie Mellon University.

Simulation Set Up

The network model used in this study consists
of a set number of wireless nodes contained within
a square area, moving towards random destinations
at random speeds. Once that destination is reached,
a new random destination is set. Fifty random net-
work scenarios are created for every data point in
an attempt to average out the negative effects of
random generation. The same network scenarios
are tested with all three protocols to ensure a fair
comparison.

The purpose of this study is not to test each
routing protocol in every single possible scenario.
Because of the many network variables and imag-
inable permutations, such an exhaustive study
would be impractical. Instead, this study’s purpose
is to characterize the strong areas of each routing
protocol primarily by testing extreme conditions.
If a particular protocol preforms significantly bet-
ter than the other protocols in a certain condition,
then more simulations are run to explore that ad-
vantage.

As can be seen in appendix one, the testing
software takes as variables the values of number of
trials, number of nodes, physical size of network
boundaries, maximum movement rate, number of

connections, and the frequency of communication
rate. Adjusting these variables allows one simu-
late a large number of varying network scenarios.
However, they by no means represent the diversity
of scenarios found in practice. Further study can be
done adding elements of unidirectional links, het-
erogeneous traffic patterns or movement patterns,
sleeping nodes, power restraints and many more.

In this study, the metric of packet delivery
ratio is used. This is the number of received
packets divided by the number of sent packets.
This is the primary and most basic requirement
for a network and answers the question, did
communication successfully take place? However,
it does not address the the quality or efficiency
of that communication among other things. In
order to gain a more complete view of protocol
performance, a designer could consider looking at
other network metrics of routing overhead, aver-
age delay time, path optimality, security, energy
efficiency, route acquisition time, and many others.

Experiment Results

DSDV:
After running approximately 8000 network sim-
ulations, not a single scenario has shown DSDV
to have a significant throughput advantage over
either AODV or DSR. When looking solely at the
criteria of packet delivery ratio, DSDV appears to
be inferior.
AODV:
The AODV routing protocol was found to perform
exceptionally well at high mobility rates. Figure
1 shows results from a scenario of fifty nodes in
a rather large square area of 900 by 900 meters.
The area is large enough that even with zero
movement, the network is still struggling to get all
the packets passed. As node mobility is increased,
DSDV throughput drops dramatically. DSR
also handles reasonably well, but as mobility is
increased, AODV has a very significant advantage
over the other two routing protocols. AODV also
outperformed DSR in larger networks as seen in
Figure 2 where the network size is increased with
a constant average node density of one node per
8000 meters squared.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

P
a
c
k
e
t

D
e
li

v
e
ry

 R
a
ti

o

Maximum Node Speed (m/s)

High Mobility

DSDV

AODV

DSR

Figure 1. Protocol Performance During In-
creased Mobility Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

P
a
c
k
e
t

D
e
li

v
e
ry

 R
a
ti

o

Size of Network (number of nodes with area per node set at 8000 meters squared)

Network Size

DSDV

AODV

DSR

Figure 2. Protocol Performance During In-
creased Mobility Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06

P
a
c
k
e
t

D
e
li

v
e
ry

 R
a
ti

o

Network Area (meters squared)

Increasing Network Area

DSDV

AODV

DSR

Figure 3. Protocol performance during in-
creased network area with nodes set at 25

DSR:
The DSR routing protocol tended to outperform
both DSDV and AODV under moderate testing
conditions. Figure 2 shows DSR with slightly
higher throughput until the network reaches a cer-
tain size. Figure 3, which increases network area
with a set 25 nodes, shows that DSR also fares bet-
ter in scarcely populated networks.

References

[1] E.Baccelli C. Adijh and P. Jacquet. Link state routing
in wireless adhoc networks. In MILCOM ’03: Military
Communications Conference. IEEE Computer Society,
pages 1274–1279, 2003.

[2] E. Royer C. Perkins. Ad hoc on demand distance vector
routing. In 2nd IEEE Workshop on Mobile Computing
Systems and Applications, February 1999.

[3] David A. Maltx David B. Johnson and Josh Broch.
Dsr: The dynamic source routing protocol for multi-hop
wireless ad hoc networks. In MobiCom ’98, 1998.

[4] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti,
A. Qayyum, and L. Viennot. Optimized link state rout-
ing protocol for ad hoc networks. In Multi Topic Confer-
ence, 2001. IEEE INMIC 2001. Technology for the 21st
Century. Proceedings. IEEE International, pages 62 –
68, 2001.

[5] Y. B. Ko and N. H. Vaidya. Location-aided routing (lar)
in mobile ad hoc networks. In Wirel, Netw,, volume 6,
pages 307–321, 200.

[6] Yi Lu, Weichao Wang, Yuhui Zhong, and Bharat K.
Bhargava. Study of distance vector routing protocols for
mobile ad hoc networks. In PerCom’03, pages 187–194,
2003.

[7] C. Perkens. Highly dynamic destination sequenced dis-
tance vector routing (dsdv) for mobile computers. In
ACM SIGCOMM94, 1994.

[8] Ingo Gruber Rdiger Schollmeier and Michael Finken-
zeller. Routing in mobile ad-hoc and peer-to-peer net-
works a comparison. In Networking 2002 Workshops,
LNCS 2376, pages 172–186, 2002.

[9] M. Pearlman Z. Haas. The performance of query control
schemes for the zone routing protocol. In IEEE/ACM
Transactions on Networking, volume 9, August 2001.

[10] Stamatis Vassiliadis Zhijiang Chang, Georgi Gaydad-
jiev. Routing protocols for mobile ad-hoc networks:
Current development and evaluation. In Proceedings
of the 16th Annual Workshop on Circuits, Systems
and Signal Processing, ProRisc 2005, number 489-494,
November 2005.

Appendices
Bash Shell Scripts
Testing Script
Original code that forms the high level backbone of running the simulation. Takes the parameters of number
of trials, number of nodes, physical size of network boundary, maximum movement rate, number of connec-
tions, and the frequency of communication rate. Calls the programs to create traffic and movement patterns,
calls the network simulator script, then uses two awk programs to record and process results.

1 # ! / b i n / bash
2 # t e s t s c r i p t : T h i s s c r i p t a c c e p t s t h e ne twork v a r i a b l e s , c r e a t e s and runs t h e

s i m u l a t i o n s , t h e n h a n d l e s r e s u l t o u t p u t
3 echo ” ”
4 echo ” ”
5 echo ”Welcome t o David Chiasson ’ s ad hoc r o u t i n g t e s t e r . ”
6 echo ” ”
7 echo ”DDD AA V V I I I I I DDD ”
8 echo ”D D A A V V I D D”
9 echo ”D D AAAA V V I D D”

10 echo ”D D A A V V I D D”
11 echo ”DDD A A VV I I I I I DDD ”
12 echo ” ”
13 i f [” $# ” != ” 6 ”] ; then
14 echo ” Usage : t e s t s c r i p t . sh t r i a l s nodes s i z e movemen t r a t e

maximum connect ions r a t e ”
15 echo ” example : . / t e s t s c i p t . sh 50 100 500 20 10 2 . 0 ”
16 echo ” e x i t i n g . . . ”
17 e x i t 1
18 f i
19
20 t r i a l s =$1
21 nodes =$2
22 s i z e =$3
23 movement=$4
24 max connec t =$5
25 r a t e =$6
26
27 echo ======================================
28 echo Begin T e s t $nodes−$ s i z e−$movement−$max connect−$ r a t e
29 echo ======================================
30
31 # s c e n a r i o v a r i a b l e s e c t i o n ##############
32
33
34 # end s c e n a r i o v a r i a b l e s e c t i o n ########
35
36 mkdir s c e n a r i o s / $nodes−$ s i z e−$movement−$max connect−$ r a t e
37 mkdir s c e n a r i o s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / t r a f f i c
38 mkdir s c e n a r i o s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / movement
39
40 mkdir r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e
41
42 n s a d d r e s s =” / home / d c h i a s s o / Downloads / ns−a l l i n o n e −2 .34 / ns −2 .34 / ns ”
43 mvmt address =” / home / d c h i a s s o / Downloads / ns−a l l i n o n e −2 .34 / ns −2 .34 / indep−u t i l s / cmu−scen−

gen / s e t d e s t / s e t d e s t ”
44 t r f k a d d r e s s =” / home / d c h i a s s o / Downloads / ns−a l l i n o n e −2 .34 / ns −2 .34 / indep−u t i l s / cmu−scen−

gen / cb rg e n . t c l ”
45
46 s c e n a r i o n u m b e r =0
47
48 # echo ”How many t r i a l s would you l i k e t o run ?”;
49 # read i n p u t l i n e
50 # s c e n a r i o s =” $ i n p u t l i n e ”
51 # w h i l e [−z ”${ s c e n a r i o s }”] ; do
52 # echo ” P l e a s e e n t e r a number”
53 # read i n p u t l i n e
54 # s c e n a r i o s =” $ i n p u t l i n e ”
55 # done
56 # echo ”what you j u s t i n p u t e d was :”
57 # echo $ s c e n a r i o s
58 # echo ” r i g h t ?”
59
60 i f [−e r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / DSDV resu l t s . t x t] ; then
61 rm r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / DSDV resu l t s . t x t
62 f i
63 i f [−e r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / AODV resul ts . t x t] ; then
64 rm r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / AODV resul ts . t x t
65 f i
66 i f [−e r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / D S R r e s u l t s . t x t] ; then
67 rm r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / D S R r e s u l t s . t x t
68 f i
69
70 whi le [$ s c e n a r i o n u m b e r − l t $1] ; do
71
72 l e t s c e n a r i o n u m b e r ++
73 echo CURRENT TEST :
74 echo nodes =$2 s i z e =$3 movement=$4 c o n n e c t i o n s =$5 r a t e =$6
75 echo Now c r e a t i n g s c e n a r i o number $ s c e n a r i o n u m b e r o u t o f $1
76
77 t r f c p a t = . / s c e n a r i o s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / t r a f f i c /

s c e n a r i o $ s c e n a r i o n u m b e r
78 move pat = . / s c e n a r i o s / $nodes−$ s i z e−$movement−$max connect−$ r a t e / movement /

s c e n a r i o $ s c e n a r i o n u m b e r
79 r s l t d i r = . / r e s u l t s / $nodes−$ s i z e−$movement−$max connect−$ r a t e
80
81 echo ” c r e a t i n g t r a f f i c p a t t e r n . . . ”
82 $ n s a d d r e s s $ t r f k a d d r e s s −t y p e c b r −nn $ (($nodes −1)) −s eed 1 −mc $max connec t

− r a t e $ r a t e > $ t r f c p a t
83 # . / t r a f f i c m a k e r . sh $nodes $max connec t $ r a t e > $ t r f c p a t
84 echo ”DONE”
85
86 echo ” c r e a t i n g movement p a t t e r n . . . ”
87 $mvmt address −n $nodes −p 0 . 0 −M $movement − t 100 .0 −x $ s i z e −y ” 0 . 2 5 ∗ $ s i z e

” > $move pat
88 echo ”DONE”
89
90 echo T e s t i n g DSDV wi th s c e n a r i o $ s c e n a r i o n u m b e r
91
92 $ n s a d d r e s s adhoc . t c l DSDV $ t r f c p a t $move pat $nodes $ s i z e > t r a s h . t x t
93 awk −f g e t R a t i o . awk temp . t r >> $ r s l t d i r / DSDV resu l t s . t x t
94
95 echo T e s t i n g AODV wi th s c e n a r i o $ s c e n a r i o n u m b e r
96
97 $ n s a d d r e s s adhoc . t c l AODV $ t r f c p a t $move pat $nodes $ s i z e > t r a s h . t x t

98 awk −f g e t R a t i o . awk temp . t r >> $ r s l t d i r / AODV resul ts . t x t
99

100 echo T e s t i n g DSR wi th s c e n a r i o $ s c e n a r i o n u m b e r
101
102 $ n s a d d r e s s adhoc . t c l DSR $ t r f c p a t $move pat $nodes $ s i z e > t r a s h . t x t
103 awk −f g e t R a t i o . awk temp . t r >> $ r s l t d i r / D S R r e s u l t s . t x t
104
105 # echo T e s t i n g TORA w i t h s c e n a r i o $ s c e n a r i o n u m b e r
106
107 # $ n s a d d r e s s adhoc . t c l TORA $ t r f c p a t $move pat $nodes $ s i z e > t r a s h . t x t
108 # awk − f g e t R a t i o . awk temp . t r >> $ r s l t d i r / T O R A r e s u l t s . t x t
109
110
111 echo s c e n a r i o $ s c e n a r i o n u m b e r s u c c e s f u l y comple t ed !
112
113 done
114
115 echo =======================================
116 echo T e s t $nodes−$ s i z e−$movement−$max connect−$ r a t e RESULTS SUMMARY
117 echo =======================================
118 echo DSDV
119 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / DSDV resu l t s . t x t
120 echo AODV
121 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / AODV resul ts . t x t
122 echo DSR
123 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / D S R r e s u l t s . t x t
124
125 echo ======================================= >> a c t i v e r e s u l t s . t x t
126 echo T e s t $nodes−$ s i z e−$movement−$max connect−$ r a t e RESULTS SUMMARY >>

a c t i v e r e s u l t s . t x t
127 echo ======================================= >> a c t i v e r e s u l t s . t x t
128 echo DSDV >> a c t i v e r e s u l t s . t x t
129 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / DSDV resu l t s . t x t >> a c t i v e r e s u l t s . t x t
130 echo AODV >> a c t i v e r e s u l t s . t x t
131 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / AODV resul ts . t x t >> a c t i v e r e s u l t s . t x t
132 echo DSR >> a c t i v e r e s u l t s . t x t
133 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / D S R r e s u l t s . t x t >> a c t i v e r e s u l t s . t x t
134
135 echo ======================================= >> $ r s l t d i r / summary . t x t
136 echo T e s t $nodes−$ s i z e−$movement−$max connect−$ r a t e RESULTS SUMMARY >> $ r s l t d i r /

summary . t x t
137 echo ======================================= >> $ r s l t d i r / summary . t x t
138 echo DSDV >> $ r s l t d i r / summary . t x t
139 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / DSDV resu l t s . t x t >> $ r s l t d i r / summary . t x t
140 echo AODV >> $ r s l t d i r / summary . t x t
141 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / AODV resul ts . t x t >> $ r s l t d i r / summary . t x t
142 echo DSR >> $ r s l t d i r / summary . t x t
143 awk −f a v e r a g e r e s u l t s . awk $ r s l t d i r / D S R r e s u l t s . t x t >> $ r s l t d i r / summary . t x t

Traffic Scenario Maker
This program is original code which takes the parameters of number of nodes, number of connections, and
communication rate, then returns a random traffic scenario file.

1 # ! / b i n / bash
2 # making t r a f f i c p a t t e r n s
3 i f [” $# ” != ” 3 ”] ; then
4 echo ” Usage : t r a f f i c m a k e r . sh nodes maximum connect ions r a t e ”
5 echo ” example : . / t r a f f i c m a k e r . sh 50 100 2 . 0 ”

6 echo ” e x i t i n g . . . ”
7 e x i t 1
8 f i
9

10 nodes =$1
11 c o n n e c t =$2−1
12 r a t e = ‘awk ’BEGIN{ p r i n t f (”%f ” , 1 / ’ $3 ’) } ’ ‘
13
14 c u r r e n t n o d e =0
15
16 f o r ((i =0 ; i<=$ c o n n e c t ; i +=1))
17 do
18
19 # t i m e=$ [($RANDOM % 100) + 1]
20 # t i m e =‘awk ’BEGIN{ s rand (rand ()) ; p r i n t f (”% f ” , rand () ∗ 100) } ’ ‘
21 r a n d n o d e =$ [$RANDOM % $nodes]
22
23 whi le [” $ r a n d n o d e ” == ” $ i ”] ; do
24 r a n d n o d e =$ [$RANDOM % $nodes]
25 done
26
27 echo ” # ”
28 echo ” # c o n n e c t i o n number ” $ i
29 echo ” # ”
30 echo ’ s e t udp (’ $i ’) [new Agent /UDP] ’
31 echo ’ $ n s a t t a c h −a g e n t $node (’ $ c u r r e n t n o d e ’) $udp (’ $i ’) ’
32 echo ’ s e t n u l l (’ $ i ’) [new Agent / Nu l l] ’
33 echo ’ $ n s a t t a c h −a g e n t $node (’ $ rand node ’) $ n u l l (’ $ i ’) ’
34 echo ’ s e t c b r (’ $ i ’) [new A p p l i c a t i o n / T r a f f i c /CBR] ’
35 echo ’ $ c b r (’ $i ’) s e t p a c k e t S i z e 512 ’
36 echo ’ $ c b r (’ $i ’) s e t i n t e r v a l ’ $ r a t e
37 echo ’ $ c b r (’ $i ’) s e t random 1 ’
38 echo ’ $ c b r (’ $i ’) s e t maxpk t s 1 ’
39 echo ’ $ c b r (’ $i ’) a t t a c h −a g e n t $udp (’ $i ’) ’
40 echo ’ $ n s c o n n e c t $udp (’ $i ’) $ n u l l (’ $ i ’) ’
41 echo ’ $ n s a t ’ $ [($RANDOM % 100)] ’ . ’ $ [($RANDOM % 100)] $ [($RANDOM %

100)] ’ ” $ c b r (’ $i ’) s t a r t ” ’
42
43 l e t c u r r e n t n o d e ++
44 i f [$ c u r r e n t n o d e −ge $nodes] ; then
45 c u r r e n t n o d e =0
46 f i
47 done

TCL Script
adhoc.tcl
This code is adapted from a script written by Chih-Heng Ke of National Cheng Kung University in Taiwan.
This code runs the simulation files through the NS software, and creates the trace files.

1 i f { $ a r g c ! =5} {
2 puts ” Usage : ns a d h o c . t c l R o u t i n g P r o t o c o l T r a f f i c P a t t e r n S c e n e P a t t e r n

Node Count s i z e ”
3 puts ” Example :ns a d h o c . t c l DSDV cbr−50−10−8 scene−50−0−20 100 500 ”
4 e x i t
5 }
6
7 s e t pa r1 [l i n d e x $argv 0]
8 s e t pa r2 [l i n d e x $argv 1]

9 s e t pa r3 [l i n d e x $argv 2]
10 s e t pa r4 [l i n d e x $argv 3]
11 s e t pa r5 [l i n d e x $argv 4]
12
13 s e t v a l (chan) Channel / W i r e l e s s C h a n n e l ;# c h a n n e l t y p e
14 s e t v a l (prop) P r o p a g a t i o n / TwoRayGround ;# rad io−propaga t i onmode l
15 s e t v a l (n e t i f) Phy / W i r e l e s s P h y ;# ne twork i n t e r f a c e t y p e
16 s e t v a l (mac) Mac /802 11 ;# MAC t y p e
17
18 i f { $par1== ”DSR”} {
19 s e t v a l (i f q) CMUPriQueue
20 } e l s e {
21 s e t v a l (i f q) Queue / D r o p T a i l / Pr iQueue ;# i n t e r f a c e queue t y p e
22 }
23 s e t v a l (l l) LL ;# l i n k l a y e r t y p e
24 s e t v a l (a n t) Antenna / OmniAntenna ;# an tenna model
25 s e t v a l (i f q l e n) 50 ;# max p a c k e t i n i f q
26 s e t v a l (rp) $pa r1 ;# r o u t i n g p r o t o c o l
27 s e t v a l (x) $pa r5
28 s e t v a l (y) $pa r5
29 s e t v a l (s eed) 0 . 0
30 s e t v a l (t r) t e m p . t r ;# t r a c e f i l e
31 s e t v a l (nn) $pa r4 ;# number o f nodes
32 s e t v a l (cp) $pa r2 ;# t r a f f i c p a t t e r n (c o n n e c t i o n

p a t t e r n)
33 s e t v a l (sc) $pa r3 ;# s c e n e p a t t e r n (movement)
34 s e t v a l (s t o p) 100 . 0 ;# s t o p t i m e
35
36 s e t n s [new S i m u l a t o r]
37
38 s e t t r a c e f d [open $ v a l (t r) w]
39 $ n s t r a c e− a l l $ t r a c e f d
40 $ n s use−newtrace
41
42 s e t t opo [new Topography]
43 $ topo l o a d f l a t g r i d $ v a l (x) $ v a l (y)
44
45 s e t god [c rea t e−god $ v a l (nn)]
46
47 s e t c h a n 1 [new $ v a l (chan)]
48
49 $ n s node−conf ig −adhocRouting $ v a l (rp) \
50 − l lType $ v a l (l l) \
51 −macType $ v a l (mac) \
52 − i fqType $ v a l (i f q) \
53 − i fqLen $ v a l (i f q l e n) \
54 −antType $ v a l (a n t) \
55 −propType $ v a l (p rop) \
56 −phyType $ v a l (n e t i f) \
57 −channel $ c h a n 1 \
58 − t o p o I n s t a n c e $ topo \
59 −agen tTrace ON \
60 − r o u t e r T r a c e ON \
61 −macTrace OFF
62
63 f o r { s e t i 0} { $ i < $ v a l (nn) } { i n c r i } {
64 s e t node ($ i) [$ n s node]
65 $node ($ i) random−motion 0 ;# d i s a b l e random mot ion

66 }
67
68 puts ” Loading c o n n e c t i o n p a t t e r n . . . ”
69 source $ v a l (cp)
70
71 puts ” Loading s c e n a r i o f i l e . . . ”
72 source $ v a l (sc)
73
74 f o r { s e t i 0} { $ i < $ v a l (nn) } { i n c r i } {
75 $ n s i n i t i a l n o d e p o s $node ($ i) 20
76 }
77
78 f o r { s e t i 0} { $ i < $ v a l (nn) } { i n c r i } {
79 $ n s a t $ v a l (s t o p) .000000001 ” $node ($ i) r e s e t ” ;
80 }
81
82 $ n s a t $ v a l (s t o p) .000000001 ” p u t s \”NS EXITING. . .\” ; $ n s h a l t ”
83 puts ” S t a r t S i m u l a t i o n . . . ”
84 $ n s run

AWK Scripts
Get Ratio
This awk script was written by Chih-Heng Ke of National Cheng Kung University in Taiwan. It reads the
trace files, and returns the packet delivery ratio.

1 BEGIN {
2 s e n d L i n e = 0 ;
3 r e c v L i n e = 0 ;
4 fowardLine = 0 ;
5 }
6
7 $0 ˜ / ˆ s .∗ AGT/ {
8 s e n d L i n e ++ ;
9 }

10
11 $0 ˜ / ˆ r .∗ AGT/ {
12 r e c v L i n e ++ ;
13 }
14
15
16 $0 ˜ / ˆ f .∗ RTR/ {
17 fowardLine ++ ;
18 } # maybe remote t r a n s m i s s i o n r e q u e s t ?
19
20 END {
21 p r i n t f ” c b r s :%d r :%d , r / s R a t i o :%.4 f , f :%d \n ” , sendLine , r ecvL ine , (r e c v L i n e

/ s e n d L i n e) , fowardLine ;
22 }

Average Results
This is an original awk script that averages the results from the fifty trials of each scenario.

1 BEGIN {
2 t o t a l = 0 ;
3 number = 0 ;
4 }
5
6 NF > 0 {

7
8 number ++;
9 t o t a l += s u b s t r ($5 , 7 , 6) ;

10 }
11
12 END {
13
14 p r i n t f ” C o l l e c t e d :%d Average :%.4 f \n ” , number , (t o t a l / number) ;
15 }

